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FRACTIONAL CALCULUS AND SOME PROPERTIES OF
k-UNIFORM CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

H. Ozlem Guney*, S. Sumer Eker and Shigeyoshi Owa

Abstract. In this paper, we introduce a class of functions (k, A, B, «) —
UCYV which is convex in the unit disk. We give some results for the class
(k, A, B,a) — UCYV, integral operators and radius of k-uniform convexity.
Further, the proofs of distortion theorems for fractional calculus for functions
(k, A, B,a) — UCYV is given.

1. INTRODUCTION

Let H denote the class of functions of the form
xD

(1.1) f(2) :z—i—Zanz”,
n=2

which are analytic the open unit disk U = {z € C : |z| < 1} and let S denote
the class of functions (1.1), analytic and univalent in U. By CV, we denote the
subclass of convex and univalent functions defined by the condition

zf//

f/
In 1991, Goodman in [3] gave the following definition and theorem for the class
ucv.

(1.2) CV:{fGS:Re{l—i— }>0 ,ZGU}.

Definition A. A function f € H is said to be uniformly convex in U, if it
is convex in U, and has the property that for every circular arc~, contained in U,
with center ¢, also in U, arcf () is convex.
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For v = 0, we obtain the class C'V, and also that if v is a complete circle
contained in U, it is well known that f(-y) is a convex curve also for f € CV.

Theorem A. Let f € H. Then f € UCV if and only if
_ "
Re{l—l-i(z f?)f }ZO

for (z,{) e U x U.
Also,in 1999, Kanas et al. in [4] gave the following definition and theorem.

Definition B. Let 0 < k < oo.A function f € S said to be k-uniformly convex
in U, if the image of every circular arc~, contained in U, with center {,where
I¢| < K, is convex.

For fixed k, the class of all k-uniformly convex functions is denoted by & — UC'V.
Note that 0 — UCV = CV and 1 — UCV = UCYV in [3].

Theorem B. Let f € Hand0 <k <oo. Then f € k— UCV if and only if
_ "
1.3 ref1+ EZOITL
f/

forz € Uand |(| < k.
Let 7" denote the subclass of S whose elements can be expressed in the form ,

(1.4) fz)=2- ianz”, an > 0.
n=2

A function f € T is said to be in the class (k, A, B, o) — UCV if it satisfies
the inequality

(15) refis B0 -

for (| <k, a(0<a<1l)andall zeU.

In other words, a function f belonging to the class T is said to be in the class
(k, A, B,«a) — UCV iff it satisfies the condition

(z = Q")
(1.6) '(A_B)(l—a)f/(z)+B(Z_C)f//(z)

where -1 < B<A<1, —-1<B<0, 0<a<l, [{(|<kandallzeU.

<1
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The class £ — UCV was introduced by Kanas et al.[4], where its geometric
definition and connections with the conic domains were considered. Kanas and
Srivastava [5] studied further developments involving the class & — UCV. Also,
Gangadharan et al.[2] use linear operator in order to establish a number of connec-
tions between the class k — UCV and various other subclasses of H.

The aim of this paper is to give various basic properties of functions belonging
to general class (k, A, B,a) — UCV, radius of k-uniform convexity. We also
prove several distortion theorems in fractional calculus for functions in the class
(k,A,B,a) — UCV.

2. SoME REsuLTS FOR THE CLaAss (k, A, B,a) — UCV

Theorem 2.1. A function f € T is in the class (k, A, B,«) — UCV iff

21) D [1-B)(1+k)(n—1)+ (A= B)(1-a)na, < (A-B)(1-a).
n=2
The result is sharp.

Proof. Suppose that f € (k, A, B,a) — UCV. Then we have from (1.6) that

‘ (z=0f"(2)
(A=B)(1 - a)f'(z) + B(z = ()f"(2)

o0

(z—0) Z n(n —1)a,z" 2
_ — n=2 — < 1.
(A-=B)(1 - a)(1- Znanz”_l)—i—B(z - () Zn(n — 1)anz"2
n=2 n=2
Since Re(z) < |z| forall z € U.
(z—0) Z n(n —1)a,z" ">
Re =2 = < 1.
(A-=B)(1 - a)(1- Znanz”_l) + B(z— () Zn(n — Da,z" 2
n=2 n=2

If we choose z and ¢ real and letting = — 1~ and ¢ — —k™, we have

o0

Z[(l —-B)(1+k)(n—-1)+(A-B)(1 - a)]na, < (A—B)(1 —«)

n=2
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which is equivalent to (2.1). Conversely, assume that (2.1) is true and |z| = 1 and
|¢| < k. Then we have

[(z=Of"(2)[ = [(A=B)(1 = a)f'(2) + B(z = () f"(2)|

Z [(1=B)(A+[¢)(n—1)+ (A - B)(1 - a)na, — (A - B)(1-a)

M

JA+k)(n—1)4+(A—-B)(1—-a)na, — (A—B)(1—a) <0
:2

by hypothesis. This implies that f € (k, A, B,a) — UCV.

The result (2.1) is sharp for the function

(A-B)(1-0)

(=B +h) (-1 (A-B)A—ayn "N 0=k <oc.

(22) f(z)=2—

Remark. We note that (0,1, —1,a) — UCV = C(«). Therefore, our class
(k, A, B,a) — UCV is the generalization of C(«) by Silverman [8].

Theorem 2.2. Let the function f and ¢ be in the class (k, A, B,«a) — UCV.
Then for A € [0, 1], the function h(z) = (1 — A\ f(2) + Ag(2) = 2z — > o cp2™ s
in the class (k, A, B,a) — UCV.

Proof. Since the function f and ¢ be in the class (k, A, B,«a) — UCYV, they
satisfy the inequality (2.1). Therefore, if we define the function h(z) by

h(z) = (1= N\ f(2) + Ag(z —Z—ch, cn = (1= N)ay + b, >0

be in the class T', we can get the result.
A—B)(1 (0% n
Theorem 2.3. Let f1(z) = zand f,(z) = z— = B)(H—k()(n 1))(+(A)B)(1 —an
for0<a<1l, 0<k<ooandneN. Then f € (k, A, B,a)— UCV iff it can
be expressed in the form

(2.3) f(z)=XMfi(z +Z)‘nfn

where A, >0and A\ =1—> 2, \,.
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Proof. Suppose that

f( - )‘1f1 +Z)‘nfn

(A—B)(1—«)
[(1-B)(1+k)(n—-1)+(A-B)(1—a)ln

A 2"

I

N

|
e

Then from Theorem 2.1, we have

o0

Y I1=B)(1+k)(n-1)+(A-B)1-a)n

" (A~ B)(1-a) .
(1-B)(A+k)n—-1)+(A-B)({1—-a)n "

< (A-B)(1-a).

Hence f € (k, A, B,a) — UCV. Conversely, let f € (k, A, B,a) — UCV. Then

(A-B)(1-a)
[(1=B)(1+k)(n-1)+ (A= B)(1-a)n

an_

Setting A, = (1= B)(H%” ey 2=t and Ay = 13777, A, we see that
f(2) can be expressed in the form (2.3).
Corollary 2.1. The extreme points of the class (k, A, B,«) — UCV are

A—B)(1—«a n
f1(2) =z and fu(2) = 2 = gy o mTae € N

Definition 2.1. For the functions
xD
z):z—Zanz”, (an, >0) and g(z —Z—sz (b, > 0),

the modified Hadamard product is denoted by

(f*xg)(z —Z—Zanbz

We now prove the following.

Theorem 2.4. If f,g € (k, A, B,a)—UCYV, then (fxg) € (k, A, B,3)—UCV
where
(A-B)(1—-a)?(1-B)(1+k)

1-—
b= 1_[(1—B)(1—|—k)+(A—B)(1—a)] H(1-B) (14k)+2(A-B) (1—)] (1-B) (1+k)
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The result is sharp for the functions f(z) and ¢(z) given by

(A-B)(1 - «a) 2

1) =g(2) = 2= N1-BY(1+ k) +(A-B)(1-a)]"

where 0 < a<land0<k < oo.

Proof. From Theorem 2.1, we have

2 [(1-B)(1+k)(n—1)+(A-B)(1-a)n
(2.4) nZZ A B)0-a) an < 1.
and
2 [(1-B)(1+k)(n—-1)+(A-B)(1-a)n
(2.5) nZZ A B)-a) by, < 1.
We have to find the largest 3 such that
eo) S A=BOLBO-DLUA-B=Fn,

(A-B)(1-p)

n=2

From (2.4) and (2.5), we find,by means of Cauchy-Schwarz inequality, that

i [(1-B)(1+k)(n—-1)+(A-B)(1-a)n

(2.7) 2 (A_B)1_a) anbn < 1.
Therefore (2.6) holds true if
[(A-B)A+k)(n-1)+(A-B)A-Hn_,
(A=B)(1-7) m
[(1-B)(1+k)(n—-1)+(A-B)(1—-a)ln —
- (A-B)(1-a) e
Y - B4Rn -+ (A-B)(1-q
(- —B)(1+k)(n—1)+(A-B)(1-7)
Note that from (2.7)

b < (A—B)(1 - «)

(1-B)(1+k)(n—=1)+(A—B)(1—a))n
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Thus if
(A— B)(l—a)
[(1-B)(1+k)(n—1)+(A-B)(1-a))n
L 0= [A=-B)(A+k)(n-1)+(A=B)(1—a)
T (1-a)[1-B)(1+k)(n—-1)+(A-B)(1-p)]

or, equivalently, if

(A-B)(1—a)?(1-B)(1+k)

b B ) +2n(A—B)1—a) (1 —B) 1+ W L (A—BE1—a)®"

Defining the function ©(n) by

(A-B)(1—a)?(1-B)(1+k)

On) =1- (1=B)2(1+k)*n(n—1)+2n(A-B)(1-a)(1-B)(1+k)+(A-B)*(1-a)?’

we can see that ©(n) is an increasing function of n. Therefore,

L (A-B)(1-)* (1=B)(1+})
0= O = By T i (A= BY (- )PP (1= B) (1 R+ 2(A- B) (1= ) (1= B) (1F)

which completes the assertion of theorem.
3. INTEGRAL OPERATORS

Theorem 3.1. Let ¢ be real number such thatc > —1. If f € (k, A, B,«a) —
UCYV, then the function F' defined by

1 z
(3.1) fz) =< / 1 f (1) dt
z 0
also belongs to (k, A, B,a) — UCV.

Proof. Let f(z) =2z—3 2, a,z". Then from representation of F, it follows

that -
c+1
z2)=1z— Z;bnz” where b, = <c—|—n) G,
n=

Therefore using Theorem 2.1 for the coefficients of F', we obtain F' € (k, A, B, o) —
ucv.

Theorem 3.2. Let ¢ be real number such thatc > —1. If F € (k, A, B,a) —
UCYV, then the function f defined by (3.1) is univalent in |z| < R*, where
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[ { [[(1 - B)(1 +fi(ﬁ;;()1t(;4)— B)(1—a)] (2:)] T}

The result is sharp. The sharpness follows if we take

B c+n (A-B)(1-a)
Fle)=2- <c—|—1) n1-B)(1+kn-1)~+(A-B)(1-a)

n

4. RADIUS OF k-UNIFORM CONVEXITY

The following known result for the class & — UCV will be required in our
investigation.

Lemma A. (See [1]) Let f €e Hand 0 < k < oo. Then f € k — UCV iff

Re {1 n ZJJ:/} > k ZJJ:,”

+

where 0 < a<1and z € U.

Theorem 4.1. Let the function f be defined by (1.4)be inthe class (k, A, B, o) —
UCV of order (0 < 6 < 1), 0<a+4d < 1. Then f is k-uniform convex in
|z| < R(k, A, B, «,6), where

|z| < R(k, A, B, «,0)

(4.1) :inf{[u _B) 1+ k) (n—1)+ (A—B)(1—a)](1—d— a)}ﬁ
k(n—1)+ (1-0—a)(A—B)1—a) '

n

The result is sharp.

Proof. In order to establish the required result in Theorem 4.1, it is sufficient
to show that

k zf//
f/

5. DisTorTION THEOREMS INVOLVING FRACTIONAL CALCULUS

+a<1-90 for |z|<R(k, A, B,a,0).

In this section, we shall prove several distortion theorems for functions to general
class (k, A, B, ) — UCV . Each of these theorems would involve certain operators
of fractional calculus which are defined as follows [6,7,9,10].
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Definition 5.1. The fractional integral of order X is defined, for a function f ,
by

- I AR (9)
5.1 DA f(2) = / d¢ ;(A>0
where f is an analytic function in a simply - connected region of the z-plane
containing the origin, and the multiplicity of (z — £)*~! is removed by requiring
log(z — &) to be real when z — ¢ > 0.

Definition 5.2. The fractional derivative of order )\ is defined, for a function
[ by

I S o (I
(52) DY) = rr s |, e gndE 0= A<

where f is constrained, and the multiplicity of (z—¢) ™ is removed, as in Definition
5.1.

Definition 5.3. Under the hypotheses of Definition 5.2, the fractional derivative
of order (n + \) is defined by

(53) DIFAf() = 4 DAf()

where 0 < A < 1 and n € Ny = NU {0}. From Definition 5.2, we have
(5.4) D2f(2) = f(2)
which, in view of Definition 5.3 yields,
dn
(5.5) DI*Of(z) = —=D2f(z) = f(2).
Thus, it follows from (5.4) and (5.5) that

lim D7 f(2) = () and lm DIf(2) = f/(2)

Theorem 5.1. Let f € (k, A, B,a) — UCV. Then we have

D2 1(2)]
(5.6) 1 (A—B)(1—a)

<l {rmz)*m+3>[<1—B><1+k>+<A—B><1—a>l‘z‘}
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and

(5.7)

52 1) |21 { ot B 1)

(A+2) T'(A+3)[(1-B)(1+k)+(A-B)(1—«)]

for = € U and A > 0. The inequalities in (5.6) and (5.7) are attained for the
function
(A-B)(1-a) )

(5.8) f(z) =2- 2[(1-B)(1+k)+ (A—-B)(1— Oé)]z '

Proof. Using Theorem 2.1, we have

s (A-—B)(1—«)
(5.9) 7;“”5 2[(1-B)(1+k)+ (A= B)(1—a)]

From Definition 5.1, we obtain

T(n+ 1D\ +2)

(5.10) DA f(2)2 AT(A+2) = z—z anz" = z—z Ypanz"
n=2

— F'n+A+1)
where IF'(n+ 1HI'(A+2)
S S W R (n=2).
Since 9
0<%S¢(2):2+—)\,

using (5.9) and (5.10), we find that

D)2 T +2) < [+ 0(2) 2P an
F(A+2)(A-B)(1—-a)

<t oo a-pa_a)
and -
D7 f(2)2 DA+ 2)] = |2 = ¢(2)|2* > an
TO+UA-Bi-a)

> || - T(A+3)[(1—-B)(1+k)+(A—B)(1-a)

which are equivalent to (5.6) and (5.7), respectively.
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Theorem 5.2. Let f € (k, A, B,a) — UCV. Then we find that

B (A-—B)(1-a)
(5.11) ‘ < F ) {1 T [(1-B)(1+k)+(A-B)(1 —Oc)]‘z‘}
and

z‘l A (A—B)(l—()é)
(5.12) |D2f(2) ‘ =SSy {1 [(A-B)(+k+(A-B)( —oa)]‘z‘}

for z € Uand 0 < X\ < 1. The inequalities in (5.11) and (5.12) are attained for
the function f given by (5.8).

Proof. Using similar argument as given by Theorem 5.1, we can get result.

Corollary 5.1. If f € (k, A, B,«a) — UCV, then we find that for |z| = r < 1

(A-B)(1 - a)

_ - ]
(5.13) T NAS BT +A-Ba—a) =)
. o (A—B)(1 —«) 2

< 2[(1—B)(1+ k) + (A —B)(1 - a)]

and
_ (A-B)(1-a) e

(5.14) 1 (1—B)(1+k)+§A—B)(1_a) < |f'(2)]

<14 (A-B)(1-a) .

- 1-B)(1+k)+(A-B)(1 - )

Proof. From (5.4), letting A — 0 in (5.6)-(5.7) and A — 1 in (5.11)-(5.12), we
have (5.13) and (5.14), respectively.

Theorem 5.3. Let f € (k, A, B,a) — UCV. Then

DI (2)|
> max {0,

2 <(1_)\)_ C(A+3)+AL(A+2)|(A-B)(1—«) ] M)}

T(A+2) T\ +3)[(1-B)(1+k) +(A—B)(1—a

and
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‘Di"\f(z)‘ < 1 C(A+3)+AL(A+2)|(A-B)(1-«) \z\}

r(A+2)‘Z‘A {(1+)\)_F(A+3)[(1—B)(1+k)+(A—B)(1—a)]
for z ¢ U and X > 0.

Proof. From (5.14), we find required results.

Corollary 5.3. Under the hypothesis of Theorem 5.1, |D ;*f(2)| is included
in a disk with center at the origin and radius R 1"\ given by

T(A+3)1=B)(L+k) +[F(A+2) + T +3)[(A- B)(1—a)

= TR0 T T B B+ R+ (A~ B)(1 o)

Furthermore | D1~ f(z)]| is included in a disk with center at the origin and radius
R~ given by

ACHNTO+3TA+2)](A=B)(1 =)+ (1 + )T (+3)(1=B)(1+k)

Ry = T(A+2)L(A+3)[(1-B)(1+k)+(A-B)(1-a)]
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