TAIWANESE JOURNAL OF MATHEMATICS
Vol. 11, No. 1, pp. 231-237, March 2007
This paper is available online at http://www.math.nthu.edu.tw/tjm/

LOGARITHMIC CONVEXITY OF THE ONE-PARAMETER MEAN VALUES

Wing-Sum Cheung* and Feng Qi**

Abstract

In this article, the logarithmic convexity of the one-parameter mean values $J(r)$ and the monotonicity of the product $J(r) J(-r)$ with $r \in \mathbb{R}$ are presented. Some more general results are established.

1. Introduction

The one-parameter mean values $J(r ; x, y)$ for two positive numbers x and y with $x \neq y$ are defined by

$$
J(r) \triangleq J(r ; x, y)= \begin{cases}r\left(x^{r+1}-y^{r+1}\right) /(r+1)\left(x^{r}-y^{r}\right), & r \neq 0,-1 ; \tag{1}\\ (x-y) /(\ln x-\ln y), & r=0 ; \\ x y(\ln x-\ln y) /(x-y), & r=-1 .\end{cases}
$$

There has been some literature on the one-parameter mean values $J(r ; x, y)$, see [1-4, 7].

The main purpose of this paper is to prove the logarithmic convexity of the oneparameter mean values $J(r ; x, y)$ and the monotonicity of $J(-r) J(r)$ for $r \in \mathbb{R}$.

Our main results are as follows.

Theorem 1. Let x and y be positive numbers with $x \neq y$. Then
(i) The one-parameter mean values $J(r)$ are strictly increasing in $r \in \mathbb{R}$;

[^0](ii) The one-parameter mean values $J(r)$ are strictly logarithmically convex in $(-\infty,-1 / 2)$ and strictly logarithmically concave in $(-1 / 2, \infty)$.

Theorem 2. Let $\mathcal{J}(r)=J(r) J(-r)$ with $r \in \mathbb{R}$ for fixed positive numbers x and y with $x \neq y$. Then the function $\mathcal{J}(r)$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0, \infty)$.

2. Proofs of Theorems

2.1. Proof of Theorem 1.

Let

$$
g(t) \triangleq g(t ; x, y)= \begin{cases}\left(y^{t}-x^{t}\right) / t, & t \neq 0 \tag{2}\\ \ln y-\ln x, & t=0\end{cases}
$$

for positive numbers x and y with $x \neq y$.
In [5], Corollary 3 states that, for $y>x>0$, if $t>0$, then

$$
\begin{equation*}
g^{2}(t) g^{\prime \prime \prime}(t)-3 g(t) g^{\prime}(t) g^{\prime \prime}(t)+2\left[g^{\prime}(t)\right]^{3}<0 \tag{3}
\end{equation*}
$$

if $t<0$, inequality (3) reverses.
2.1.1. Formula (3) implies that, for $y>x>0$,

$$
\begin{equation*}
\left[g^{\prime}(t) / g(t)\right]^{\prime \prime}=\operatorname{sgn}(-t) . \tag{4}
\end{equation*}
$$

From this, we obtain that the function $\left[g^{\prime}(t) / g(t)\right]^{\prime}$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0, \infty)$.

By using Cauchy-Schwartz integral inequality or Tchebycheff integral inequality, it is obtained [6-8] that $\left[g^{\prime}(t) / g(t)\right]^{\prime}>0$ for $t \in \mathbb{R}$. Then the function $g^{\prime}(t) / g(t)$ is strictly increasing in $(-\infty, \infty)$.

The one-parameter mean values $J(r)$ can be rewritten in terms of g as $J(r)=$ $g(r+1) / g(r)$ with $r \in \mathbb{R}$ for $y>x>0$. Taking the logarithm of $J(r)$ yields

$$
\begin{equation*}
\ln J(r)=\ln g(r+1)-\ln g(r)=\int_{r}^{r+1} \frac{g^{\prime}(u)}{g(u)} \mathrm{d} u=\int_{0}^{1} \frac{g^{\prime}(u+r)}{g(u+r)} \mathrm{d} u \tag{5}
\end{equation*}
$$

and $[\ln J(r)]^{\prime}=g^{\prime}(r+1) / g(r+1)-g^{\prime}(r) / g(r)>0$. Hence the functions $\ln J(r)$ and $J(r)$ are strictly increasing in $r \in(-\infty, \infty)$. This proves (i).
2.1.2. If $r<-1$, then $r<r+1<0$ and $[\ln J(r)]^{\prime \prime}=\left[g^{\prime}(r+1) / g(r+1)\right]^{\prime}-$ $\left[g^{\prime}(r) / g(r)\right]^{\prime}>0$ which follows from the strictly increasing property of $\left[g^{\prime}(r) / g(r)\right]^{\prime}$ in $(-\infty, 0)$.

If $r>0$, then from the strictly decreasing property of $[g(r) / g(r)]^{\prime}$ in $(0, \infty)$, we have $[\ln J(r)]^{\prime \prime}<0$.

If $-1<r<0$, then $r<0<r+1$, and we have
(6)

$$
\begin{aligned}
{[\ln J(r)]^{\prime \prime} } & =\left(\frac{g^{\prime}(r+1)}{g(r+1)}\right)^{\prime}-\left(\frac{g^{\prime}(r)}{g(r)}\right)^{\prime} \\
& =\frac{g^{\prime \prime}(r+1) g(r+1)-\left[g^{\prime}(r+1)\right]^{2}}{g^{2}(r+1)}-\frac{g^{\prime \prime}(r) g(r)-\left[g^{\prime}(r)\right]^{2}}{g^{2}(r)} \\
& =\frac{g^{\prime \prime}(u) g(u)-\left[g^{\prime}(u)\right]^{2}}{g^{2}(u)}-\frac{g^{\prime \prime}(-r) g(-r)-\left[g^{\prime}(-r)\right]^{2}}{g^{2}(-r)} \\
& =\frac{g^{\prime \prime}(u) g(u)-\left[g^{\prime}(u)\right]^{2}}{g^{2}(u)}-\frac{g^{\prime \prime}(v) g(v)-\left[g^{\prime}(v)\right]^{2}}{g^{2}(v)} \\
& =\left(\frac{g^{\prime}(u)}{g(u)}\right)^{\prime}-\left(\frac{g^{\prime}(v)}{g(v)}\right)^{\prime},
\end{aligned}
$$

where $u=r+1>0$ and $v=-r>0$. Thus, $[\ln J(r)]^{\prime \prime}<0$ for $-1<r<0$ and $r+1>-r$. This means that $[\ln J(r)]^{\prime \prime}<0$ for $r \in(-1 / 2,0)$.

Similar as above, $[\ln J(r)]^{\prime \prime}>0$ for $-1<r<0$ and $-r>r+1$. This means that $[\ln J(r)]^{\prime \prime}>0$ for $r \in(-1,-1 / 2)$. This proves (ii).

Remark. From (4), (5) and by direct calculation, we have

$$
\begin{equation*}
[\ln J(r)]^{\prime \prime}=\int_{0}^{1} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}\left(\frac{g^{\prime}(u+r)}{g(u+r)}\right) \mathrm{d} u<0 \tag{7}
\end{equation*}
$$

for $r \in(0, \infty)$. This means that $J(r ; x, y)$ is strictly logarithmically concave in $r \in(0, \infty)$, whether $x>y$ or $x<y$, since $J(r ; x, y)=J(r ; y, x)$ holds.

By straightforward computation, we have

$$
\begin{equation*}
J(r)=\frac{x y}{J(-r-1)} \tag{8}
\end{equation*}
$$

for $r \in \mathbb{R}$. Hence, if $r \in(-\infty,-1)$, from (3), (4) and (7), it follows that $[\ln J(r)]^{\prime \prime}=-[\ln J(-r-1)]^{\prime \prime}=-\int_{0}^{1}\left\{\mathrm{~d}^{2}\left[g^{\prime}(u-r-1) / g(u-r-1)\right] / \mathrm{d} r^{2}\right\} \mathrm{d} u>$ 0 . This tells us that the one-parameter mean values $J(r ; x, y)$ are strictly logarithmically convex in $r \in(-\infty,-1)$, whether $x>y$ or $x<y$, since $J(r ; x, y)=$ $J(r ; y, x)$.

2.2. Proof of Theorem 2.

It is easy to obtain that $\mathcal{J}(r)=x y J(r) / J(r-1)$ for $r \in \mathbb{R}$. Then $\ln \mathcal{J}(r)=$ $\ln (x y)+\ln J(r)-\ln J(r-1)$ and

$$
\begin{equation*}
[\ln \mathcal{J}(r)]^{\prime}=\frac{J^{\prime}(r)}{J(r)}-\frac{J^{\prime}(r-1)}{J(r-1)} \tag{9}
\end{equation*}
$$

Theorem 1 states that the function $J(r)$ is strictly logarithmically convex in $(-\infty,-1 / 2)$. Thus, being the derivative of $\ln J(r), J^{\prime}(r) / J(r)$ is strictly increasing in $(-\infty,-1 / 2)$, that is, $J^{\prime}(r) / J(r)>J^{\prime}(r-1) / J(r-1)$, or, equivalently, $[\ln \mathcal{J}(r)]^{\prime}>0$ for $r \in(-\infty,-1 / 2)$, thus $\ln \mathcal{J}(r)$ and $\mathcal{J}(r)$ are strictly increasing in $(-\infty,-1 / 2)$.

From (8), it follows that $\ln J(r)=\ln (x y)-\ln J(-r-1)$ and $J^{\prime}(r) / J(r)=$ $J^{\prime}(-r-1) / J(-r-1)$. Then (9) results in $[\ln \mathcal{J}(r)]^{\prime}=J^{\prime}(-r-1) / J(-r-1)-$ $J^{\prime}(r-1) / J(r-1)$.

For $r \in(-1 / 2,0)$, we have $-3 / 2<r-1<-1$ and $-1<-r-1<-1 / 2$. Since $J^{\prime}(r) / J(r)$ is strictly increasing in $(-\infty,-1 / 2),[\ln \mathcal{J}(r)]^{\prime}>0$ for $r \in$ $(-1 / 2,0)$, therefore $\ln \mathcal{J}(r)$ and $\mathcal{J}(r)$ are also strictly increasing in $(-1 / 2,0)$.

It is clear that the function $\mathcal{J}(r)$ is even in $(-\infty, \infty)$. So, it is easy to see that $\mathcal{J}(r)$ is strictly decreasing in $(0, \infty)$. The proof of Theorem 2 is completed.

3. Some Related Results

For $x \neq y$ and $\alpha>0$, define for $r \in \mathbb{R}$

$$
J_{\alpha}(r) \triangleq J_{\alpha}(r ; x, y)= \begin{cases}{\left[r\left(x^{r+\alpha}-y^{r+\alpha}\right) /(r+\alpha)\left(x^{r}-y^{r}\right)\right]^{1 / \alpha},} & r \neq 0,-\alpha ; \tag{10}\\ {\left[\left(x^{\alpha}-y^{\alpha}\right) / \alpha(\ln x-\ln y)\right]^{1 / \alpha},} & r=0 ; \\ {\left[\alpha x^{\alpha} y^{\alpha}(\ln x-\ln y) /\left(x^{\alpha}-y^{\alpha}\right)\right]^{1 / \alpha},} & r=-\alpha .\end{cases}
$$

We call $J_{\alpha}(r ; x, y)$ the generalized one-parameter mean values for two positive numbers x and y in the interval $(-\infty, \infty)$.

It is clear that $J_{1}(r ; x, y)=J(r ; x, y)$ and $J_{\alpha}(r ; x, y)=[g(r+\alpha) / g(r)]^{1 / \alpha}$. By the same arguments as in the proofs of Theorem 1 and Theorem 2, we can obtain the following

Theorem 3. Let x and y be positive numbers with $x \neq y$. Then
(1) The generalized one-parameter mean values $J_{\alpha}(r)$ are strictly increasing in $r \in \mathbb{R}$;
(2) The mean values $J_{\alpha}(r)$ are strictly logarithmically convex in $(-\infty,-\alpha / 2)$ and strictly logarithmically concave in $(-\alpha / 2, \infty)$;
(3) Let $\mathcal{J}_{\alpha}(r)=J_{\alpha}(r) J_{\alpha}(-r)$ with $r \in \mathbb{R}$ for positive numbers x and y with $x \neq y$. Then the function $\mathcal{J}_{\alpha}(r)$ is strictly increasing in $(-\infty, 0)$ and strictly decreasing in $(0, \infty)$.

Proof. These follow from combining the identities $\left[J_{\alpha}(r ; x, y)\right]^{\alpha}=J\left(r / \alpha ; x^{\alpha}\right.$, $\left.y^{\alpha}\right)$ and $\left[\mathcal{J}_{\alpha}(r)\right]^{\alpha}=\mathcal{J}(r / \alpha)$ with Theorem 1 and Theorem 2.

Theorem 4. The function $(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}$ is strictly increasing and strictly convex in $(-\infty, \infty)$, and is strictly logarithmically concave for $r>-\alpha / 2$.

Proof. Direct computation gives

$$
\begin{align*}
(r+\alpha)\left[J_{\alpha}(r ; x, y)\right]^{\alpha} & =\alpha\left(\frac{r}{\alpha}+1\right) J\left(\frac{r}{\alpha} ; x^{\alpha}, y^{\alpha}\right) \tag{11}\\
\frac{\mathrm{d}^{2} \ln \left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\}}{\mathrm{d} r^{2}} & =-\frac{1}{(r+\alpha)^{2}}+\alpha\left[\ln J_{\alpha}(r)\right]^{\prime \prime} \tag{12}
\end{align*}
$$

From the result by Alzer in [3] that the function $(r+1) J(r ; x, y)$ is strictly convex in $(-\infty, \infty)$, it is not difficult to obtain that the function $(r+\alpha)\left[J_{\alpha}(r ; x, y)\right]^{\alpha}$ is also strictly convex in $(-\infty, \infty)$ by using (11).

By standard argument, we have

$$
\begin{aligned}
\lim _{r \rightarrow-\infty}\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}= & \lim _{r \rightarrow-\infty}\left[\alpha\left(z^{r+\alpha}-1\right) /(r+\alpha)\left(z^{r}-1\right)\right] \\
& -\lim _{r \rightarrow-\infty}\left[r z^{r}\left(z^{\alpha}-1\right) \ln z /\left(z^{r}-1\right)^{2}\right]=0
\end{aligned}
$$

and $\lim _{r \rightarrow-\infty}\left[J_{\alpha}(r)\right]^{\alpha}=\min \left\{x^{\alpha}, y^{\alpha}\right\}$, where $z=y / x \neq 1$. This leads to

$$
\begin{align*}
\lim _{r \rightarrow-\infty}\left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime} & =\lim _{r \rightarrow-\infty}\left[J_{\alpha}(r)\right]^{\alpha}+\lim _{r \rightarrow-\infty}(r+\alpha)\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime} \tag{13}\\
& =\min \left\{x^{\alpha}, y^{\alpha}\right\}>0
\end{align*}
$$

The convexity of $(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}$ means that $\left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}$ is strictly increasing, in view of (13), $\left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}>0$, and so $(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}$ is strictly increasing in $(-\infty, \infty)$.

Since $J_{\alpha}(r)$ is strictly logarithmically concave in $(-\alpha / 2, \infty),\left[\ln J_{\alpha}(r)\right]^{\prime \prime}<$ 0 , then $\mathrm{d}^{2} \ln \left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\} / \mathrm{d} r^{2}<0$ by (12). This means that the function $(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}$ is strictly logarithmically concave in $(-\alpha / 2, \infty)$.

Corollary 1. If $r<-\alpha$, then

$$
\begin{equation*}
0<\frac{\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}}{\left[J_{\alpha}(r)\right]^{\alpha}}=\frac{\left\{\left[J_{\alpha}(-r-\alpha)\right]^{\alpha}\right\}^{\prime}}{\left[J_{\alpha}(-r-\alpha)\right]^{\alpha}}<-\frac{1}{r+\alpha} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
0<\frac{\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime \prime}}{\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}}<-\frac{2}{r+\alpha} \tag{15}
\end{equation*}
$$

Proof. From the monotonicity and convexity of $(r+\alpha) J_{\alpha}(r)$, we have

$$
\begin{gather*}
\left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}=\left[J_{\alpha}(r)\right]^{\alpha}+(r+\alpha)\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}>0, \tag{16}\\
\left\{(r+\alpha)\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime \prime}=2\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime}+(r+\alpha)\left\{\left[J_{\alpha}(r)\right]^{\alpha}\right\}^{\prime \prime}>0 \tag{17}
\end{gather*}
$$

Inequality (14) follows from combining (16) with $\left[J_{\alpha}(r)\right]^{\alpha}=x y /\left[J_{\alpha}(-r-\alpha)\right]^{\alpha}$. Inequality (15) is a direct consequence of (17).

Theorem 5. The function $r \ln J_{\alpha}(r)$ is strictly convex in $(-\alpha / 2,0)$.
Proof. Direct calculation yields $\left[r \ln J_{\alpha}(r)\right]^{\prime \prime}=2\left[\ln J_{\alpha}(r)\right]^{\prime}+r\left[\ln J_{\alpha}(r)\right]^{\prime \prime}$. Since $J_{\alpha}(r)$ is strictly increasing in $(-\infty, \infty)$ and strictly logarithmically concave in $(-\alpha / 2, \infty)$, it follows that $\left[\ln J_{\alpha}(r)\right]^{\prime}>0$ and $\left[\ln J_{\alpha}(r)\right]^{\prime \prime}<0$ in $(-\alpha / 2, \infty)$. Therefore, $\left[r \ln J_{\alpha}(r)\right]^{\prime \prime}>0$ and $r \ln J_{\alpha}(r)$ is strictly convex in $(-\alpha / 2,0)$.

Remark. If $\alpha=1$, then $r \ln J(r)$ is strictly convex in $(-1 / 2,0)$. This partially answers the question raised by Alzer in [3].

4. Open Problems

Finally, we pose the following
Open Problem 1. The generalized one-parameter mean values $J_{\alpha}(r)$ defined by (10) are strictly concave in $(-\alpha / 2, \infty)$.

Open Problem 2. The function $\mathcal{J}_{\alpha}(t)=J_{\alpha}(t) J_{\alpha}(-t)$ is strictly logarithmically convex for $t \notin\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]$ and strictly concave and strictly logarithmically concave for $t \in(-\alpha / 2, \alpha / 2)$.

Open Problem 3. Discuss the monotonic and (logarithmically) convex properties of the function $J_{\alpha}(r)+J_{\alpha}(-r)$.

Acknowledgment

The authors would like to express their many thanks to Professor H. M. Srivastava and Dr. A. Witkowski for their valuable comments on this paper.

References

1. H. Alzer, On Stolarsky's mean value family, Internat. J. Math. Ed. Sci. Tech., 20(1) (1987), 186-189.
2. H. Alzer, Uer eine einparametrige familie von Mitlewerten, Bayer. Akad. Wiss. Math. Natur. Kl. Sitzungsber., 1987 (1988), 23-29. (in German).
3. H. Alzer, Uer eine einparametrige familie von Mitlewerten II, Bayer. Akad. Wiss. Math. Natur. Kl. Sitzungsber., 1988 (1989), 23-29. (in German).
4. W.-S. Cheung and F. Qi, Logarithmic convexity of the one-parameter mean values, RGMIA Res. Rep. Coll., 7(2) (2004), no. 2, Art. 15, 331-342.
5. F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc., 130(6) (2002), n 1787-1796; RGMIA Res. Rep. Coll., 2(5) (1999), Art. 5, 643-652.
6. F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math., 35(5) (2005), 1787-1793; RGMIA Res. Rep. Coll., 4(4) (2001), Art. 4, 529-533.
7. F. Qi, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Ed., 5(3) (2003), 63-90; RGMIA Res. Rep. Coll., 5(1) (2002), Art. 5, 57-80.
8. F. Qi, J. Sándor, S. S. Dragomir, and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., 9(3) (2005), 411-420; RGMIA Res. Rep. Coll., 5(1) (2002), Art. 3, 19-27.

Wing-Sum Cheung
Department of Mathematics,
The University of Hong Kong,
Pokfulam Road, Hong Kong,
People's Republic of China
E-mail: wscheung@hkucc.hku.hk
Feng Qi
Research Institute of Mathematical Inequality Theory,
Henan Polytechnic University,
Jiaozuo City, Henan Province 454010,
People's Republic of China
E-mail: qifeng@hpu.edu.cn

[^0]: Received January 24, 2005, accepted January 23, 2006.
 Communicated by H. M. Srivastava.
 2000 Mathematics Subject Classification: Primary 26A48, 26A51; Secondary 26B25, 26 D07.
 Key words and phrases: Logarithmic convexity, Monotonicity, One-parameter mean values.
 *Supported by a seed grant for basic research of the University of Hong Kong, Hong Kong SAR,
 People's Republic of China.
 **Supported by the Science Foundation of Project for Fostering Innovation Talents at Universities of Henan Province of the People's Republic of China

