TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 2, pp. 371-382, June 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

SOME NEW RESULTS ABOUT A SYMMETRIC D-SEMICLASSICAL LINEAR FORM OF CLASS ONE

Abdallah Ghressi and Lotfi Khériji

Abstract. We establish some properties concerning the linear form $\mathcal{B}[\nu]$ which is symmetric *D*-semiclassical of class 1. An integral representation is obtained. A connection with the *D*-classical Bessel one is discussed.

1. INTRODUCTION AND FIRST RESULTS

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}' be its topological dual. We denote by $\langle u, f \rangle$ the effect of $u \in \mathcal{P}'$ on $f \in \mathcal{P}$. We denote by $(u)_n := \langle u, x^n \rangle$, $n \ge 0$ the moments of u. In particular, a linear form u is called symmetric if $\langle u, x^{2n+1} \rangle = 0$, $n \ge 0$.

For any linear form $\boldsymbol{u},$ any polynomial \boldsymbol{g} , let $\boldsymbol{g}\boldsymbol{u}$, be the linear form defined by duality

(1.1)
$$\langle gu, f \rangle := \langle u, gf \rangle, f \in \mathcal{P}.$$

For $f \in \mathcal{P}$ and $u \in \mathcal{P}'$, the product uf is the polynomial

(1.2)
$$(uf)(x) := \langle u, \frac{xf(x) - \zeta f(\zeta)}{x - \zeta} \rangle.$$

The derivative u' = Du of the linear form u is defined by

(1.3)
$$\langle u', f \rangle := -\langle u, f' \rangle, f \in \mathcal{P}.$$

We have [5]

(1.4)
$$(fu)' = f'u + fu'.$$

Communicated by H. M. Srivastsvs.

Received April 7, 2005, revised July 4, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 42C05, 33C45.

Key words and phrases: Semiclassical orthogonal polynomials, Integral representation.

Similarly, with the definitions

(1.5)
$$\langle h_a u, f \rangle := \langle u, h_a f \rangle = \langle u, f(ax) \rangle, u \in \mathcal{P}', f \in \mathcal{P}, a \in \mathbb{C} - 0,$$

(1.6)
$$\langle \tau_b u, f \rangle := \langle u, \tau_{-b} f \rangle = \langle u, f(x+b) \rangle, u \in \mathcal{P}', f \in \mathcal{P}, b \in \mathbb{C}.$$

The linear form u is called *regular* if we can associate with it a polynomial sequence $\{P_n\}_{n>0}$, deg $P_n = n$, such that

(1.7)
$$\langle u, P_m P_n \rangle = r_n \delta_{n,m} , n, m \ge 0 ; r_n \ne 0 , n \ge 0.$$

The polynomial sequence $\{P_n\}_{n\geq 0}$ is then said orthogonal with respect to u. Necessarily, $\{P_n\}_{n\geq 0}$ is an (OPS) whose any polynomial can be supposed monic (MOPS). Also, the (MOPS) $\{P_n\}_{n\geq 0}$ fulfils the recurrence relation

(1.8)
$$\begin{cases} P_0(x) = 1 , P_1(x) = x - \beta_0 , \\ P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x) , \gamma_{n+1} \neq 0 , n \ge 0. \end{cases}$$

From the linear application $p\mapsto (\theta_cp)(x)=\frac{p(x)-p(c)}{x-c}$, $p\in\mathcal{P}$, $c\in\mathbb{C}$, we define $(x-c)^{-1}u$ by

(1.9)
$$\langle (x-c)^{-1}u, p \rangle := \langle u, \theta_c p \rangle.$$

Finally, we introduce the operator $\sigma : \mathcal{P} \longrightarrow \mathcal{P}$ defined by $(\sigma f)(x) := f(x^2)$ for all $f \in \mathcal{P}$. Consequently, we define σu by duality

(1.10)
$$\langle \sigma u, f \rangle = \langle u, \sigma f \rangle, f \in \mathcal{P}, u \in \mathcal{P}'.$$

we have the two well known formulas[7]

(1.11)
$$f(x)\sigma u = \sigma(f(x^2)u),$$

(1.12)
$$\sigma u' = 2(\sigma(xu))'.$$

Let Φ monic and Ψ be two polynomials , $\deg \Phi = t$, $\deg \Psi = p \ge 1$. We suppose that the pair (Φ, Ψ) is *admissible*, i.e. when p = t - 1, writing $\Psi(x) = a_p x^p + \dots$, then $a_p \ne n + 1$, $n \in \mathbb{N}$.

Definition 1.1. [5] A linear form u is called D-semiclassical when it is regular and satisfies the equation

$$(1.13)\qquad \qquad (\Phi u)' + \Psi u = 0$$

where the pair (Φ, Ψ) is admissible. The corresponding orthogonal sequence $\{P_n\}_{n\geq 0}$ is called D-semiclassical.

Remarks.

1. The *D*-semiclassical character is kept by shifting(see [6]). In fact, let $\{a^{-n}(h_a \circ \tau_{-b}P_n)\}_{n \ge 0}$, $a \ne 0$, $b \in \mathbb{C}$; when *u* satisfies (1.13), then $h_{a^{-1}} \circ \tau_{-b}u$ fulfils the equation

(1.14)
$$\left(a^{-t} \Phi(ax+b) \left(h_{a^{-1}} \circ \tau_{-b} u \right) \right)' + a^{1-t} \Psi(ax+b) \left(h_{a^{-1}} \circ \tau_{-b} u \right) = 0.$$

2. The D-semiclassical linear form u is said to be of class $s = \max(p-1, t-2) \ge 0$ if and only if

(1.15)
$$\prod_{c\in\mathcal{Z}_{\Phi}}\left\{\left|\Psi(c)+\Phi'(c)\right|+\left|\left\langle u,\theta_{c}\Psi+\theta_{c}^{2}\Phi\right\rangle\right|\right\}>0,$$

where \mathcal{Z}_{Φ} is the set of zeros of Φ . The corresponding orthogonal sequence $\{P_n\}_{n\geq 0}$ will be known as of class s[4].

3. When s = 0, the linear form u is usually called *D*-classical (Hermite, Laguerre, Bessel, and Jacobi)[6].

Let us recall some characterizations of *D*-semiclassical orthogonal sequences which are needed in the sequel. $\{P_n\}_{n\geq 0}$ is *D*-semiclassical of class *s*, if and only if one of the following statements holds [4]

(1). $\{P_n\}_{n\geq 0}$ satisfies the following structure relation (1.16)

$$\Phi(x)P'_{n+1}(x) = \frac{1}{2} \left(C_{n+1}(x) - C_0(x) \right) P_{n+1}(x) - \gamma_{n+1} D_{n+1}(x) P_n(x), n \ge 0,$$

where

(1.17)
$$C_{n+1}(x) = -C_n(x) + 2(x - \beta_n)D_n(x) , n \ge 0,$$

(1.18)
$$\gamma_{n+1}D_{n+1}(x) = -\Phi(x) + \gamma_n D_{n-1}(x) + (x - \beta_n)^2 D_n(x) -(x - \beta_n)C_n(x), n \ge 0,$$

(1.19)
$$\begin{cases} C_0(z) = -\Psi(z) - \Phi'(z), \\ D_0(z) = -(u\theta_0\Phi)'(z) - (u\theta_0\Psi)(z) \end{cases}$$

 Φ, Ψ are the same parameters introduced in (1.13); β_n, γ_n are the coefficients of the three term recurrence relation (1.8). Notice that $D_{-1}(x) := 0$, deg $C_n \leq s + 1$ and

 $\deg D_n \leq s, n \geq 0.$

(2). Each polynomial $P_{n+1}, n \ge 0$ satisfies a second order linear differential equation

(1.20)
$$J(x,n)P_{n+1}'(x) + K(x,n)P_{n+1}'(x) + L(x,n)P_{n+1}(x) = 0, n \ge 0,$$

with

(1.21)
$$\begin{cases} J(x,n) = \Phi(x)D_{n+1}(x), \\ K(x,n) = D_{n+1}(x)\left(\Phi'(x) + C_0(x)\right) - D'_{n+1}(x)\Phi(x), \\ L(x,n) = \frac{1}{2}\left(C_{n+1}(x) - C_0(x)\right)D'_{n+1}(x) - \\ -\frac{1}{2}\left(C'_{n+1} - C'_0\right)(x)D_{n+1}(x) - D_{n+1}(x)\Sigma_n(x), n \ge 0 \end{cases}$$

and

(1.22)
$$\Sigma_n(x) := \sum_{k=0}^n D_k(x) , \ n \ge 0$$

 Φ, C_n, D_n are the same in the previous characterization. Notice that $\deg J(., n) \leq 2s + 2$, $\deg K(., n) \leq 2s + 1$ and $\deg L(., n) \leq 2s$.

In [1], the authors give the description of symmetric *D*-semiclassical linear forms of class 1. There are three canonical cases for Φ

$$\Phi(x) = x,$$
 $\Phi(x) = x(x^2 - 1),$ $\Phi(x) = x^3.$

The first and the second canonical cases are well known. They are respectively the generalized Hermite $\mathcal{H}(\mu)$ and The symmetric generalized Gegenbauer $\mathcal{G}(\alpha,\beta)[1,3]$. So, the aim of this paper is to give some new results concerning the third case. It's the linear form $\mathcal{B}[\nu]$, symmetric *D*-semiclassical of class 1 for $\nu \neq -n-1$, $n \geq 0$. We have[1]

(1.23)
$$\begin{cases} \beta_n = 0, \ \gamma_{n+1} = \frac{1}{16} \frac{1 - 2\nu - (-1)^n (2n + 2\nu + 1)}{(n + \nu)(n + \nu + 1)}, \ n \ge 0, \\ \left(x^3 \mathcal{B}[\nu]\right)' - \left\{2(\nu + 1)x^2 + \frac{1}{2}\right\} \mathcal{B}[\nu] = 0. \end{cases}$$

Taking into account the functional equation in (1.23), it is easy to see that the moments of $\mathcal{B}[\nu]$ are

(1.24)
$$(\mathcal{B}[\nu])_{2n} = \frac{(-1)^n \Gamma(\nu+1)}{2^{2n} \Gamma(n+\nu+1)}, \ (\mathcal{B}[\nu])_{2n+1} = 0, \ n \ge 0,$$

where Γ is the gamma function. In accordance of (1.17)-(1.19) and (1.22) and after some calculation we get

(1.25)
$$\begin{cases} C_n(x) = (2n+2\nu-1)x^2 + \frac{1}{2}(-1)^n, \\ D_n(x) = 2(n+\nu)x, \\ \Sigma_n(x) = (n+1)(n+2\nu)x, \end{cases}, n \ge 0.$$

Therefore, with (1.20)-(1.21), the second order linear differential equation satisfied by P_{n+1} , $n \ge 0$ is

(1.26)
$$x^{4}P_{n+1}''(x) + x\left\{(2\nu+1)x^{2} + \frac{1}{2}\right\}P_{n+1}'(x) \\ -\left\{(n+1)(n+2\nu+1)x^{2} + \frac{(1+(-1)^{n})}{4}\right\}P_{n+1}(x) = 0.$$

Proposition 1.2. Let $\{P_n\}_{n\geq 0}$ be the (MOPS) with respect to the linear form $\mathcal{B}[\nu]$. Then, every polynomial P_{n+1} , $n \geq 1$ have simple zeros.

Proof. First, the (MOPS) $\{P_n\}_{n\geq 0}$ is of class 1. Taking into account the structure relation (1.16), we can deduce the following: if c is a zero of order η of $P_{n+1}, n \geq 1$ with $\eta \geq 2$, then $\eta \leq 2$ and c is a zero of order $\eta - 1 = 1$ of D_{n+1} .[4] Second,the (MOPS) $\{P_n\}_{n\geq 0}$ is symmetric then $P_n(-x) = (-1)^n P_n(x), n \geq 0$ [3] and according to (1.8) with $\beta_n = 0, n \geq 0$ we get

(1.27)
$$P_{2n+1}(0) = 0$$
, $P_{2n}(0) = (-1)^n \prod_{k=0}^n \gamma_{2k-1} \neq 0$, $n \ge 0$, $\gamma_{-1} := 1$.

To establish the desired result, it is sufficient to prove that $P'_{2n+1}(0) \neq 0, n \geq 0$ since the above, the expression of the polynomial D_{n+1} in (1.25), and (1.27). Differentiating (1.16), then taking x = 0 and $n \to 2n$, and after an easy computation we obtain $P'_{2n+1}(0) = \frac{n+\nu}{2n+\nu}P_{2n}(0) \neq 0, n \geq 0$

In [1], an integral representation of the last case is not given. See also [2]. In the next section, we are going to give an integral representation for $\mathcal{B}[\nu]$. Moreover, the relationship with the *D*-classical Bessel linear form is obtained.

2. An Integral Representation for $\mathcal{B}[\nu]$

Let u be a D-semiclassical linear form satisfying (1.13). We are looking for an integral representation of u and consider

(2.1)
$$\langle u, f \rangle = \int_{-\infty}^{+\infty} U(x) f(x) dx, \ f \in \mathcal{P},$$

where we suppose the function U to be absolutely continuous on \mathbb{R} , and is decaying as fast as its derivative U'. From (1.13) we get

$$\int_{-\infty}^{+\infty} \left((\Phi U)' + \Psi U \right) f(x) dx - \Phi(x) U(x) f(x) \Big]_{-\infty}^{+\infty} = 0, \quad f \in \mathcal{P}.$$

Hence, from the assumptions on U, the following conditions hold

(2.2)
$$\Phi(x)U(x)f(x)\Big]_{-\infty}^{+\infty} = 0, \ f \in \mathcal{P},$$

(2.3)
$$\int_{-\infty}^{+\infty} \left((\Phi U)' + \Psi U \right) f(x) dx = 0 , \ f \in \mathcal{P}.$$

Condition (2.3) implies

(2.4)
$$(\Phi U)' + \Psi U = \omega g$$

where $\omega \neq 0$ arbitrary and g is a locally integrable function with rapid decay representing the null-form (see[8])

(2.5)
$$\int_{-\infty}^{+\infty} x^n g(x) dx = 0 , \ n \ge 0.$$

Conversely, if U is a solution of (2.4) verifying the hypothesis above and the condition

(2.6)
$$\int_{-\infty}^{+\infty} U(x)dx \neq 0,$$

then (2.2)-(2.3) are fulfilled and (2.1) defines a linear form u which is a solution of (1.13).

Now, the linear form u is $\mathcal{B}[\nu]$, $\nu \neq -n-1$, $n \geq 0$ with

$$\Phi(x) = x^3$$
, $\Psi(x) = -2(\nu+1)x^2 - \frac{1}{2}$.

Equation (2.4) becomes

(2.4)'
$$(x^3U)' - \{2(\nu+1)x^2 + \frac{1}{2}\}U = \omega g(x).$$

For instance, let $g(x) = -|x|s(x^2), x \in \mathbb{R}$ [8] where s is the Stieltjes function [8,9]

(2.7)
$$s(x) = \begin{cases} 0, & x \le 0, \\ e^{-x^{\frac{1}{4}}} \sin x^{\frac{1}{4}}, & x > 0. \end{cases}$$

A possible solution of (2.4)' is the even function

(2.8)
$$U(x) = \begin{cases} 0, & x = 0, \\ \omega |x|^{2\nu - 1} \mathrm{e}^{-\frac{1}{4x^2}} \int_{|x|}^{+\infty} t^{-2\nu - 1} \mathrm{e}^{\frac{1}{4t^2}} s(t^2) dt, & x \in \mathbb{R} - \{0\}. \end{cases}$$

First, condition (2.2) is fulfilled, for we have

$$|x^{3}U(x)| \leq |\omega| |x|^{2\Re\nu+2} \mathrm{e}^{-\frac{1}{4x^{2}}} \int_{|x|}^{+\infty} t^{-2\Re\nu-1} \mathrm{e}^{\frac{1}{4t^{2}}} \mathrm{e}^{-t^{\frac{1}{2}}} dt = o\left(\mathrm{e}^{-\frac{1}{2}|x|^{\frac{1}{2}}}\right), \ |x| \to +\infty.$$

Further, when $x \to +\infty$

$$|U(x)| \le |\omega| x^{2\Re\nu - 1} \int_{x}^{+\infty} t^{-2\Re\nu - 1} \mathrm{e}^{-t^{\frac{1}{2}}} dt = o\left(\mathrm{e}^{-\frac{1}{2}x^{\frac{1}{2}}}\right),$$

and when $x \to +0$

$$|U(x)| \le |\omega| x^{2\Re\nu - 1} \mathrm{e}^{-\frac{1}{4x^2}} \int_x^1 t^{-2\Re\nu - 1} \mathrm{e}^{\frac{1}{4t^2}} dt + o(1),$$

we apply l'Hospital's rule to the ratio

$$\lim_{x \to +0} \frac{\int_{x}^{1} t^{-2\Re\nu - 1} e^{\frac{1}{4t^{2}}} dt}{x^{-2\Re\nu + 1} e^{\frac{1}{4x^{2}}}} = \lim_{x \to +0} \frac{x}{(2\Re\nu - 1)x^{2} + \frac{1}{2}} = 0,$$

so $\lim_{x \to +0} U(x) = 0 = U(0)$. Consequently, $U \in L_1$.

Condition (2.6) now becomes

(2.9)
$$\int_{-\infty}^{+\infty} U(x) dx = 2\omega \int_{0}^{+\infty} \xi^{-2\nu-1} e^{\frac{1}{4\xi^2}} s(\xi^2) \left(\int_{0}^{\xi} x^{2\nu-1} e^{-\frac{1}{4x^2}} dx \right) d\xi = \omega S_{\nu} \neq 0$$

with

(2.10)
$$S_{\nu} = 2 \int_{0}^{+\infty} t^{-4\nu-1} e^{\frac{1}{4t^4}} \varphi_{\nu-\frac{3}{2}}(t^2) e^{-t} \sin t dt,$$

(2.11)
$$\varphi_{\nu}(t) = \int_0^t x^{2\nu+2} \mathrm{e}^{-\frac{1}{4x^2}} dx.$$

Let us establish some results about S_{ν}

Lemma 2.1. We have for $\nu \geq -1$

(2.12)
$$\frac{1}{4}t^{2}\varphi_{\nu}(t) \leq \varphi_{\nu+1}(t) \leq t^{2}\varphi_{\nu}(t), \ t \geq 0,$$

(2.13)
$$2\frac{t^{2\nu+5}}{1+2(2\nu+5)t^2}e^{-\frac{1}{4t^2}} \le \varphi_{\nu}(t) \le 4\frac{t^{2\nu+5}}{2+(2\nu+5)t^2}e^{-\frac{1}{4t^2}}, \ t \ge 0.$$

Proof. It is easy to prove (2.12) from (2.11) and monotonicity. From (2.11), we have upon integration by parts

(2.14)
$$\varphi_{\nu}(t) = 2t^{2\nu+5} \mathrm{e}^{-\frac{1}{4t^2}} - 2(2\nu+5)\varphi_{\nu+1}(t), \ \nu \in \mathbb{C}, \ t \ge 0.$$

Now, in accordance of (2.12) and (2.14) we obtain the desired result (2.13)

Proposition 2.2. We have the following expression for $m \ge 1, \nu \in \mathbb{C}$

(2.15)
$$S_{\nu} = (-1)^m 2^{2m+1} \prod_{k=1}^m (\nu+k) \int_0^{+\infty} t^{-4\nu-1} \mathrm{e}^{\frac{1}{4t^4}} \varphi_{\nu-\frac{3}{2}+m}(t^2) \mathrm{e}^{-t} \sin t dt.$$

Proof. From (2.14), and using the Stieltjes representation (2.5) of the null-form, we get

$$S_{\nu} = -2^{3}(\nu+1) \int_{0}^{+\infty} t^{-4\nu-1} e^{\frac{1}{4t^{4}}} \varphi_{\nu-\frac{1}{2}}(t^{2}) e^{-t} \sin t dt.$$

Suppose (2.15) for $m \ge 1$ fixed. From (2.14) where $\nu \to \nu + m$ and $t \to t^2$

$$\varphi_{\nu+m-\frac{3}{2}}(t^2) = 2t^{4(\nu+m+1)} e^{-\frac{1}{4t^4}} - 4(\nu+m+1)\varphi_{\nu+m-\frac{1}{2}}(t^2),$$

hence easily (2.15) for $m \rightarrow m+1$

Corollary 2.3. We have $S_{-n-1} = 0, n \ge 0$.

This result is consistent with the fact that the linear form $\mathcal{B}[\nu]$ is not regular for these values of ν .

Proposition 2.4. For $\nu \geq \frac{1}{2}$, we have $S_{\nu} > 0$.

Proof. First, we need the following lemma [8].

Lemma 2.5. Consider the following integral

(2.16)
$$S = \int_0^{+\infty} F(t) \sin t dt$$

where we suppose $F(t) \ge 0$, continuous, increasing in $0 < t \le \overline{t}$ and decreasing to zero for $t > \overline{t}$. Then,

(2.17)
$$0 < \overline{t} \le \pi, \quad \int_0^\pi \left(F(t) - F(t+\pi) \right) \sin t dt \ge 0 \Longrightarrow S > 0.$$

Now, denoting $F(t) = F_{\nu}(t) = f_{\nu}(t)e^{-t}$ with $f_{\nu}(t) = t^{-4\nu-1}e^{\frac{1}{4t^4}}\varphi_{\nu-\frac{3}{2}}(t^2)$. We have from (2.13)

$$(2.13)' \qquad \frac{2t^3}{1+4(\nu+1)t^4} \le f_{\nu}(t) \le \frac{2t^3}{1+(\nu+1)t^4}, \ t \ge 0, \ \nu \ge \frac{1}{2}.$$

Then,

(2.18)
$$\frac{2t^3}{1+4(\nu+1)t^4} \mathbf{e}^{-t} \le F_{\nu}(t) \le \frac{2t^3}{1+(\nu+1)t^4} \mathbf{e}^{-t}, \ t \ge 0, \ \nu \ge \frac{1}{2}$$

Consequently, $F_{\nu}(t) > 0$ for t > 0, $F_{\nu}(0) = 0$ and $\lim_{t \to +\infty} F_{\nu}(t) = 0$ which implies that F_{ν} has a maximum for $t = \overline{t}$ defined by $f'_{\nu}(\overline{t}) = f_{\nu}(\overline{t})$. Hence,

(2.19)
$$f_{\nu}(\bar{t}) = \frac{2\bar{t}^3}{1 + (4\nu + 1)\bar{t}^4 + \bar{t}^5}$$

since

$$f_{\nu}'(t) = \frac{2}{t^2} - \left\{\frac{4\nu + 1}{t} + \frac{1}{t^5}\right\} f_{\nu}(t), t > 0.$$

From the first inequality of (2.13)' and by virtue of (2.19) necessarily $\overline{t} \leq 3$. Therefore the implication (2.17) is true if the following is verified

(2.20)
$$\int_0^{\pi} \sin t \frac{(\pi+t)^3}{1+(\nu+1)(\pi+t)^4} e^{-t-\pi} dt \le \int_0^{\pi} \sin t \frac{t^3}{1+4(\nu+1)t^4} e^{-t} dt.$$

The function $t \mapsto \frac{t^3}{1+(\nu+1)t^4}$ is decreasing for $t \ge t_1 = (\frac{3}{\nu+1})^{\frac{1}{4}}$ and from $\nu \ge \frac{1}{2}$ we have easily $t_1 < \frac{\pi}{2}$. We have successively

$$\int_0^{\pi} \sin t \frac{(\pi+t)^3}{1+(\nu+1)(\pi+t)^4} e^{-t-\pi} dt \le e^{-\pi} \frac{\pi^3}{1+(\nu+1)\pi^4} \frac{e^{-\pi}+1}{2}.$$

On the other hand

$$\int_{t_1}^{\pi} \sin t \frac{t^3}{1+4(\nu+1)t^4} e^{-t} dt = \int_{t_1}^{\pi} \sin t \frac{t^3}{1+(\nu+1)t^4} \frac{1+(\nu+1)t^4}{1+4(\nu+1)t^4} e^{-t} dt$$

Abdallah Ghressi and Lotfi Khériji

$$\geq \frac{1}{4} \frac{\pi^3}{1 + (\nu + 1)\pi^4} \int_{\frac{\pi}{2}}^{\pi} \sin t \, \mathrm{e}^{-t} dt$$
$$\geq \frac{1}{8} \mathrm{e}^{-\pi} \frac{\pi^3}{1 + (\nu + 1)\pi^4} (1 + \mathrm{e}^{\frac{\pi}{2}}).$$

Thus, (2.20) is fulfilled if

(2.21)
$$e^{-\pi} \frac{\pi^3}{1 + (\nu+1)\pi^4} \frac{(1 + e^{-\pi})}{2} \le \int_0^{t_1} \sin t \frac{t^3}{1 + 4(\nu+1)t^4} e^{-t} dt + \frac{1}{8} e^{-\pi} \frac{\pi^3}{1 + (\nu+1)\pi^4} (1 + e^{\frac{\pi}{2}})$$

But, $1 + e^{-\pi} < \frac{1}{4}(1 + e^{\frac{\pi}{2}})$, therefore the inequality (2.21) is satisfied and the proposition is proved

Finally, for $f \in \mathcal{P}, \nu \geq \frac{1}{2}$

(2.22)
$$\langle \mathcal{B}[\nu], f \rangle = S_{\nu}^{-1} \int_{-\infty}^{+\infty} \frac{1}{x^2} \int_{|x|}^{+\infty} \left(\frac{|x|}{t}\right)^{2\nu+1} \exp\left(\frac{1}{4t^2} - \frac{1}{4x^2}\right) s(t^2) dt f(x) dx.$$

Let now $\mathcal{B}(\alpha), \ \alpha \neq -\frac{n}{2}, \ n \geq 0$ be the Bessel D-classical linear form. We have[4]

(2.23)
$$\left(x^2 \mathcal{B}(\alpha)\right)' - 2(\alpha x + 1)\mathcal{B}(\alpha) = 0.$$

In the following proposition we are going to establish the connection between $\mathcal{B}[\nu]$ and $\mathcal{B}(\alpha)$.

Proposition 2.6. We have

(2.24)
$$\sigma \mathcal{B}[\nu] = h_{\frac{1}{8}} \mathcal{B}\left(\frac{\nu+1}{2}\right), \quad \nu \neq -n-1 \quad , \quad n \ge 0.$$

Proof. From (1.23) we have

(2.25)
$$\left(x^{3}\mathcal{B}[\nu]\right)' - \left\{2(\nu+1)x^{2} + \frac{1}{2}\right\}\mathcal{B}[\nu] = 0.$$

Applying the operator σ to the both sides of (2.25) and in accordance of (1.11)-(1.12) we get

$$(2.25)' \qquad \left(x^2 \sigma \mathcal{B}[\nu]\right)' - \left\{(\nu+1)x + \frac{1}{4}\right\} \sigma \mathcal{B}[\nu] = 0.$$

Moreover, the linear form $\mathcal{B}[\nu]$ is symmetric and regular then $\sigma \mathcal{B}[\nu]$ is regular[3,7]. So, on the one hand, taking into account (2.25)' the linear form $\sigma \mathcal{B}[\nu]$ is *D*-classical.

On the other hand, from (2.23) with $\alpha = \frac{\nu+1}{2}$, $\mathcal{B}\left(\frac{\nu+1}{2}\right)$ satisfies the functional equation

(2.23)'
$$\left(x^2 \mathcal{B}\left(\frac{\nu+1}{2}\right)\right)' - 2\left(\frac{\nu+1}{2}x+1\right) \mathcal{B}\left(\frac{\nu+1}{2}\right) = 0.$$

Formula (1.14) with the choice a = 8, b = 0 yields to

(2.23)''
$$\left(x^2 h_{\frac{1}{8}} \mathcal{B}\left(\frac{\nu+1}{2}\right)\right)' - \left((\nu+1)x + \frac{1}{4}\right) h_{\frac{1}{8}} \mathcal{B}\left(\frac{\nu+1}{2}\right) = 0.$$

Consequently, we obtain (2.24)

References

- 1. J. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class s = 1, Integral Transform. Spec. Funct., 4 (1996), 301-320.
- 2. S. Belmehdi, On semi-classical linear functionals of class s = 1. Classification and integral representations, *Indag. Math. (New Ser.)*, **3** (1992), 253-275.
- T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- 4. P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme $u = \delta_c + \lambda (x c)^{-1} L$. Period. Math. Hungar., **21** (1990), 223-248.
- P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: *Orthogonal Polynomials and Their Applications*, Eds. C. Brezinski et al., IMACS, Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, pp. 95-130.
- P. Maroni, Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math., 48 (1993), 133-155.
- 7. P. Maroni, Sur la décomposition quadratique d'une suite de polynôme orthogonaux I, *Riv. Mat. Pura Appl.*, **6** (1990), 19-53.
- P. Maroni, An integral representation for the Bessel form, J. Comput. Appl. Math., 57 (1995), 251-260.
- T. J. Stieltjes, Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. (Sér. 6), 8 (1894), 1-122; 9 (1895), A1-A47.

Abdallah Ghressi Faculté des Sciences de Gabès, Route de Mednine 6029-Gabès, Tunisia. E-mail: abdallah.ghrissi@fsg.rnu.tn

Abdallah Ghressi and Lotfi Khériji

Lotfi Khériji Institut Supérieur des Sciences Appliquées et de Technologie de Gabès Rue Omar Ibn El, Khattab 6072-Gabès, Tunisia. E-mail: lotfi.kheriji@issatgb.rnu.tn