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NORMALIZED MATCHING PROPERTY OF A CLASS
OF SUBSPACE LATTICES

Jun Wang and Huajun Zhang*

Abstract. Let Vn(q) be the n-dimensional vector space over the finite field
with q elements and K a selected k-dimensional subspace of Vn(q). Let
C[n, k, t] denote the set of all subspaces S’s such that dim(S ∩ K) ≥ t. We
show that C[n, k, t] has the normalized matching property, which yields that
C[n, k, t] has the strong Sperner property and the LYM property.

1. INTRODUCTION

A finite poset P is graded if every maximal chain of P has the same length,
which is called the rank of P denoted by r(P ). Thus, for each x ∈ P , every
maximal chain with x as the top element has the same length, which is called the
rank of the element x and denoted by r(x). Here the length of a chain with k

elements is k − 1. Let Pi denote the ith rank of P which consists of all x ∈ P
with r(x) = i (0 ≤ i ≤ r(P )). An antichain is a subset A ⊆ P of which no two
elements are comparable in P . A k-family is a subset of P that contains no chains
of length k. Clearly, each Pi is an antichain, and each union of k ranks of P is a
k-family.

We say a graded poset P is k-Sperner, or has the k-Sperner property, if a union
of k ranks of P is a maximal-sized k-family in P . 1-Sperner is just called Sperner.
We say P is strong Sperner, or has the strongly Sperner property if it is k-Sperner
for all k. We say P is unimodal if the sequence of the Whitney numbers of P is
unimodal, i.e., W0 ≤ . . . ≤ Wl−1 ≤ Wl ≥ Wl+1 ≥ . . . ≥ Wn for some l, where
n = r(P ) and Wi = |Pi|. Similarly, P is log concave if the sequence of Whitney
numbers of P is log concave: W2

m ≥ Wm−1Wm+1 for all m. It is clear that P is
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log concave implies that P is unimodal. For A ⊆ Pi where 0 ≤ i < r(P ), define
∇(A) = {b ∈ Pi+1 : b ≥ a for some a ∈ A}. We say P has the normalized
matching property (NM) or is normal if

|∇(A)|
|A| ≥ |Pi+1|

|Pi| for all A ⊆ Pi, i = 0, 1, 2, . . . , r(P )− 1.(1)

We say P has the LYM property, or is a LYM poset if for every antichain A in P ,
the following inequality holds:

r(P )∑
i=0

|A ∩ Pi|
|Pi| ≤ 1.

It is well known that the NM property and the LYM property are equivalent, and
they imply the strong Sperner property [3].

Let C(n, k) be the collection of all subsets of an n-set Y which intersect a fixed
k-subset of X . Then C(n, k) is a natural generalization for the subset lattice. Lih
[9] first observed this and showed that C(n, k) has the Sperner property. Griggs
[2] further showed that C(n, k) has several strong properties.

Let Vn(q) denote an n-dimensional vector space (n-space, for short) over the
finite field with q elements and let L(Vn(q)) be the lattice of subspaces of Vn(q),
ordered by inclusion. If there is no confusion, write them as V and L(V ) for short.
Let K be a fixed k-dimensional subspace of Vn(q) and let C[n, k, t] be the set of
the subspaces S such that dim(S ∩ K) ≥ t for 1 ≤ t ≤ k. Then C[n, k, t] can be
regarded as a vector space analogue of C(n, k).

Main results of this paper are contained in the following theorem.

Theorem 1.1. For 1 ≤ t ≤ k, C[n, k, t] has the normalized matching property.
Consequently, C[n, k, t] has the strong Sperner property and the LYM property.

We shall expatiate on the way of proving the theorem and present some pre-
liminary results in the next section, and complete the proof of the theorem in
Section 3.

2. PRELIMINARY RESULTS

Our argument is based on the following theorem which was proved by Kleitman,
Edelberg and Lubell in [7]. (See also [1]).

Theorem 2.1. Let P be a poset and Γ a permutation group acting on P which
preserves the order relation on P . Then P contains a maximal sized antichain
which is invariant under the action of Γ.
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Based on the above theorem, the first author proved a conjecture that the sub-
group lattice Lkn(p) of an abelian p-group has the Sperner property in [4], he also
gave an NM version of the KEL Theorem, stated as follows.

Theorem 2.1. Let P and Γ be the same as in the KEL Theorem. Then for
every i, there is a subset Ai of Pi which is invariant under the action of Γ and

|∇(Ai)|
|Ai| = min

{ |∇(B)|
|B| : B ⊆ Pi

}
(2)

As stated in [6], some extremal problems can be considered in a weighted poset
(P, w), which is a poset P together with a function (called a weighted function) w

from P into the set of non-negative real numbers. The weight w(A) of a subset
A of P is defined by w(A) =

∑
a∈A w(a). Every poset P can be considered as a

weighted poset (P, w), where w ≡ 1, that is, w(x) = 1 for all x ∈ P . A weighted
poset (P, w) has the NM property if

(3)
w(∇(A))

w(A)
≥ w(Pi+1)

w(Pi)
for all A ⊆ Pi, i = 0, 1, 2, . . . , r(P )− 1.

Let Γ be a permutation acting on (P, w) which preserving the order relation and
the weight on P , that is, for every γ ∈ Γ, x ≤ y in P implies γ(x) ≤ γ(y) ,
and w(γ(x)) = w(x). Then we have the quotient poset (P/Γ, wΓ), where P/Γ
consists of the Γ-orbits ordered as follows: Γ(x) ≤ Γ(y) in P/Γ if x

′ ≤ y
′

for some x
′ ∈ Γ(x) and y

′ ∈ Γ(y), and the weight function wΓ is given by
wΓ(Γx) = |Γx|w(x). Then, Theorem 2.2 is restated as follows.

Theorem 2.3. (P, w) has the NM property if and only if (P/Γ, wΓ) does.
By this theorem the first author proved that Lkn(p) has the NM property for

sufficiently large prime number p [5]. In this paper we shall use this theorem to
prove Theorem 1.1.

Let GL(V ) denote the general linear group over V consisting of all invertible
linear transformations of V . Let GL(K|V ) denote the subgroup of GL(V ) that
fixes K. Then the restriction of GL(K|V ) on K is just the general linear group
GL(K). Also, GL(K|V ) can be induced to the general linear group GL(V/K),
where V/K is the quotient space. It is easily seen that GL(K|V ) induces an order
preserving permutation group acting on C[n, k, t].

For any nonnegative integers i and j, let 〈i, j〉 denote the set of all subspaces
A ∈ L(V ) such that dim(A) = i + j and dim(A ∩ K) = i. Then if t ≤ i ≤ k,
〈i, j〉 is an orbit of GL(K|V ) in C[n, k, t] and the quotient poset is

C[n, k, t] = C[n, k, t]/GL(K|V ) = {〈i, j〉 : t ≤ i ≤ k, 0 ≤ j ≤ n − k}.
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The ordering of C[n, k, t] is defined as follows: 〈i, j〉 ≤ 〈i ′
, j

′〉 if i ≤ i
′ and

j ≤ j
′ . From this it follows that C[n, k, t] is isomorphic to the direct product of

two chains of lengths k − t and n − k, respectively.
Given a µ = 〈i, j〉 ∈ C[n, k, t], by w(µ) we denote the cardinality of the orbit

µ. Then, Theorem 2.3 says that C[n, k, t] has the NM property if and only if the
weighted lattice (C[n, k, t], w) employs the NM property. To express the weight
w(µ) we introduce a few of notations.

Define {1} = 1, {i} = 1 + q + · · ·+ qi−1 = qi−1
q−1 and {i}! = {1}{2} · · ·{i}.

Then
[

n
m

]
:= {n}!

{n−m}!{m}! , the q-binomial coefficient, is known for the number of
the m-subspaces of Vn(q) and have the following recursion:

(4)
[
n + 1

i

]
=

[n

i

]
+ qn+1−i

[
n

i− 1

]

and

(5)
[
n + 1

i

]
=

[
n

i − 1

]
+ qi

[n

i

]
.

We state two well-known results as two lemmas.

Lemma 2.4. [10]. For any 〈i, j〉 ∈ C[n, k, t],

w(〈i, j〉) = qj(k−i)

[
n − k

j

] [
k

i

]
.

Given µ = 〈i, j〉 ∈ C[n, k, t]s, we define two order-raising operators φ and ϕ

which map elements of C[n, k, t]s into C[n, k, t]s+1 as follows:

φ(〈i, j〉) = 〈i + 1, j〉 if i < k; and ϕ(〈i, j〉) = 〈i, j + 1〉 if j < n − k.

It is easy to see that

(6) ∇(µ) =




{φ(µ), ϕ(µ)} if i < k and j < n − k

{ϕ(µ)} if i = k and j < n − k

{φ(µ)} if i < k and j = n − k.

Now, we introduce another partial order 
 on C[n, k, t]s for 1 ≤ s ≤ n − 1:

〈i, j〉 
 〈i ′
, j

′〉 iff j ≤ j
′ .

Under this partial order C[n, k, t]s is a chain.

Lemma 2.5. Let µ = 〈i, j〉, ν = 〈i ′
, j

′〉 ∈ C[n, k, t]s and µ 
 ν. Then
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(i) w(φ(µ))
w(µ) ≤ w(φ(ν))

w(ν) if i < k;

(ii) w(ϕ(µ))
w(µ)

≥ w(ϕ(ν))
w(ν)

if j < n − k.

Proof. If i < k, by Lemma 2.4, we have

(7)
w(φ(µ))

w(µ)
=

qj(k−i−1)

[
n − k

j

] [
k

i + 1

]

qj(k−i)

[
n − k

j

] [
k

i

] =

[
k

i + 1

]

qj

[
k

i

] =
{k − i}

qj{i + 1}

and

(8)
w(ϕ(µ))

w(µ)
=

q(j+1)(k−i)

[
n − k

j + 1

] [
k

i

]

qj(k−i)

[
n − k

j

][
k

i

] =
qk−i

[
n − k

j + 1

]
[
n − k

j

] =
qk−i{n − k − j}

{j + 1} .

For convenience, let i′ = i− 1 and j ′ = j + 1. Then by (7) and (8) we obtain that

w(φ(µ))
w(µ)

/
w(φ(ν))

w(ν)
=

{k − i}
qj{i + 1} × qj+1{i}

{k − i + 1} =
q{k − i}{i}

{k − i + 1}{i + 1} < 1

and

w(ϕ(µ))
w(µ)

/
w(ϕ(ν))

w(ν)
=

qk−i{n − k − j}
{j + 1} × {j + 2}

qk−i+1{n − k − j − 1}
=

{n − k − j}{j + 2}
q{n − k − j − 1}{j + 1} > 1

hold for each q ≥ 1. The assertions follows by induction.

The following trivial result is used repeatedly in the sequel.

Lemma 2.5. Let Ai, Bi > 0 for 1 ≤ i ≤ k and Ai/Bi ≥ A1/B1 ≥ � for
2 ≤ i ≤ k. Then

A2 + · · ·+ Ak

B2 + · · ·+ Bk
≥ A1 + A2 + A3 + · · ·+ Ak

B1 + B2 + B3 + · · ·+ Bk
≥ �.

3. PROOF OF THEOREM 1.1

For convenience, we use Cs denote the rank {〈i, j〉 : i + j = s}. In order to
complete the proof it suffices to prove that for any 1 ≤ s ≤ n − 1,
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w(∇(M))
w(M)

≥ w(Cs+1)
w(Cs)

holds for every M ⊆ Cs.
Suppose Cs = {µ1, µ2, . . . , µr} with µ1 
µ2 
 · · ·
µr. For 1≤ i≤ r, define

Si ={µi, µi+1, . . . , µr} and Ti = {µ1, µ2, . . . , µi}. Thus, we immediately have that
w(Si)’s decrease monotonic with i and w(Ti)’s increase monotonic with i.

Lemma 3.1. With the notations as above we have

(i) w(∇(Sr))
w(Sr)

≥ w(∇(Sr−1))
w(Sr−1)

≥ · · · ≥ w(∇(S1))
w(S1)

= w(Cs+1)

w(Cs)
.

(ii) w(∇(T1))
w(T1)

≥ w(∇(T2))
w(T2)

≥ · · · ≥ w(∇(Tr))
w(Tr)

= w(Cs+1)

w(Cs)
.

Proof. By definition we have that

µ1 =

{
〈k, s − k〉 if s ≥ k

〈s, 0〉 if s < k

and

µr =

{
〈t, s− t)〉 if s − t < n − k

〈s − (n − k), n − k〉 if s − t ≥ n − k

It is easy to see that

∇(S1) =

{
∇(S2) if s ≥ k

φ(µ1) ∪∇(S2) if s < k,

and for i ≥ 2,

∇(Si) =

{
{φ(µi), φ(µi+1), . . . , φ(µr), ϕ(µr)} if s − t < n − k

{φ(µi), φ(µi+1), . . . , φ(µr)} if s − t ≥ n − k.

We thus obtain by Lemma 2.5 and Lemma 2.6 that

w(∇(Si))
w(Si)

=
w(φ(µi)) + w(∇(Si+1))

w(µi) + w(Si+1)
≤ w(∇(Si+1))

w(Si+1)
(8)

hold for i > 1 or i = 1 while s < k. If i = 1 and s ≥ k, then S1 = {µ1} ∪ S2 and
∇(S1) = ∇(S2), so

w(∇(S1))
w(S1)

=
w(∇(S2))

w(µ1) + w(S2)
<

w(∇(S2))
w(S2)

.
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The assertion (1) follows.
Similarly, for i ≤ r, we have

∇(Ti) =

{
{φ(µ1), ϕ(µ1), ϕ(µ2), . . . , ϕ(µi)} if s < k

{ϕ(µ1), ϕ(µ2), . . . , ϕ(µi)} if s ≥ k.

Then (2) follows from Lemma 2.5 and Lemma 2.6.

Lemma 3.2. With the notations as in the above lemma let M = {µ i, µi+1, . . . ,

µj} be a subset of C s, where 1 ≤ i ≤ j ≤ r. Then w(∇(M ))
w(M )

≥ w(Cs+1)

w(Cs)
.

Proof. By definition we have that M = Si ∩ Tj and ∇(M) = ∇(Si) ∩∇(Tj).
It is easy to see that Si ∪ Tj = Cs and ∇(Si) ∪ ∇(Tj) = Cs+1, which implies
that w(M) = w(Si) + w(Tj)− w(Cs) and w(∇(M)) = w(∇(Si)) + w(∇(Tj))−
w(Cs+1). We thus obtain that

w(∇(M))
w(M)

=
w(∇(Si)) + w(∇(Tj))− w(Cs+1)

w(Si) + w(Tj)− w(Cs)
≥ w(Cs+1)

w(Cs)
.

The last equality follows from Lemma 3.1.

Proof of Theorem 1.1 Given a subset M of Cs, set M = M1 ∪ · · · ∪ M�

(� ≥ 1), where Mk = {µik , µik+1, . . . , µjk
} (k = 1, 2, . . . , �), 1 ≤ i1 ≤ j1 <

i2 ≤ j2 < · · · < i� ≤ j� ≤ r. Then Mi ∩ Mj = ∅ and ∇(Mi) ∩ ∇(Mj) = ∅
for i = j. We thus obtain that w(M) = w(M1) + · · ·+ w(M�) and w(∇(M)) =
w(∇(M1)) + · · · + w(∇(M�)). Then the inequality w(∇(M ))

w(M ) ≥ w(Cs+1)

w(Cs)
follows

from Lemma 3.2 and Lemma 2.6.

Remark. Note that all inequalities above hold for q ≥ 1. By putting q = 1
in Theorem 1.1 we reobtain that C(n, k, t) has the normalized matching property,
which has been proved by Griggs in [2].
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