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APPROXIMATE DERIVATIONS MAPPING INTO THE RADICALS OF
BANACH ALGEBRAS

Kil-Woung Jun and Hark-Mahn Kim

Abstract. In the present paper, we investigate the situations so that the
generalized Hyers-Ulam-Rassias stability for functional equations f(x2) =
f(x)x + xf(x) and f(xy) = f(x)y + xf(y) is satisfied. As a result we
obtain that every linear mapping on a commutative Banach algebra which is
an ε-approximate derivation maps the algebra into its radical.

1. INTRODUCTION

A definition of stability in the case of homomorphisms between metric groups
was suggested by a problem posed by S. M. Ulam [23] in 1940. Let (G1, ·) be a
group and let (G2, ∗) be a metric group with the metric d(·, ·). Given ε > 0, does
there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality
d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1? In this case, the equation
of homomorphism h(x · y) = h(x) ∗ h(y) is called stable. In other words, we
are looking for situations when the homomorphisms are stable, i.e., if a mapping
is almost a homomorphism, then there exists a true homomorphism near it. The
concept of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. D. H. Hyers
[9] gave a first affirmative answer to the question of Ulam for Banach spaces. Let
f : E1 → E2 be a mapping between Banach spaces such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ
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for all x, y ∈ E1 and for some δ ≥ 0. Then there exists a unique additive mapping
T : E1 → E2 satisfying

‖f(x) − T (x)‖ ≤ δ

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1,
then the mapping T is linear. In 1951, D. G. Bourgin [2] was the second author
to treat this problem for additive mappings. Th. M. Rassias [16] succeeded in
extending the result of Hyers’ theorem by weakening the condition for the Cauchy
difference controlled by ‖x‖p + ‖y‖p, p ∈ [0, 1) to be unbounded. A number of
mathematicians were attracted to this result of Th.M. Rassias and stimulated to
investigate the stability problems of functional equations. The stability phenomenon
that was introduced and proved by Th.M. Rassias in his 1978 paper is called the
Hyers-Ulam-Rassias stability. And then the stability problems of several functional
equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem [6-8]. A Hyers-Ulam-Rassias
stability theorem for the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

was proved by D.H. Hyers and Th. M. Rassias [10], Jun and Lee [11] and Th.M.
Rassias [17], etc.

On the 34-th International Symposium on Functional Equations G. Maksa [14]
posed the Hyers-Ulam stability problem for the functional equation

f(xy) = xf(y) + yf(x)(1.1)

on the unit interval. The first result concerning the superstability of this equation for
functions between operator algebras was obtained by P. Semrl [18]. Z. Páles [15]
proved that the functional equation (1.1) for real-valued functions on [1,∞) is stable
in the sense of Hyers and Ulam. In 1997 C. Borelli [1] demonstrated the Hyers-
Ulam-Rassias stability of the equation (1.1) on restricted domain of R. Moreover
the Hyers-Ulam-Rassias stability of f(x2) = 2xf(x) on restricted domain of R has
been studied in [13]. J. Tabor [21] solved the corresponding Hyers-Ulam stability
problem of (1.1) on the interval (0, 1]. Jung and Park [12] have solved the following
functional equation f(x + y + xy) = f(x) + f(y) + xf(y) + yf(x) motivated by
the equation (1.1), and then investigated the Hyers-Ulam stability problem on the
interval (−1, 0] and the superstability on [0,∞) of the above equation, respectively.

On the other hand, Singer and Wermer [19] proved that every continuous deriva-
tion on a commutative Banach algebra maps the algebra into its radical. Thomas
[22] proved that the Singer-Wermer theorem remains still true without assuming the
continuity of the derivation. There are many papers extending the Singer-Wermer
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theorem [3-5, 20, 24]. It is well-known that any linear derivations on commutative
semi-simple Banach algebras are zero by Thomas’ result. Concerning these results,
we show in this paper that every ε-approximate linear derivation on commutative
Banach algebras maps still the algebra into its radical, and that any ε-approximate
linear derivations on commutative semi-simple Banach algebras are also zero. For
this purpose, we are going to investigate the generalized Hyers-Ulam-Rassias sta-
bility problem for functional equations of multiplicative derivations on Banach al-
gebras.

2. STABILITY OF DERIVATIONS ON BANACH ALGEBRAS

Concerning the above functional equation (1.1), we consider the stability of the
following functional equations

f(x2) = f(x)x+ xf(x)
and f(xy) = f(x)y + xf(y),

which define additive Jordan derivations, and derivations on Banach algebras, re-
spectively. In this section, using an idea from the direct method of Hyers, we shall
give certain conditions so that the Hyers-Ulam-Rassias stability of the above func-
tional equations works. Throughout this paper, let B be a Banach algebra with norm
‖ · ‖ and let R+ denote the set of all nonnegative real numbers.

Theorem 2.1. Let f : B → B be a given mapping and let ϕ1 : B → R
+,

ϕ2 : B×B → R+ be mappings for which there exist nonzero rational numbers a, b
with |a+ b| �= 0, 1 such that

(2.1) ‖f(x2) − f(x)x− xf(x)‖ ≤ ϕ1(x),

(2.2) ‖f(ax+ by)− af(x)− bf(y)‖ ≤ ϕ2(x, y)

for all x, y ∈ B. Assume that the series

(2.3)

Φ2(x, y) :=
∞∑
i=0

ϕ2(λix, λiy)
|λ|i <∞(

Φ̂2(x, y) :=
∞∑
i=1

|λ|iϕ2

( x
λi
,
y

λi

)
<∞, respectively,

)
converges and the limit

lim
n→∞

ϕ1(λnx)
|λ|2n

= 0,(
lim

n→∞ |λ|2nϕ1

( x
λn

)
= 0
)
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for all x, y ∈ B, where λ := a + b. Then there exists a unique additive mapping
g : B → B such that

(2.4) g(ax+ by)− ag(x)− bg(y) = 0, g(x2) − g(x)x− xg(x) = 0

for all x, y ∈ B, that is, g is an additive Jordan derivation on B, and the inequality

(2.5)
‖f(x)− g(x)‖ ≤ 1

|λ|Φ2(x, x)(
‖f(x)− g(x)‖ ≤ 1

|λ|Φ̂2(x, x)
)

holds for all x ∈ B.
Moreover, if f is measurable or the mapping f(tx) is continuous in t ∈ R

for each x in a real Banach algebra B, then the mapping g is a R-linear Jordan
derivation on B. Alternatively, if f is measurable or f(tx) is continuous in t ∈ R

for each x in a complex Banach algebra B and there exists a mapping ϕ 3 : B → R+

for which

(2.6)
‖f(iu)− if(u)‖ ≤ ϕ3(u) and

limn→∞
ϕ3(λnu)
|λ|n = 0,

(
lim

n→∞ |λ|nϕ3

( u
λn

)
= 0
)

hold for all u ∈ B(‖u‖ = 1), then the mapping g is a C-linear Jordan derivation
on B.

Proof. Setting y = x in (2.2) yields

(2.7)
∥∥∥∥f(λx)

λ
− f(x)

∥∥∥∥ ≤ 1
|λ|ϕ2(x, x)

for all x ∈ B. Thus given integers m, n(m > n ≥ 0),

(2.8)

∥∥∥∥f(λix)
λi

− f(λi+1x)
λi+1

∥∥∥∥ ≤ 1
|λ|i+1

ϕ2(λix, λix),∥∥∥∥f(λmx)
λm

− f(λnx)
λn

∥∥∥∥ ≤ 1
|λ|

m−1∑
i=n

1
|λ|iϕ2(λix, λix)

for all x ∈ B. Using conditions (2.3) and (2.8), we obtain by direct method [7, 9,
16] that the sequence

{
f(λnx)

λn

}
is a Cauchy sequence and the mapping g : B → B

given by

g(x) := lim
n→∞

f(λnx)
λn
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is well defined. Replacing x by λnx and y by λny in (2.2), and dividing the result
by |λ|n, and then taking n→ ∞, we see from (2.3) that the mapping g satisfies the
equation (2.4), which is equivalent to g(u+ v)− g(u)− g(v) = 0 for all u, v ∈ B,
that is, g is additive. Letting n = 0 and taking m→ ∞ in (2.8), one can obtain the
inequality (2.5). Substituting λnx for x in (2.1) and dividing the result by |λ|2n,

we obtain

(2.9)
∥∥∥∥f(λ2nx2)

λ2n
− f(λnx)

λn
x− x

f(λnx)
λn

∥∥∥∥ ≤ ϕ1(λnx)
|λ|2n

for all x ∈ B. Taking the limit as n→ ∞ in the inequality (2.9), one obtains that

g(x2) − g(x)x− xg(x) = 0

for all x ∈ B since limn→∞
ϕ1(λnx)
|λ|2n

= 0 and

lim
n→∞

f(λ2nx2)
λ2n

=
g(λnx2)
λn

= g(x2).

Thus g is an additive Jordan derivation on B.
Furthermore, under the assumption that f is measurable or f(tx) is continuous

in t ∈ R for each x in a real or complex Banach algebra B, the additive mapping
g : B → B satisfies

g(tx) = tg(x)

for all t ∈ R and all x ∈ B [9, 16]. That is, g is a R-linear Jordan derivation on B.
Additionally using the condition (2.6), we figure out

‖g(iu)− ig(u)‖ = lim
n→∞

‖f(λniu) − if(λnu)‖
λn

≤ ϕ3(λnu)
|λ|n .

for all u ∈ B(‖u‖ = 1). Taking the limit in the last inequality, one gets g(iu) =
ig(u) for all u ∈ B(‖u‖ = 1). Since g is a R-linear, for any nonzero x ∈ B

g(ix) = g(i‖x‖ x

‖x‖) = ‖x‖ i

‖x‖g(x) = ig(x)

and thus g(ix) = ig(x) for all x ∈ B. This fact implies g(cx) = cg(x) for all
c ∈ C. Therefore g is a C-linear Jordan derivation on B.

The proof of assertion indicated by parentheses in the theorem is similarly ver-
ified by the following inequalities due to (2.7)∥∥∥f(x)− λf

(x
λ

)∥∥∥ ≤ ϕ2

(x
λ
,
x

λ

)
,∥∥∥λn−1f

( x

λn−1

)
− λmf

( x

λm

)∥∥∥ ≤ 1
|λ|

m∑
i=n

|λ|iϕ2

( x
λi
,
x

λi

)
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for all x ∈ B. This completes the proof.

It is well-known that an additive Jordan derivation g on B becomes an additive
derivation if B is a semi-prime Banach algebra [3].

Theorem 2.2. Let f : B → B be a given mapping and let ψ1 : B × B → R+,
ψ2 : B×B → R

+ be mappings for which there exist nonzero rational numbers a, b
with |a+ b| �= 0, 1 such that

(2.10) ‖f(xy)− f(x)y − xf(y)‖ ≤ ψ1(x, y),

(2.11) ‖f(ax+ by)− af(x)− bf(y)‖ ≤ ψ2(x, y)

for all x, y ∈ B. Assume that the series

(2.12)

Ψ2(x, y) :=
∞∑
i=0

ψ2(λix, λiy)
λi

<∞(
Ψ̂2(x, y) :=

∞∑
i=1

|λ|iψ2

( x
λi
,
y

λi

)
<∞, respectively,

)

converges and the limit

lim
n→∞

ψ1(λnx, λny)
|λ|2n

= 0
(

lim
n→∞ |λ|2nψ1

( x
λn
,
y

λn

)
= 0
)

for all x, y ∈ B, where λ := a + b. Then there exists a unique additive mapping
g : B → B such that

g(ax+ by) − ag(x)− bg(y) = 0,
g(xy)− g(x)y− xg(y) = 0

for all x, y ∈ B, that is, g is an additive derivation on B and the following inequality

(2.13)
‖f(x)− g(x)‖ ≤ 1

|λ|Ψ2(x, x)(
‖f(x)− g(x)‖ ≤ 1

|λ|Ψ̂2(x, x)
)

holds for all x ∈ B.
Moreover, if f is measurable or the mapping f(tx) is continuous in t ∈ R for

each x in a real Banach algebra B, then the mapping g is a R-linear derivation on
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B. Alternatively, if f is measurable or f(tx) is continuous in t ∈ R for each x in
a complex Banach algebra B and there exists a mapping ψ 3 : B → R

+ such that

(2.14)
‖f(ix)− if(x)‖ ≤ ψ3(x) and

limn→∞
ψ3(λnx)
|λ|n = 0

(
lim

n→∞ |λ|nψ3

( x
λn

)
= 0
)

are fulfilled for all x ∈ B, then the mapping g is a C-linear derivation on B.

Proof. Setting x = y in (2.10) yields ‖f(x2) − f(x)x− xf(x)‖ ≤ ψ1(x, x).
Taking ϕ1(x) := ψ1(x, x) and applying Theorem 2.1, we obtain from conditions
(2.11) and (2.12) that there exists a unique additive mapping g : B → B, defined
by g(x) = limn→∞

f(λnx)
λn , satisfying the inequality (2.13). Replacing x and y in

(2.10) with λnx and λny, respectively, and dividing the result by |λ|2n, we obtain∥∥∥∥f(λ2nxy)
λ2n

− f(λnx)
λn

y − x
f(λny)
λn

∥∥∥∥ ≤ ψ1(λnx, λny)
|λ|2n

for all x, y ∈ B. Taking the limit in the last inequality, one obtains that

g(xy)− g(x)y− xg(y) = 0

for all x, y ∈ B since limn→∞
φ1(λ

nx,λny)
|λ|2n = 0 and

lim
n→∞

f(λ2nxy)
λ2n

=
g(λnxy)
λn

= g(xy).

The rest of the proof is similar to that of Theorem 2.1. This completes the proof.

The following two corollaries are immediate consequences of Theorem 2.2.

Corollary 2.3. Let θ1, θ2 and θ3 be nonnegative reals, and let p, q, r be real
numbers such that either p < 1, q + r < 2 or p > 1, q + r > 2. Suppose that
there exist nonzero rational numbers a, b with |a + b| �= 0, 1 for which a mapping
f : B → B satisfies

‖f(xy)− f(x)y − xf(y)‖ ≤ θ1‖x‖q‖y‖r,

‖f(ax+ by)− af(x)− bf(y)‖ ≤ θ2(‖x‖p + ‖y‖p)

for all x, y ∈ B. Then there exists a unique additive mapping g : B → B on B such
that

g(xy)− g(x)y − xg(y) = 0,

g(ax+ by)− ag(x)− bg(y) = 0
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for all x, y ∈ B, and the inequality

‖f(x)− g(x)‖ ≤ 2θ2‖x‖p

|a+ b| − |a+ b|p , if p < 1 and q + r < 2

(
‖f(x)− g(x)‖ ≤ 2θ2‖x‖p

|a+ b|p − |a+ b| if p > 1 and q + r > 2 , respectively

)
holds for all x ∈ B.

Moreover, if f is measurable or the mapping f(tx) is continuous in t ∈ R

for each x in a real Banach algebra B, then the mapping g is a R-linear Jordan
derivation on B. If, alternatively, f is measurable or f(tx) is continuous in t ∈ R

for each x in a complex Banach algebra B and in addition the following inequality

‖f(ix)− if(x)‖ ≤ θ3‖x‖s

holds for all x ∈ B and for some s �= 1, where s < 1 if p < 1, (s > 1 if
p > 1, respectively, ) then the mapping g is a C-linear derivation on B.

Proof. Setting ψ1(x, y) := θ1‖x‖q‖y‖r, ψ2(x, y) := θ2(‖x‖p + ‖y‖p) and
ψ3(x, y) := θ3‖x‖s in the previous Theorem 2.2, we can obtain the desired result.
In fact, the series

Ψ2(x, y) =
∞∑
i=0

θ2(‖x‖p + ‖y‖p)|λ|ip
|λ|i <∞ if p < 1

(
Ψ̂2(x, y) =

∞∑
i=1

θ2(‖x‖p + ‖y‖p)|λ|i
|λ|ip <∞ if p > 1, respectively,

)

converges and the limit

lim
n→∞

ψ1(λnx, λny)
|λ|2n

= lim
n→∞

θ1‖x‖q‖y‖r|λ|(q+r)n

|λ|2n
= 0 if q + r < 2

(
lim

n→∞ |λ|2nψ1(
x

λn
,
y

λn
) = lim

n→∞
θ1‖x‖q‖y‖r|λ|2n

|λ|(q+r)n
= 0 if q + r > 2

)
for all x, y ∈ B.

Moreover, we get

lim
n→∞

ψ3(λnx)
|λ|n = lim

n→∞
θ3‖x‖s|λ|ns

|λ|n = 0 if s < 1

(
lim

n→∞ |λ|nψ3(
x

λn
) = lim

n→∞
θ3‖x‖s|λ|n

|λ|ns
= 0, if s > 1

)
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for all x ∈ B.

Corollary 2.4. Let θ1, θ2 be nonnegative real numbers. Suppose that there exist
nonzero rational numbers a, b with |a+ b| �= 0, 1 for which a mapping f : B → B
satisfies

‖f(xy) − f(x)y − xf(y)‖ ≤ θ1,

‖f(ax+ by)− af(x) − bf(y)‖ ≤ θ2

for all x, y ∈ B. Then there exists a unique mapping g : B → B such that

g(xy)− g(x)y − xg(y) = 0,

g(ax+ by)− ag(x)− bg(y) = 0

for all x, y ∈ B, that is, g is an additive derivation on B and

‖f(x)− g(x)‖ ≤ θ2

for all x ∈ B.
Moreover, if f is measurable or the mapping f(tx) is continuous in t ∈ R

for each x in a real Banach algebra B, then the mapping g is a R-linear Jordan
derivation on B. If, alternatively, f is measurable or f(tx) is continuous in t ∈ R

for each x in a complex Banach algebra B and in addition the following inequality

‖f(ix)− if(x)‖ ≤ θ3

holds for all x ∈ B and for some θ 3 ≥ 0, then the mapping g is a C-linear
derivation on B.

Proof. Applying Theorem 2.2, one obtains the desired conclusion.

Example 2.5. Consider the Banach algebra M2(C) with norm

‖x‖ =
√ ∑

1≤i,j≤2

|xij|2 , where x =
[
x11 x12

x21 x22

]
.

For given a, b ∈ M2(C) a mapping f : M2(C) → M2(C) defined by f(x) =
[a, x] + b, satisfies

ψ1(x, y) := ‖f(xy)− f(x)y − xf(y)‖ = ‖b− xb− by‖,

and

ψ2(x, y) := ‖f(x+ y) − f(x) − f(y)‖ = ‖b‖.
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Then it is easy to verify that
∞∑
i=0

ψ2(2ix, 2iy)
2i

= 2‖b‖

and

lim
n→∞

ψ1(2nx, 2ny)
4n

= 0.

Thus the limit g(x) = limn→∞
f(2nx)

2n = [a, x] exists, and it is an additive derivation
which satisfies the equation ‖f(x)− g(x)‖ = ‖b‖.

Furthermore, the fact that f(tx) = t[a, x] + b is continuous in t ∈ R and
ψ3(x) := ‖f(ix)− if(x)‖ = |1− i|‖b‖ satisfies

lim
n→∞

ψ3(2nx)
2n

= lim
n→∞

|1− i|‖b‖
2n

= 0

implies that the above derivation g is C-linear.

As an application of the main theorems, we obtain the following superstability
of approximate multiplicative derivations on commutative Banach algebras.

Theorem 2.5. Let B be a commutative Banach algebra. Let f : B → B be a
given linear mapping and an approximate derivation with perturbation Df bounded
by ψ1, that is, there exists a mapping ψ 1 : B × B → R

+ such that

(2.15) ‖Df(x, y) := f(xy) − f(x)y − xf(y)‖ ≤ ψ1(x, y)

for all x, y ∈ B. Assume that there exist nonzero rational numbers a, b with |λ :=
a+ b| �= 0, 1 such that the limit

lim
n→∞

ψ1(λnx, λny)
|λ|2n

(
lim

n→∞ |λ|2nψ1

( x
λn
,
y

λn

)
, respectively

)
converges to zero for all x, y ∈ B. Then the mapping f is in fact a linear derivation
and maps the algebra into its radical.

Proof. If we consider ψ2, ψ3 := 0 in Theorem 2.2, we obtain directly the
desired result.

It is well-known that all linear derivations on commutative semi-simple Banach
algebras are zero [22]. We remark that every linear mapping f on a commutative
semi-simple Banach algebra which is an ε-approximate derivation, that is,

‖f(xy)− f(x)y − xf(y)‖ ≤ ε,
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is also zero. In general we obtain the following result: Let B be a commutative
semi-simple Banach algebra. Suppose that there exist nonzero rational numbers a, b
with |λ := a+ b| �= 0, 1 for which a linear mapping f : B → B satisfies

‖f(xy)− f(x)y − xf(y)‖ ≤ ψ1(x, y),

lim
n→∞

ψ1(λnx, λny)
|λ|2n

= 0

for all x, y ∈ B. Then by Theorem 2.2 there exists a unique linear mapping g : B →
B such that

g(xy)− g(x)y− xg(y) = 0

for all x, y ∈ B, and

‖f(x)− g(x)‖ ≤ ψ2 := 0

for all x ∈ B. Hence f = g is in fact a linear derivation and it is identically zero
by Thomas’ result [22].
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