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SOME NEW RESULTS ABOUT A SYMMETRIC
D-SEMICLASSICAL LINEAR FORM OF CLASS ONE

Abdallah Ghressi and Lotfi Khériji

Abstract. We establish some properties concerning the linear form B[ν ] which
is symmetric D-semiclassical of class 1. An integral representation is obtained.
A connection with the D-classical Bessel one is discussed.

1. INTRODUCTION AND FIRST RESULTS

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
topological dual. We denote by 〈u, f〉 the effect of u ∈ P′ on f ∈ P . We denote by
(u)n := 〈u, xn〉 , n ≥ 0 the moments of u. In particular, a linear form u is called
symmetric if 〈u, x2n+1〉 = 0, n ≥ 0.
For any linear form u, any polynomial g , let gu , be the linear form defined by
duality

(1.1) 〈gu, f〉 := 〈u, gf〉 , f ∈ P .

For f ∈ P and u ∈ P ′, the product uf is the polynomial

(1.2) (uf)(x) := 〈u,
xf(x) − ζf(ζ)

x − ζ
〉.

The derivative u′ = Du of the linear form u is defined by

(1.3) 〈u′, f〉 := −〈u, f ′〉 , f ∈ P .

We have [5]

(1.4) (fu)′ = f ′u + fu′.
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Similarly, with the definitions

(1.5) 〈hau, f〉 := 〈u, haf〉 = 〈u, f(ax)〉 , u ∈ P ′ , f ∈ P , a ∈ C − 0,

(1.6) 〈τbu, f〉 := 〈u, τ−bf〉 = 〈u, f(x + b)〉 , u ∈ P ′ , f ∈ P , b ∈ C.

The linear form u is called regular if we can associate with it a polynomial sequence
{Pn}n≥0, deg Pn = n, such that

(1.7) 〈u, PmPn〉 = rnδn,m , n, m ≥ 0 ; rn �= 0 , n ≥ 0.

The polynomial sequence {Pn}n≥0 is then said orthogonal with respect to u. Neces-
sarily, {Pn}n≥0 is an (OPS) whose any polynomial can be supposed monic (MOPS).
Also, the (MOPS){Pn}n≥0 fulfils the recurrence relation

(1.8)
{

P0(x) = 1 , P1(x) = x − β0 ,
Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x) , γn+1 �= 0 , n ≥ 0.

From the linear application p �→ (θcp)(x) = p(x)−p(c)
x−c , p ∈ P , c ∈ C , we define

(x − c)−1u by

(1.9) 〈(x − c)−1u, p〉 := 〈u, θcp〉.

Finally, we introduce the operator σ : P −→ P defined by (σf)(x) := f(x2) for
all f ∈ P . Consequently, we define σu by duality

(1.10) 〈σu, f〉 = 〈u, σf〉 , f ∈ P , u ∈ P ′.

we have the two well known formulas[7]

(1.11) f(x)σu = σ(f(x2)u),

(1.12) σu′ = 2(σ(xu))′.

Let Φ monic and Ψ be two polynomials , deg Φ = t , deg Ψ = p ≥ 1.
We suppose that the pair (Φ, Ψ) is admissible , i.e. when p = t − 1 , writing
Ψ(x) = apx

p + ..., then ap �= n + 1 , n ∈ N.

Definition 1.1. [5] A linear form u is called D-semiclassical when it is
regular and satisfies the equation

(1.13) (Φu)′ + Ψu = 0
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where the pair (Φ, Ψ) is admissible. The corresponding orthogonal sequence
{Pn}n≥0 is called D-semiclassical.

Remarks.
1. The D-semiclassical character is kept by shifting(see [6]). In fact, let

{a−n(ha ◦ τ−bPn)}n≥0 , a �= 0 , b ∈ C ; when u satisfies (1.13) , then ha−1 ◦ τ−bu
fulfils the equation

(1.14)
(
a−tΦ(ax + b)

(
ha−1 ◦ τ−bu

))′
+ a1−tΨ(ax + b)

(
ha−1 ◦ τ−bu

)
= 0.

2. The D-semiclassical linear form u is said to be of class s = max(p− 1, t−
2) ≥ 0 if and only if

(1.15)
∏

c∈ZΦ

{∣∣∣Ψ(c) + Φ′(c)
∣∣∣ +

∣∣∣〈u, θcΨ + θ2
c Φ

〉 ∣∣∣} > 0,

where ZΦ is the set of zeros of Φ. The corresponding orthogonal sequence {Pn}n≥0

will be known as of class s[4].
3. When s = 0, the linear form u is usually called D-classical

(
Hermite,

Laguerre, Bessel, and Jacobi
)
[6].

Let us recall some characterizations of D-semiclassical orthogonal sequences which
are needed in the sequel. {Pn}n≥0 is D-semiclassical of class s, if and only if one
of the following statements holds [4]

(1). {Pn}n≥0 satisfies the following structure relation
(1.16)

Φ(x)P ′
n+1(x) =

1
2

(Cn+1(x)− C0(x))Pn+1(x) − γn+1Dn+1(x)Pn(x), n ≥ 0,

where

(1.17) Cn+1(x) = −Cn(x) + 2(x − βn)Dn(x) , n ≥ 0,

(1.18)
γn+1Dn+1(x) = −Φ(x) + γnDn−1(x) + (x − βn)2Dn(x)

−(x − βn)Cn(x), n ≥ 0,

(1.19)

{
C0(z) = −Ψ(z) − Φ′(z),

D0(z) = −(uθ0Φ)′(z)− (uθ0Ψ)(z).

Φ, Ψ are the same parameters introduced in (1.13); βn, γn are the coefficients of the
three term recurrence relation (1.8). Notice that D−1(x) := 0, deg Cn ≤ s + 1 and
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deg Dn ≤ s, n ≥ 0.

(2). Each polynomial Pn+1, n ≥ 0 satisfies a second order linear differential
equation

(1.20) J(x, n)P ′′
n+1(x) + K(x, n)P ′

n+1(x) + L(x, n)Pn+1(x) = 0 , n ≥ 0,

with

(1.21)




J(x, n) = Φ(x)Dn+1(x) ,

K(x, n) = Dn+1(x)
(
Φ′(x) + C0(x)

)
− D′

n+1(x)Φ(x) ,

L(x, n) = 1
2

(
Cn+1(x)− C0(x)

)
D′

n+1(x)−
−1

2

(
C′

n+1 − C′
0

)
(x)Dn+1(x) − Dn+1(x)Σn(x) , n ≥ 0,

and

(1.22) Σn(x) :=
n∑

k=0

Dk(x) , n ≥ 0.

Φ, Cn, Dn are the same in the previous characterization. Notice that
deg J(., n) ≤ 2s + 2 , deg K(., n) ≤ 2s + 1 and deg L(., n) ≤ 2s.

In [1], the authors give the description of symmetric D-semiclassical linear forms
of class 1. There are three canonical cases for Φ

Φ(x) = x, Φ(x) = x(x2 − 1), Φ(x) = x3.

The first and the second canonical cases are well known. They are respectively the
generalized Hermite H(µ) and The symmetric generalized Gegenbauer G(α, β)[1,3].
So, the aim of this paper is to give some new results concerning the third case. It’s
the linear form B[ν], symmetric D-semiclassical of class 1 for ν �= −n−1 , n ≥ 0.
We have[1]

(1.23)




βn = 0 , γn+1 = 1
16

1 − 2ν − (−1)n(2n + 2ν + 1)
(n + ν)(n + ν + 1)

, n ≥ 0,(
x3B[ν]

)′ −
{
2(ν + 1)x2 + 1

2

}
B[ν] = 0.

Taking into account the functional equation in (1.23), it is easy to see that the mo-
ments of B[ν] are

(1.24) (B[ν])2n =
(−1)nΓ(ν + 1)
22nΓ(n + ν + 1)

, (B[ν])2n+1 = 0 , n ≥ 0,
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where Γ is the gamma function. In accordance of (1.17)-(1.19) and (1.22) and after
some calculation we get

(1.25)




Cn(x) = (2n + 2ν − 1)x2 +
1
2
(−1)n,

Dn(x) = 2(n + ν)x,

Σn(x) = (n + 1)(n + 2ν)x,

, n ≥ 0.

Therefore, with (1.20)-(1.21), the second order linear differential equation satisfied
by Pn+1, n ≥ 0 is

(1.26)
x4P ′′

n+1(x) + x
{
(2ν + 1)x2 +

1
2
}
P ′

n+1(x)

−{
(n + 1)(n + 2ν + 1)x2 +

(1 + (−1)n)
4

}
Pn+1(x) = 0.

Proposition 1.2. Let {Pn}n≥0 be the (MOPS) with respect to the linear form
B[ν]. Then, every polynomial Pn+1, n ≥ 1 have simple zeros.

Proof. First, the (MOPS){Pn}n≥0 is of class 1. Taking into account the
structure relation (1.16), we can deduce the following: if c is a zero of order η of
Pn+1, n ≥ 1 with η ≥ 2, then η ≤ 2 and c is a zero of order η−1 = 1 of Dn+1.[4]
Second,the (MOPS){Pn}n≥0 is symmetric then Pn(−x) = (−1)nPn(x), n ≥ 0[3]
and according to (1.8) with βn = 0, n ≥ 0 we get

(1.27) P2n+1(0) = 0 , P2n(0) = (−1)n
n∏

k=0

γ2k−1 �= 0 , n ≥ 0 , γ−1 := 1.

To establish the desired result, it is sufficient to prove that P ′
2n+1(0) �= 0, n ≥ 0

since the above, the expression of the polynomial Dn+1 in (1.25), and (1.27).
Differentiating (1.16), then taking x = 0 and n → 2n, and after an easy computation
we obtain P ′

2n+1(0) = n+ν
2n+ν P2n(0) �= 0, n ≥ 0

In [1], an integral representation of the last case is not given. See also [2]. In
the next section, we are going to give an integral representation for B[ν]. Moreover,
the relationship with the D-classical Bessel linear form is obtained.

2. AN INTEGRAL REPRESENTATION FOR B[ν]

Let u be a D-semiclassical linear form satisfying (1.13). We are looking for an
integral representation of u and consider

(2.1) 〈u, f〉 =
∫ +∞

−∞
U(x)f(x)dx , f ∈ P ,
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where we suppose the function U to be absolutely continuous on R, and is decaying
as fast as its derivative U ′. From (1.13) we get∫ +∞

−∞

(
(ΦU)′ + ΨU

)
f(x)dx − Φ(x)U(x)f(x)

]+∞
−∞ = 0, f ∈ P .

Hence, from the assumptions on U , the following conditions hold

(2.2) Φ(x)U(x)f(x)
]+∞
−∞ = 0 , f ∈ P ,

(2.3)
∫ +∞

−∞

(
(ΦU)′ + ΨU

)
f(x)dx = 0 , f ∈ P .

Condition (2.3) implies

(2.4) (ΦU)′ + ΨU = ωg,

where ω �= 0 arbitrary and g is a locally integrable function with rapid decay
representing the null-form (see[8])

(2.5)
∫ +∞

−∞
xng(x)dx = 0 , n ≥ 0.

Conversely, if U is a solution of (2.4) verifying the hypothesis above and the con-
dition

(2.6)
∫ +∞

−∞
U(x)dx �= 0,

then (2.2)-(2.3) are fulfilled and (2.1) defines a linear form u which is a solution
of (1.13).
Now, the linear form u is B[ν], ν �= −n − 1 , n ≥ 0 with

Φ(x) = x3 , Ψ(x) = −2(ν + 1)x2 − 1
2
.

Equation (2.4) becomes

(2.4)′
(
x3U

)′ − {2(ν + 1)x2 +
1
2
}U = ωg(x).

For instance, let g(x) = −|x|s(x2), x ∈ R [8] where s is the Stieltjes function [8,9]

(2.7) s(x) =

{
0, x ≤ 0,

e−x
1
4 sinx

1
4 , x > 0.
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A possible solution of (2.4)’ is the even function

(2.8) U(x) =




0, x = 0,

ω|x|2ν−1e−
1

4x2

∫ +∞

|x|
t−2ν−1e

1
4t2 s(t2)dt, x ∈ R − {0}.

First, condition (2.2) is fulfilled, for we have

|x3U(x)|≤|ω||x|2�ν+2e−
1

4x2

∫ +∞

|x|
t−2�ν−1 e

1
4t2 e−t

1
2 dt = o

(
e−

1
2
|x| 12 )

, |x| → +∞.

Further, when x → +∞

|U(x)| ≤ |ω|x2�ν−1

∫ +∞

x

t−2�ν−1 e−t
1
2 dt = o

(
e−

1
2
x

1
2
)
,

and when x → +0

|U(x)| ≤ |ω|x2�ν−1e−
1

4x2

∫ 1

x
t−2�ν−1 e

1
4t2 dt + o(1),

we apply l’Hospital’s rule to the ratio

lim
x→+0

∫ 1

x

t−2�ν−1 e
1

4t2 dt

x−2�ν+1e
1

4x2

= lim
x→+0

x

(2�ν − 1)x2 + 1
2

= 0,

so lim
x→+0

U(x) = 0 = U(0).

Consequently, U ∈ L1.
Condition (2.6) now becomes

(2.9)
∫ +∞

−∞
U(x)dx=2ω

∫ +∞

0
ξ−2ν−1e

1
4ξ2 s(ξ2)

(∫ ξ

0
x2ν−1e−

1
4x2 dx

)
dξ=ωSν �=0

with

(2.10) Sν = 2
∫ +∞

0

t−4ν−1e
1

4t4 ϕν− 3
2
(t2)e−t sin tdt,

(2.11) ϕν(t) =
∫ t

0
x2ν+2e−

1
4x2 dx.

Let us establish some results about Sν
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Lemma 2.1. We have for ν ≥ −1

(2.12)
1
4
t2ϕν(t) ≤ ϕν+1(t) ≤ t2ϕν(t), t ≥ 0,

(2.13) 2
t2ν+5

1 + 2(2ν + 5)t2
e−

1
4t2 ≤ ϕν(t) ≤ 4

t2ν+5

2 + (2ν + 5)t2
e−

1
4t2 , t ≥ 0.

Proof. It is easy to prove (2.12) from (2.11) and monotonicity.
From (2.11), we have upon integration by parts

(2.14) ϕν(t) = 2t2ν+5e−
1

4t2 − 2(2ν + 5)ϕν+1(t), ν ∈ C, t ≥ 0.

Now, in accordance of (2.12) and (2.14) we obtain the desired result (2.13)

Proposition 2.2. We have the following expression for m ≥ 1, ν ∈ C

(2.15) Sν = (−1)m22m+1
m∏

k=1

(ν + k)
∫ +∞

0
t−4ν−1e

1
4t4 ϕν− 3

2
+m(t2)e−t sin tdt.

Proof. From (2.14), and using the Stieltjes representation (2.5) of the null-form,
we get

Sν = −23(ν + 1)
∫ +∞

0
t−4ν−1e

1
4t4 ϕν− 1

2
(t2)e−t sin tdt.

Suppose (2.15) for m ≥ 1 fixed. From (2.14) where ν → ν + m and t → t2

ϕν+m−3
2
(t2) = 2t4(ν+m+1)e−

1
4t4 − 4(ν + m + 1)ϕν+m−1

2
(t2),

hence easily (2.15) for m → m + 1

Corollary 2.3. We have S−n−1 = 0, n ≥ 0.

This result is consistent with the fact that the linear form B[ν] is not regular for
these values of ν.

Proposition 2.4. For ν ≥ 1
2 , we have Sν > 0.

Proof. First, we need the following lemma [8].

Lemma 2.5. Consider the following integral

(2.16) S =
∫ +∞

0
F (t) sin tdt
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where we suppose F (t) ≥ 0, continuous, increasing in 0 < t ≤ t and decreasing
to zero for t > t. Then,

(2.17) 0 < t ≤ π,

∫ π

0

(
F (t) − F (t + π)

)
sin tdt ≥ 0 =⇒ S > 0.

Now, denoting F (t) = Fν(t) = fν(t)e−t with fν(t) = t−4ν−1e
1

4t4 ϕν− 3
2
(t2).

We have from (2.13)

(2.13)′
2t3

1 + 4(ν + 1)t4
≤ fν(t) ≤ 2t3

1 + (ν + 1)t4
, t ≥ 0, ν ≥ 1

2
.

Then,

(2.18)
2t3

1 + 4(ν + 1)t4
e−t ≤ Fν(t) ≤ 2t3

1 + (ν + 1)t4
e−t, t ≥ 0, ν ≥ 1

2
.

Consequently, Fν(t) > 0 for t > 0, Fν(0) = 0 and lim
t→+∞Fν(t) = 0 which implies

that Fν has a maximum for t = t defined by f′ν(t) = fν(t).
Hence,

(2.19) fν(t) =
2t

3

1 + (4ν + 1)t4 + t
5

since
f ′
ν(t) =

2
t2
−

{4ν + 1
t

+
1
t5

}
fν(t), t > 0.

From the first inequality of (2.13)’ and by virtue of (2.19) necessarily t ≤ 3.

Therefore the implication (2.17) is true if the following is verified

(2.20)
∫ π

0
sin t

(π + t)3

1 + (ν + 1)(π + t)4
e−t−πdt ≤

∫ π

0
sin t

t3

1 + 4(ν + 1)t4
e−tdt.

The function t �→ t3

1+(ν+1)t4
is decreasing for t ≥ t1 = ( 3

ν+1 )
1
4 and from ν ≥ 1

2 we
have easily t1 < π

2 . We have successively∫ π

0
sin t

(π + t)3

1 + (ν + 1)(π + t)4
e−t−πdt ≤ e−π π3

1 + (ν + 1)π4

e−π + 1
2

.

On the other hand∫ π

t1

sin t
t3

1 + 4(ν + 1)t4
e−tdt =

∫ π

t1

sin t
t3

1 + (ν + 1)t4
1 + (ν + 1)t4

1 + 4(ν + 1)t4
e−tdt
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≥ 1
4

π3

1 + (ν + 1)π4

∫ π

π
2

sin te−tdt

≥ 1
8e−π π3

1 + (ν + 1)π4
(1 + e

π
2 ).

Thus, (2.20) is fulfilled if

(2.21) e−π π3

1 + (ν + 1)π4

(1 + e−π)
2

≤
∫ t1

0
sin t

t3

1 + 4(ν + 1)t4
e−tdt

+1
8e−π π3

1 + (ν + 1)π4

(
1 + e

π
2
)
.

But, 1 + e−π < 1
4 (1 + e

π
2 ), therefore the inequality (2.21) is satisfied and the

proposition is proved

Finally, for f ∈ P , ν ≥ 1
2

(2.22) 〈B[ν], f〉=S−1
ν

∫ +∞

−∞

1
x2

∫ +∞

|x|

( |x|
t

)2ν+1
exp

( 1
4t2

− 1
4x2

)
s(t2)dtf(x)dx.

Let now B(α), α �= −n
2 , n ≥ 0 be the Bessel D-classical linear form. We

have[4]

(2.23)
(
x2B(α)

)′ − 2(αx + 1)B(α) = 0.

In the following proposition we are going to establish the connection between B[ν]
and B(α).

Proposition 2.6. We have

(2.24) σB[ν ] = h 1
8
B
( ν + 1

2

)
, ν �= −n − 1 , n ≥ 0.

Proof. From (1.23) we have

(2.25)
(
x3B[ν]

)′ −
{

2(ν + 1)x2 +
1
2

}
B[ν] = 0.

Applying the operator σ to the both sides of (2.25) and in accordance of (1.11)-(1.12)
we get

(2.25)′
(
x2σB[ν]

)′ −
{
(ν + 1)x +

1
4

}
σB[ν] = 0.

Moreover, the linear form B[ν] is symmetric and regular then σB[ν] is regular[3,7].
So, on the one hand, taking into account (2.25)’ the linear form σB[ν] is D-classical.
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On the other hand, from (2.23) with α = ν+1
2 , B

(
ν+1

2

)
satisfies the functional

equation

(2.23)′
(
x2B

(ν + 1
2

))′
− 2

(
ν + 1

2
x + 1

)
B
( ν + 1

2

)
= 0.

Formula (1.14) with the choice a = 8, b = 0 yields to

(2.23)′′
(
x2h 1

8
B
( ν + 1

2

))′
−

(
(ν + 1)x +

1
4

)
h 1

8
B
(ν + 1

2

)
= 0.

Consequently, we obtain (2.24)
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Faculté des Sciences de Gabès,
Route de Mednine 6029-Gabès,
Tunisia.
E-mail: abdallah.ghrissi@fsg.rnu.tn



382 Abdallah Ghressi and Lotfi Khériji

Lotfi Khériji
Institut Supérieur des Sciences Appliquées et de Technologie de Gabès
Rue Omar Ibn El,
Khattab 6072-Gabès, Tunisia.
E-mail: lotfi.kheriji@issatgb.rnu.tn


