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SUFFICIENCY AND DUALITY OF FRACTIONAL INTEGRAL
PROGRAMMING WITH GENERALIZED INVEXITY

Hang-Chin Lai

Abstract. Convexity assumptions for fractional programming of variational
type are relaxed to generalized invexity. The sufficient optimality conditions
are employed to construct a mixed dual programming problem. It will involve
the Wolfe type dual and Mond-Weir type dual as its special situations. Several
duality theorems concerning weak, strong, and strict converse duality under
the framework in mixed type dual form are proved.

1. INTRODUCTION AND PRELIMINARIES

Consider a fractional programming of variational problem as the following form.

(P ) Min
x

 max
1≤i≤p

∫ b

a
f i(t, x, ẋ) dt∫ b

a

gi(t, x, ẋ) dt


subject to x ∈ PS(T, Rn), x(a) = α, x(b) = β, and∫ b

a
hj(t, x, ẋ) dt ≤ 0, j ∈ m ≡ {1, 2, · · · , m},

where functions f i, gi, i ∈ p and hj , j ∈ m are continuous in t and have continuous
partial derivatives with respect to x and ẋ; T = [a, b] denotes the time space, and
PS(T, Rn) stands for the state space of all piecewise smooth functions x : T → Rn
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with norm defined by ‖x‖ = ‖x‖∞ + ‖Dx‖∞ and D is the differential operator on
PS(T, Rn) defined by

y = Dx if and only if x(t) = x(a) +
∫ t

a
y(s) ds.

Thus D = d/dt except at the point of discontinuity. Without loss of generality, we
may assume throughout that∫ b

a
gi(t, x, ẋ) dt > 0,

∫ b

a
f i(t, x, ẋ) dt ≥ 0 for each i ∈ p.

Denote by FP the set of all feasible solutions of (P ).
In order to simplify the symbols in problem (P ), as in [7], we scalarize func-

tionals as the following:

Φ(x, y) = 〈y, F (x)〉 =
p∑

i=1

yiFi(x) =
p∑

i=1

yi

∫ b

a
f i(t, x, ẋ) dt

Ψ(x, y) = 〈y, G(x)〉 =
p∑

i=1

yiGi(x) =
p∑

i=1

yi

∫ b

a

gi(t, x, ẋ) dt

Ω(x, z) = 〈z, H(x)〉 =
m∑

j=1

zjHj(x) =
m∑

j=1

zj

∫ b

a
hj(t, x, ẋ) dt

where y ∈ I = {y ∈ R
p
+ |

p∑
i=1

yi = 1} and z ∈ Rm
+ . Then for any feasible solution

x of (P ), the objective fractional function can be represented by

(1.1) ϕ(x) = max
i∈p

Fi(x)
Gi(x)

= max
y∈I

〈y, F (x)〉
〈y, G(x)〉 = max

y∈I

Φ(y, x)
Ψ(y, x)

.

The problem (P ) is equivalent to

(P̃ ) Min
x∈PS

max
y∈I

Φ(y, x)
Ψ(y, x)

= Min
x

(
max
i∈p

Fi(x)
Gi(x)

)

subject to x ∈ PS(T, Rn), x(a) = α, x(b) = β

and H(x) ≤ 0.

It is equivalent to the parametric minimization problem:

(EPν) Minimize q(ν)

subject to Fi(x) − νGi(x) ≤ q, i ∈ p,

and Hj(x) ≤ 0, j ∈ m, x ∈ PS(T, Rn),

x(a) = α, x(b) = β.
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From (EPν), one can reduce to the optimal solution x∗ for (P ) with its optimal
value ν∗ which is given by

(1.2) ν∗ = ϕ(x∗) =
Φ(x∗, y∗)
Ψ(x∗, y∗)

.

The concept used here for solution of (EPν) coincides with finding the minimax
solution (x∗, y∗) of the Lagrangian

L(x, y; x, z) = 〈y, F (x)〉 − ν〈y, G(x)〉+ 〈z, H(x)〉

= Φ(x, y)− ν Ψ(x, y) + Ω(x, z)
(1.3)

with multipliers ν ∗ ∈ R+ and z∗ ∈ Rm
+ . The minimax solution (x∗, y∗) is given in

the equation
L′

x(x, y)ξ = 0 for all ξ ∈ C(T, Rn).

Hence the necessary optimality conditions for problem (P ) can be stated as the
following.

Theorem 1.1. Let x∗ be an optimal solution of (P ). Then there exist La-
grangian multipliers y ∗ ∈ I ⊂ R

p
+ and z∗ ∈ Rm

+ such that the Kuhn-Tucker type
conditions hold for the
Lagrangian (1.3) :

(1.4) L′
x(x∗, y∗; ν∗, z∗) = 0

(1.5) Ω(x∗, z∗) = 0

where ν∗ =
Φ(x∗, y∗)
Ψ(x∗, y∗)

given in (1.2) is the optimal value of problem (P ), and the

equation L′
x(·, ·) = 0 is then expressed by

(1.6) Ψ(x∗, y∗)
[
Φ′(x∗, y∗) + Ω′(x∗, z∗)

]
− Φ(x∗, y∗)Ψ′(x∗, y∗) = 0.

2. SUFFICIENT OPTIMALITY CONDITIONS

The existence theorems of optimal solutions for problem (P ) can be considered
as the converses of necessary optimality conditions (in Theorem 1.1) with some
extra assumptions. Thus the sufficient theorem for problem (P ) usually would not
be unique. Many authors have searched for sufficient conditions, and employed
the sufficiency for optimal solutions to study the duality problem. In [7], Lai and
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Liu established the sufficient optimality conditions under generalized invexity, and
employed the result to construct the Wolfe type dual and Mond-Weir type dual,
respectively, as the following forms.

(WD) Maximize
Φ(u, y) + Ω(u, z)

Ψ(u, y)

subject to (u, z) ∈ PS(T, Rn) × Rm
+

u(a) = α, u(b) = β, y ∈ I ⊂ Rp
+, and

Ψ(u, y)
[
Φ′(u, y) + Ω′(u, z)

]
−Ψ′(u, y)

[
Φ(u, y) + Ω(u, z)

]
= 0

where Φ(u, y) + Ω(u, z) ≥ 0 and Ψ(u, y) > 0;

(MWD) Maximize
Φ(u, y)
Ψ(u, y)

subject to (u, y) ∈ PS(T, Rn)× I,

u(a) = α, u(b) = β and

Ψ(u, y)
[
Φ′(u, y) + Ω′(u, z)

]
−Φ(u, y)Ψ′(u, y) = 0

Ω(u, z) ≥ 0, z ∈ Rm
+ .

In [7], the duality theorems are established for the problems (WD) and (MWD)
under generalized invexity, and in [8] the parameter-free dual is also studied for
problem (P ). There are many authors who investigated the duality programming by
invexity as well as generalized invexity for other kinds of fractional or nonfractional
problems (Cf, the cited papers in the References). Now a question arises that
whether we could combine the two dual problems (WD) and (MWD) in [7]
as a new type dual (MD) to problem (P ) in which the problems (WD) and
(MWD) become the special cases of the new type dual. To do this, we will
consider a part of constrained inequality to add into the numerator of the fractional
objective of the primary variational problem (P ), and maximize the corresponding
objective fractional functional to satisfy the necessary conditions where new mixed
dual problem is stated as following.

(2.1)

(MD) Maximize
Φ(u, y) +

∑
j∈M0

zjHj(u)

Ψ(u, y)

subject to (u, y) ∈ PS(T, Rn)× I,

u(a) = α, u(b) = β and z ∈ Rm
+ ;
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Ψ(u, y)
[
Φ′(u, y) +

k∑
α=0

z�Mα
H ′

M0
(u)

]
−

[
Φ(u, y) +

∑
j∈M0

zjHj(u)
]
Ψ′(u, y) ≥ 0,

(2.2)
k∑

α=0

z�Mα
HMα ≥ 0,

where the index sets Mα ⊆ M , α = 0, 1, 2, · · · , k are mutually disjoint, that is

Mα ∩ Mβ = ∅ if α �= β and
k⋃

α=0

Mα = M.

Denote the set of all feasible solutions of (MD) by

FMD = {(u, u, z) ∈ PS(T, Rn) × I × Rm
+}.

Note that the constrained functional

Ω(u, z) =
k∑

α=0

z�Mα
HMα(u) =

∑
j∈M

zjHj(u).

For convenience, we recall briefly the following definitions for generalized in-
vexity (cf. Lai and Liu [7]).

For any u ∈ PS(T, Rn), a differentiable function J is said to be invex at u

w.r.t. η, a vector function defined by
η : PS(T, Rn) × PS(T, Rn) → C(T, Rn),

(
η(x, u) = 0 only if x = u

)
, if

J(x) − J(u) ≥ J ′(u)η(x, u).

J is said to be pseudoinvex at u w.r.t η if

J ′(u)η(x, u) ≥ 0 ⇒ J(x) ≥ J(u).

Or equivalently
J(x) < J(u) ⇒ J ′(u)η(x, u) < 0.

J is said to be strictly pseudoinvex at u w.r.t η if

J ′(u)η(x, u) ≥ 0 ⇒ J(x) > J(u).

or J(x) ≤ J(u) ⇒ J ′(u)η(x, u) < 0.
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J is said to be quasiinvex at u w.r.t. η if

J(x) ≤ J(u) ⇒ J ′(u)η(x, u) ≤ 0;

Or equivalently
J ′(u)η(x, u) > 0 ⇒ J(x) > J(u).

Sufficiency for optimality solution of (P ) was stated in [7, Theorem 3.1]. Under in-
vexity assumptions proposed in the dual problem (MD), we will establish the weak,
strong, and strict converse duality relations between the mixed type dual problem
(MD) and the primary problem (P ) respectively. Furthermore, under generalized
invexity assumptions, we can deduce that there are no duality gap between (MD)
and (P ).

3. THE MIXED TYPE DUAL PROBLEM

In view of the problem (MD), if the index set M of the constrained inequalities
of problem (P ) is divided into two disjoint parts M0 and M1 in problem (MD), that
is M0 ∪M1 = M , then the (MD) is reduced to (WD) and (MWD), respectively
as the following:

(i) if M1 = ∅, M0 = M , then (MD) = (WD),

(ii) if M0 = ∅, M1 = M , then (MD) = (WD).

Therefore the work on the (MD) type dual is indeed an extended work in the paper
[7]. To this purpose, some sufficient optimality conditions are available to establish
the weak, strong, and strict converse duality theorems. At first we state and prove
the weak duality theorem as follows.

Theorem 3.1. (Weak Duality). Let x ∈ FP and (u, y, z) ∈ FMD be any feasible
solutions of the problem (P ) and the dual problem (MD), respectively. Define a
functional A(·) on PS(T, Rn) by

A(·) = Ψ(u, y)
[
Φ(·, y) +

k∑
α=0

z�Mα
HMα(·)

]
− Ψ(·, y)

[
Φ(u, y) +

∑
j∈M0

zjHj(u)
]
.

If for each y and z, either one of the following conditions (a) and (b) holds:
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(a) for y ∈ Rp
+ and z ∈ Rm

+ , (u, y, z) ∈ FMD, the functions Φ(·, y), −Ψ(·, y)

and
k∑

α=0

z�Mα
HMα(·) are invex at u w.r.t. the function η(x, u).

(b) the function A(·) is pseudoinvex at u w.r.t. η.

Then

(3.1) ϕ(x) ≥
Φ(u, y) +

∑
j∈M0

zjHj(u)

Ψ(u, y)

where ϕ(x) is, defined by (1.1), the objective function of the minimization problem
(P ).

Proof: Suppose on the contrary that (3.1) were not true. Then

(3.2) ϕ(x) <

Φ(u, y) +
∑

j∈M0

zjHj(u)

Ψ(u, y)
.

And for each y ∈ I , we have

Φ(x, y)
Ψ(x, y)

≤ max
ν∈I

Φ(x, ν)
Ψ(x, ν)

= ϕ(x) <

Φ(u, y) +
∑

j∈M0

zjHj(u)

Ψ(u, y)
.

It follows that

(3.3) Φ(x, y)Ψ(u, y)−
[
Φ(u, y) +

∑
j∈M0

zjHj(u)
]
Ψ(x, y) < 0.

Rewriting the inequality (3.3) by adding
k∑

α=0
z�Mα

HMα(x) to both sides of inequality

(3.3) to get

[
Φ(x, y) +

k∑
α=0

z�Mα
HMα(x)

]
Ψ(u, y)

−
[
Φ(u, y) +

∑
j∈M0

zjHj(u)
]
Ψ(x, y)

(3.3.1) <

k∑
α=0

z�Mα
HMα(x)Ψ(u, y) ≤ 0.
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Since x ∈ FP , z ∈ Rm
+ ,

k∑
α=0

z�Mα
HMα(x) ≤ 0, and Ψ(u, y) > 0, (3.3.1) implies

that

(3.3.2) A(x) < 0 = A(u).

Hence if condition (a) holds, for each y ∈ I , z ∈ Rm
+ , the invexity of Φ(·, y),

−Ψ(·, y) and
k∑

α=0
z�Mα

HMα(·) would imply that

(3.4) Φ(x, y)− Ψ(u, y) ≥ Φ′(u, y)η(x, u),

(3.5) −[Ψ(x, y)− Ψ(u, y)] ≥ −Ψ′(u, y)η(x, u),

k∑
α=0

z�Mα
HMα(x)−

k∑
α=0

z�Mα
HMα(u)

≥
k∑

α=0

z�Mα
H ′

Mα
(u)η(x, u).

(3.6)

Multiplying (3.4) by Ψ(u, y), (3.5) by Φ(u, y)+
∑

j∈M0

zjHj(u) and (3.6) by Ψ(u, y)

and summing up the corresponding inequalities, we obtain

Ψ(u, y)
[
Φ(x, y) +

k∑
α=0

z�Mα
HMα(x)

]

− Ψ(x, y)
[
Φ(u, y) +

k∑
α=0

z�Mα
HMα(u)

]

≥
{

Ψ(u, y)
[
Φ′(u, y) +

k∑
α=0

z�Mα
H ′

Mα
(u)

]

− Ψ′(u, y)
[
Φ(u, y) +

∑
j∈M0

zjHj(u)
]}

η(x, u).

Since the righthand-side of {. . .} in the above inequality is nonegative (by (2.1))
and the lefthand-side is A(x), we see that

A(x) ≥ {0}η(x, u) = 0.

This contradicts (3.3.2). Hence (3.2) is not true.
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If condition (b) holds, that is, A(·) is pseudoinvex at u w.r.t. η, then from (3.3.2)
we know that

A(x)− A(u) < 0 ⇒ A′(u)η < 0.

That is, {
Ψ(u, y)

[
Φ′(u, y) +

k∑
α=0

z�Mα
H ′

Mα
(u)

]

− Ψ′(u, y)
[
Φ(u, y) +

∑
j∈M0

zjHj(u)
]}

η(x, u) < 0.

Consequently A′(u) < 0 which contradicts (2.1).
Hence (3.2) is not true, and the proof of the Theorem is complete.

Now if x∗ ∈ FP is an optimal solution of (P ), then from Theorem 1.1, there
exist y∗ ∈ I and z∗ ∈ Rm

+ such that (1.6) holds. Hence if (u, y∗, z∗) ∈ FMD, a
feasible solution of the duality problem (MD) satisfying the conditions (a) and (b)
of Theorem 3.1, then one can get

max
(u,y∗ ,z∗)∈FMD

Φ(u, y∗) +
∑

j∈M0

z∗j Hj(u)

Ψ(u, y∗)
= ϕ(x∗) = min

x∈FP

ϕ(x),

and (x∗, y∗, z∗) is an optimal solution of (MD). Hence we get the following strong
duality theorem:

Theorem 3.2 (Strong Duality). Let x∗ be an optimal solution of (P ) corre-
sponding y∗ ∈ I and z∗ ∈ Rm

+ such that the feasible solution (u, y ∗, z∗) of (MD)
satisfying the conditions (a) and (b) of Theorem 3.1. Then the feasible solution
(u, y∗, z∗) of (MD) is optimal if and only if u = x ∗ and the two optimal values of
(P ) and (MD) are equal. That is min(P ) = max(MD).

Next if we assume that x1 and (x0, y0, z0) are optimal solutions of problem (P )
and the dual problem (MD), respectively, then one can ask whether x1 = x0 and
min(P ) = max(MD)? The following theorem explore these properties which will
hold under some extra conditions for invexity.

Theorem 3.3 (Strict Converse Duality). Let x1 and (x0, y0, z0) be optimal so-
lutions of problem (P ) and the dual problem (MD), respectively. Further, assume
that the conditions of Theorem 3.2 are fulfilled, and if the functional A(·) defined
on PS(T, Rn) in Theorem 3.1 is strictly pseudoinvex. Then x1 = x0 is an optimal
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solution of (P ), and min(P ) = max(MD). That is, the maximum value

ϕ(x1) =

Φ(x0, y0) +
∑

j∈M0

z0
j Hj(x0)

Ψ(x0, y0)
.

Proof. Suppose on the contrary that x1 �= x0. Then by Theorem 3.2, there exist
y1 ∈ I and z1 ∈ Rm

+ such that the feasible solution (x1, y1, z1) is (MD)-optimal
and

ϕ(x1) =

Φ(x1, y1) +
∑

j∈M0

zj
1Hj(x1)

Ψ(x1, y1)

is its optimal value. As in Theorem 3.1, if A(·) is strictly pseudoinvex, we can see
that the following strict inequality holds.

ϕ(x1) >

Φ(x0, y0) +
∑

j∈M0

z0
j Hj(x0)

Ψ(x0, y0)
.

This leads to a contradiction that

ϕ(x1) =

Φ(x1, y1) +
∑

j∈M0

zj
1Hj(x1)

Ψ(x1, y1)
>

Φ(x0, y0) +
∑

j∈M0

zj
1Hj(x0)

Ψ(x0, y0)
= ϕ(x0).

Since (x0, y0, z0) is an optimal solution of (MD), x1 = x0 and

ϕ(x1) =

Φ(x0, y0) +
∑

j∈M0

z0
j Hj(x0)

Ψ(x0, y0)
.

Remark. It is remarkable to observe that by using different suitable combi-
nations of invexity, quasiinvexity, pseudoinvexity, as well as strictly pseudoinvexity
etc., then one can also get some different conditions for (MD) to establish the
duality theorems.
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