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JORDAN DERIVATIONS OF SOME CLASSES OF MATRIX RINGS

Nader M. Ghosseiri

Abstract. Let R be a 2-torsionfree ring with identity and S be a subring of
the ring Mn(R) that contains the ring Tn(R) of all upper triangular matrices
over R; that is, Tn(R) ⊆ S ⊆ Mn(R). The goal of this paper is to describe
a Jordan derivation ∆ on S. The main result states that ∆ can be uniquely
represented as the sum of a derivation and a very special Jordan derivation.
This result describes also the structure of every derivation on the ring S which
is an extension of a result of S.P. Coelho and C.P. Milies and a result of S.
Jøndrup. Moreover, one of the corollaries of the main theorem covers the
classical result by Jacobson and Rickart stating that there are no proper Jordan
derivations on Mn(R), and a more recent result by D. Benkovic that there are
no proper Jordan derivations on the algebra Tn(R).

1. INTRODUCTION

Let R be a ring. An additive mapping d : R → R is said to be a derivation if
for all a, b ∈ R, d(ab) = d(a)b + ad(b). For each a ∈ R, the mapping da : R → R

given by da(x) = ax − xa, x ∈ R, is easily seen to be a derivation on R. da

is called the inner derivation induced by a. The additive mapping δ : R → R

defined by δ(ab) = δ(b)a + bδ(a) for all a, b ∈ R is called an antiderivation. The
additive mapping ∆ : R → R defined by ∆(ab+ ba) = ∆(a)b+ a∆(b)+ ∆(b)a+
b∆(a) for all a, b ∈ R is called a Jordan derivation. Obviously, each derivation or
antiderivation is a Jordan derivation, but the converses are not true (see examples
1-4 bellow).

Let n be a positive integer. By Mn(R) we denote the ring of all n× n marices
over R, by Tn(R) we denote the ring of all n×n upper triangular matrices over R,
and eij stands for the usual matrix unit. Let R be a 2-torsionfree ring with identity,
n ≥ 2, and S be a subring of Mn(R) that contains Tn(R); i.e. Tn(R) ⊆ S ⊆
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Mn(R). In this paper we determine the structure of Jordan derivations on S. This
result generalizes some known results, and there are some analogies between this
result and some others.

In 1993 S.P. Coelho and C.P. Milies [2] proved that if R is a ring with identity
and d is a derivation on Tn(R), then there exists a derivation δ : R → R and a matrix
A ∈ Tn(R) such that d = δ̄ + dA, where δ̄([xij]) = [δ(xij)] for each [xij] ∈ Tn(R)
and dA is the inner derivation induced by A. In 1995 S. Jødrup [4] determined a
similar structure for C-derivations on Mn(A) and Tn(A), where A is a C-algebra.
In Corollary 1 we extend these results to any ring S such that Tn(R) ⊆ S ⊆ Mn(R).
By a classical result of Jacobson and Rickart the ring Mn(R) has no proper Jordan
derivations [3, Theorem 22]; more recently, in 2005 D. Benkovic [1] has shown
that if R is a 2-torsionfree commutative ring with identity and n ≥ 2, then Tn(R)
has no proper R-linear Jordan derivations. Corollary 2 establishes these results at
once. In [1, Theorem 1.1] it has also been proved that if R is a commutative 2-
torsionfree ring with identity, then every R-linear Jordan derivation from Tn(R) into
a Tn(R)-bimodule M is the sum of a derivation and an antiderivation. For the case
that M = Tn(R) and n ≥ 3 this result is an special case of Theorem 1. For more
studies concerning Jordan derivations we refer the reader to [1] and the references
therein.

In section 2 we shall consider singular Jordan derivations on S and in particular
observe the connections between them and antiderivations. In section 3 we will
state our main results. In particular, Theorem 1 states that every Jordan derivation
∆ : S → S can be uniquely represented as the sum of a derivation d : S → S and
a singular Jordan derivation δ : S → S, and in Corollary 1 we will describe the
structure of derivations on S. Section 4 is devoted to the proof of Theorem 1.

2. SINGULAR JORDAN DERIVATIONS

The purpose of this section is to introduce the concept of a singular Jordan
derivation, and gather together some useful observations about this concept.

We begin by the following important observations which can be easily verified.

Remark 1. The following two conditions are equivalent:
(i) S is a subring of Mn(R) such that Tn(R) ⊆ S.
(i) There exist ideals Iij, 1 ≤ i, j ≤ n, of R such that Iij = R for all i ≤

j, IijIjk ⊆ Iik for all i, j, k, and

S = {Σi,jxijeij : xij ∈ Iij}.

The notion of a singular Jordan derivation naturally appears when studying
Jordan derivations on S. To see this we consider two cases:



Jordan Derivations of some Classes of Matrix Rings 53

First, let n = 2 and let S be a ring such that Tn(R) ⊆ S ⊆ Mn(R). Then by
Remark 1, there exists an ideal I in R such that

S =
(

R R
I R

)
.

We have

Remark 2. Let f : I → R be an additive map satisfying

(i) f(xy) = yf(x) for all x ∈ I, y ∈ R;

(ii) f(yx) = f(x)y for all x ∈ I, y ∈ R;

(iii) f(x2) = 0 for all x ∈ I .

Then the mapping δ : S → S defined by

δ(xe21) = f(x)e12 and δ(xeij) = 0 for all eij �= e12

is a Jordan derivation.
One can easily check that δ is a Jordan derivation, but not a derivation if f �= 0.

Such a Jordan derivation will be called a singular Jordan derivation. Also, it is
not hard to see that δ is an antiderivation if and only if f(I2) = 0. The next two
examples illustrate these instances.

Example 1. Let R be a commutative ring with identity and I be a nonzero
ideal of R such that I 2 = 0. The mapping f : I → R defined by f(x) = x, x ∈ I

satisfies all conditions of Remark 2; moreover, f(I2) = 0. Therefore, the map
δ : S → S, where

S =
(

R R

I R

)
,

is a singular Jordan derivation and at the same time an antiderivation which is not
a derivation.

Example 2. Let R[x, y] be the polynomial ring in x, y over R, where R is
again a commutative ring with identity. Let I be its ideal generated by x2, y2, and
2xy and set

R′ = R[x, y]/I.

Assume that I ′ is the ideal of R′ generated by x + I , y + I , and put

S =
(

R′ R′

I ′ R′

)
.
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One can easily verify that f : I′ → R′ defined by f(x′) = x′ for every x′ ∈ I ′,
satisfies all conditions of Remark 2. Therefore, δ : S → S is a Jordan derivation
that is not a derivation; that is, δ is a singular Jordan derivation. Since f((x +
I)(y + I)) = xy + I �= 0, we have f(I′2) �= 0, whence δ is not an antiderivation.

Next, assume that n ≥ 3 and let S be a ring such that Tn(R) ⊆ S ⊆ Mn(R).
By Iij we denote the appropriate ideals of R illustrated in Remark 1. We have

Remark 3. If an additive map f : In1 → R satisfies

(i) f(xy) = yf(x) for all x ∈ In1, y ∈ R;
(ii) f(yx) = f(x)y for all x ∈ In1, y ∈ R;
(iii) f(InjIn1) = f(In1Ij1) = f(InjIj1) = 0 for all 1 < j < n,

then δ : S → S defined by

δ(xen1) = f(x)e1n and δ(xeij) = 0 for all eij �= en1

is a Jordan derivation.

In fact, from (xen1)e12 = xen2 it follows that In1 ⊆ In2, whence In1
2 ⊆ In1In2,

so that by (iii), f(In1
2) ⊆ f(In1In2) = 0. Now it is easy to see that δ is an

antiderivation and therefore a Jordan derivation, but not a derivation if f �= 0. For
n ≥ 3, such a map δ will be called a singular Jordan derivation. Here is an
example:

Example 3. Let n ≥ 3, R be a commutative ring with identity, and I be a
nonzero ideal of R such that I2 = 0. Let the ring S be such that Iij = I for all
i > j and Iij = R for all i ≤ j. Then the embedding f : I → R satisfies all
conditions of Remark 3. Accordingly δ : S → S is an antiderivation, but not a
derivation.

This section ends with some situations in which S has no nonzero singular
Jordan derivations:

Remark 4. If the ideal In1 of R is trivial; i.e. In1 = 0 or In1 = R, then S

does not have nonzero singular Jordan derivations. In particular, this holds true for
Tn(R) or Sn(R).

Proof. The case In1 = 0 is obvious. Let In1 = R. Then f(x2) = 0 for all
x ∈ R, and so f(1) = 0. Therefore, each of Remark 2(i) or Remark 3(i) implies
that

f(y) = f(1y) = yf(1) = 0
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for all y ∈ R. Therefore, S does not have nonzero singular Jordan derivations.

Remark 5. Let R be a prime ring and S be a ring such that Tn(R) ⊆ S ⊆
Mn(R). Then:

(i) If n ≥ 3, then S does not have nonzero singular Jordan derivations.
(ii) If n = 2 and char(R) �= 2, then S does not have nonzero singular Jordan

derivations.

Proof. The case In1 = 0 is obvious. Suppose therefore that In1 �= 0.
Let n ≥ 3. Since f(In1

2) = 0, Remark 3(i) yields

0 = f(x(yr)) = yrf(x)

for all x, y ∈ In1, r ∈ R. Since R is prime, we conclude that f = 0, whence
nonzero singular Jordan derivations do not exist on S.

Assume n = 2. Then for every x ∈ I21 we have f(x2) = xf(x) = 0.
Linearizing we get xf(y) = yf(x) = 0 for all x, y ∈ I21. Replacing y by yr,
where r ∈ R, we get xrf(y) + yrf(x) = 0 which implies that

2xRf(x) = 0,

and this implies the desired conclusion.

From f(In1
2) = 0 and both (i) and (ii) in Remark 3 it follows that f(xy) =

yf(x) = f(y)x = 0 for all x, y ∈ In1. Thus:

Remark 5. Let n ≥ 3 and S be a ring such that Tn(R) ⊆ S ⊆ Mn(R). If
either annl(In1) ∩ annr(In1) = 0 or In1

2 = In1, then S does not have nonzero
singular Jordan derivations.

3. MAIN RESULTS

Throughout this section, R will be a 2-torsionfree ring with identity, n ≥ 2, and
S will be a subring of Mn(R) that contains Tn(R).

Theorem 1. Let ∆ : S → S be a Jordan derivation. Then there exists a
unique derivation d : S → S and a unique singular Jordan derivation δ : S → S
such that ∆ = d + δ. Moreover, d is the sum of an inner derivation d A and a
derivation dR arising from a derivation on R, and δ is an antiderivation if n ≥ 3.
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Since the last assertion is interesting in its own right, let us record it as a separate
statement. As we shall see in the proof we do not use the assumption that R is
2-torsionfree.

Corollary 1. Let d : S → S be a derivation. Then there is an inner derivation
dA : S → S and a derivation dR : S → S arising from a derivation on R such that
d = dA + dR. If d = dA′ + d′R, for some matrix A′ and a derivation d ′

R arising
from a derivation on R, then there exists r ∈ R such that d A′ = dA + drI .

From Theorem 1 and Remarks 4 and 5 from the preceding section we have im-
mediately the following corollaries.

Corollary 2. Every Jordan derivation on any of the rings M n(R) and Tn(R)
is a derivation.

Corollary 3. If R is a prime ring, then every Jordan derivation on S is a
derivation.

We end this section by an example. This shows that if we have no torsion
assumption on R, then (a) the Jordan derivation in Theorem 1 may not have the
structure described there; (b) the Jordan derivations in Corollary 2 and Corollary 3
(for the case n = 2) may fail to be derivations on S.

Example 4. Let U be the ring of integers modulo 2, R be the ring U [x], and S
be either of M2(R) or T2(R). For each P = [fij] ∈ S define ∆(P ) = (f11

′+f22
′)I ,

where I is the identity martix and fii
′ is the usual derivation of fii. Then it is easily

verified that the Jordan derivation ∆ is not of the form described by Theorem 1.
Also, ∆ is neither a derivation nor an antiderivation.

4. PROOF OF THE MAIN THEOREM

The following observations hold true in any 2-torsionfree ring S. If ∆ : S → S
is a Jordan derivation, then:

(1) ∆(a2) = ∆(a)a + a∆(a)

(2) ∆(aba) = ∆(a)ba + a∆(b)a + ab∆(a)

(3) ∆(abc + cba) = ∆(a)bc + a∆(b)c + ab∆(c) + ∆(c)ba + c∆(b)a + cb∆(a)

for all a, b, c ∈ S. Indeed, (1) follows from the definition and the assumption that
S is 2-torsionfree; applying ∆ to the identity 2aba = a(ab + ba) + (ab + ba)a −
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(a2b + ba2) we get (2), and linearizing (2) we obtain (3).

Theorem 1 will be proved in three steps. In the first step we shall find an
appropriate singular Jordan derivation arising from the Jordan derivation ∆; in the
second step we will find A ∈ S that gives rise to an inner derivation dA, and in
the last step we will prove that the remaining part is a derivation arising from a
derivation on R.

Step 1. Let ∆ : S → S be a Jordan derivation. Define δ : S → S by

δ(xeij) = 0 for all eij �= en1, and

δ(xen1) = e11∆(xen1)enn = f(x)e1n,

where the mapping f : In1 → R is determined by δ and for each x ∈ In1, f(x) is
the entry of the matrix ∆(xen1) at the position (1, n). Since δ is an additive map,
so is f .

Lemma 1. δ is a singular Jordan derivation.

Proof. It suffices to show that the map f : In1 → R satisfies the conditions of
Remark 2 (if n = 2) and Remark 3 (if n ≥ 3).

Let x ∈ In1, y ∈ R. Then we can write

∆(xyen1) = ∆(xen1ye11 + ye11xen1)
= ∆(xen1)ye11 + xen1∆(ye11) + ∆(ye11)xen1 + ye11∆(xen1).

This implies

e11∆(xyen1)enn = ye11∆(xen1)enn i.e. f(xy)e1n = yf(x)e1n.

Accordingly, f(xy) = yf(x) for all x ∈ In1, y ∈ R. Similarly, using yxen1 =
yennxen1 + xen1yenn one shows that f(yx) = f(x)y for all x ∈ In1, y ∈ R.
Therefore, f(x2) = xf(x) = f(x)x for all x ∈ In1. Using also

0 = e11∆((xen1)
2) = e11(∆(xen1)xen1 + xen1∆(xen1))

= e11∆(xen1)ennxen1 = f(x)xe11,

we see that f(x2) = 0 for all x ∈ In1. Thus, in view of Remark 2, δ is a singular
Jordan derivation in case n = 2.

Now let n ≥ 3. Fix j, 1 < j < n. Assume first that x ∈ Inj and y ∈ Ij1. Then
we can write

∆(xyen1) = ∆(xenjyej1 + yej1xenj)
= ∆(xenj)yej1 + xenj∆(yej1) + ∆(yej1)xenj + yej1∆(xenj),



58 Nader M. Ghosseiri

which yields e11∆(xyen1)enn = f(xy)e1n = 0. Thus f(In1Ij1) = 0. Next, let
x ∈ Inj and y ∈ In1. Since xenjyen1 + yen1xenj = 0, it follows that

∆(xenj)yen1 + xenj∆(yen1) + ∆(yen1)xenj + yen1∆(xenj) = 0.

Multiplying this identity from the left by e11 and from the right by ejj we get

0 = e11∆(yen1)ennxenj = f(y)xe1j = f(xy)e1j.

Therefore, f(InjIn1) = 0. Similarly we see that f(In1Ij1) = 0. Thus, by Remark
3, δ is a singular Jordan derivation in case n ≥ 3.

Note that ∆ − δ is a Jordan derivation satisfying:

e11(∆ − δ)(xen1)enn = e11∆(xen1)enn − e11δ(xen1)enn = 0

for all x ∈ In1. Therefore, from now on we may assume without loss of generality
that ∆ : S → S is a Jordan derivation with the property

(4) e11∆(In1en1)enn = 0.

Step 2. Let 1 ≤ i ≤ n and set ∆(eii) =
∑

k,l x
i
klekl . Since eii is an idempotent,

we have ∆(eii) = ∆(eii)eii + eii∆(eii). Hence we see that xi
ii = 0 and xi

kl = 0
whenever both k and l are different from i. Thus we may write

(5) ∆(eii) =
∑
k �=i

xi
kieki +

∑
l �=i

xi
ileil.

Let i �= j. As eii and ejj are orthogonal idempotents, we have

∆(eii)ejj + eii∆(ejj) + ∆(ejj)eii + ejj∆(eii) = ∆(eiiejj + ejjeii) = 0.

Multiplying by eii from the left and by ejj from the right we infer that eii∆(eii)ejj =
−eii∆(ejj)ejj . That is,

(6) xi
ij = −xj

ij

whenever i �= j.
We now define the matrix A =

∑
i,j aijeij, aij ∈ Iij as follows. We set a11 = 0

and define ajj according to

(7) ajje1j = −e11∆(e1j)ejj.

Further, for 1 ≤ i < j ≤ n we set

(8) aij = −xi
ij = xj

ij.
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Thus, aijeij = −eii∆(eii)ejj = eii∆(ejj)ejj . If 1 ≤ j < i ≤ n, then we set

(9) aij = xj
ij = −xi

ij,

so that aijeij = eii∆(ejj)ejj = −eii∆(eii)ejj .

Step 3. d = ∆ − dA is a Jordan derivation satisfying:

Lemma 2. d(eij) = 0 for all 1 ≤ i ≤ j ≤ n.

Proof. Using (5), (8), and (9), for each 1 ≤ i ≤ n we have

dA(eii) = Aeii − eiiA

=
∑
k<i

akieki +
∑
i<k

akieki −
∑
l<i

aileil −
∑
i<l

aileil

=
∑
k<i

xi
kieki +

∑
i<k

xi
kieki +

∑
l<i

xi
ileil +

∑
i<l

xi
ileil

= ∆(eii),

so that d(eii) = 0, 1 ≤ i ≤ n. Now we compute d(e1j) for each j with 1 < j ≤ n.
Since e1j = e11e1jejj +ejje1je11, it follows from (3) and d(e11) = d(ejj) = 0 that

d(e1j) = e11d(e1j)ejj + ejjd(e1j)e11.

Applying a11 = 0 and (7) we get

d(e1j) = e11(∆(e1j) − Ae1j + e1jA)ejj

+ejj(∆(e1j) − Ae1j + e1jA))e11

= −ajje1j + ajje1j + ejj∆(e1j)e11

= ejj∆(e1j)e11.

Hence we see that d(e1j) = bej1, for some b ∈ Ij1. Using

0 = ∆(e2
1j)e11 = (e1j∆(e1j) + ∆(e1j)e1j)e11 = e1j∆(e1j)e11,

we therefore get be11 = e1jbej1 = e1j∆(e1j)e11 = 0. Thus d(e1j) = 0.
Finally we compute d(eij) for 1 < i < j ≤ n. Since eij = eiieijejj + ejjeijeii,

we again have
d(eij) = eiid(eij)ejj + ejjd(eij)eii.

Similarly as above we get

d(eij) = eii∆(eij)ejj − aiieij + ajjeij + ejj∆(eij)eii.
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Since ∆(e2
ij)eii = 0, it follows that ejj∆(eij)eii = 0. On the other hand, e1j =

e1ieij + eije1i. Making use of d(e1j) = d(e1i) = 0 it follows that e1id(eij) +
d(eij)e1i = 0. Hence

0 = e1id(eij)ejj = e1i(∆(eij) − Aeij + eijA)ejj

= e1i(eii∆(eij)ejj − aiieij + ajjeij),

which gives eii∆(eij)ejj = (aii − ajj)eij and d(eij) = 0.

Define ϕ : R → R such that

e11d(xe11)e11 = ϕ(x)e11.

Clearly ϕ is an additive map.

Lemma 3. d(xeij) = ϕ(x)eij for all x ∈ Iij.

Proof. For any 1 ≤ i ≤ n we have 2xeii = xeiieii + eiixeii, so that

d(xeii) = eiid(xeii)eii.

Let 1 < j ≤ n. Then we have

d(xe1j) = d(xe11e1j + e1jxe11)
= d(xe11)e1j + e1jd(xe11)
= ϕ(x)e1j.

On the other hand,

d(xe1j) = d(xejje1j + e1jxejj)
= d(xejj)e1j + e1jd(xejj)
= e1j(ejjd(xejj)ejj).

Therefore, d(xe1j) = ϕ(x)e1j and d(xejj) = ϕ(x)ejj for every x ∈ R. Similarly
we see that d(xeij) = ϕ(x)eij whenever 1 < i < j ≤ n.

Now let 1 ≤ j < i ≤ n. Then

d(xeij) = d(eiixeijejj + ejjxeijeii)
= eiid(xeij)ejj + ejjd(xeij)eii

for all x ∈ Iij . From xeijeji+ejixeij = xeii+xejj one easily derives eiid(xeij)ejj =
ϕ(x)eij for all x ∈ Iij . It remains to prove that ejjd(Iijeij)eii = 0 whenever
1 ≤ j < i ≤ n. First, using (4) we get

e11d(xen1)enn = e11(∆(xen1) − Axen1 + xen1Ae11)enn

= e11∆(xen1)enn = 0
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for all x ∈ In1. Suppose 1 < i < n. Then d(xei1ei,i+1 + ei,i+1xei1) = 0, so
that using d(ei,i+1) = 0 we get e11d(xei1)eii = 0 for all x ∈ Ii1. Finally, suppose
1 < j < i ≤ n. Then

0 = d(xeije1j + e1jxeij)eii = e1j(ejjd(xeij)eii).

This means that ejjd(Iijeij)eii = 0 and the lemma is proved.

Since for all x, y ∈ R we have

ϕ(xy)e12 = d(xye12) = d(xe11ye12 + ye12xe11)
= (ϕ(x)y + xϕ(y))e12,

we see that ϕ is a derivation on R. In view of Lemma 3 one observes that d is a
derivation arising from a derivation on R. Therefore, every Jordan derivation ∆ :
S → S can be written as the sum of a derivation d : S → S and a singular Jordan
derivation δ : S → S. It remains to prove the uniqueness of this decomposition.
Suppose ∆ = d + δ = d′ + δ′, where d, d′ are derivations and δ, δ′ are singular
Jordan derivations on S. Then

δ∗ = d − d′ = δ′ − δ

is a singular Jordan derivation such that

δ∗(xen1) = f(x)e1n and δ∗(xeij) = 0 for all eij �= en1,

for some function f : In1 → R. Since δ∗ is also a derivation it follows that

0 = δ∗(e11xen1) = e11δ
∗(xen1) = f(x)e1n

for every x ∈ In1. This implies that δ∗ = 0, proving the uniqueness. The proof of
Theorem 1 is thereby complete.

Finally we point out that if d : S → S is a derivation, then Theorem 1 immedi-
ately implies that d is the sum of an inner derivation and a derivation arising from
a derivation on R. Namely, as we saw, there do not exist nonzero singular Jordan
derivations that are derivations. Also, the inspection of the proof shows that in this
case we do not use the torsion assumption on R. Hence we get the first part of
Corollary 1. For the second part we can use [2, Proposition].
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