EXISTENCE THEOREMS OF POSITIVE SOLUTIONS FOR A FOURTH-ORDER THREE-POINT BOUNDARY VALUE PROBLEM

De-xiang Ma, Yu Tian and Wei-gao Ge

Abstract

In this paper, the following fourth-order three-point boundary value problem with p-Laplacian operator is studied: $$
\left\{\begin{array}{l} \left(\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime \prime}=a(t) f(u(t)), \quad t \in(0,1), \\ u(0)=\xi u(1), u^{\prime}(1)=\eta u^{\prime}(0) \\ u^{\prime \prime}(0)=\alpha_{1} u^{\prime \prime}(\delta), u^{\prime \prime}(1)=\beta_{1} u^{\prime \prime}(\delta) \end{array}\right.
$$ where $\alpha_{1}, \beta_{1} \geq 0, \xi \neq 1, \eta \neq 1,0<\delta<1$ and $\phi_{p}(z)=|z|^{p-2} z$ for $p>1$. We impose growth conditions on f which guarantee the existence of at least three positive solutions for the problem.

1. Introduction

In the last ten years, a great deal of work has been done to study the positive solutions of two point boundary value problems for differential equations which are used to describe a number of physical, biological and chemical phenomena. For additional background and results, we refer the reader to the monograph by Agarwal, O'Regan and Wong [1] as well as the recent contributions by [2-8].

Boundary value problems for even order differential equations can arise, especially for fourth-order equations. Recently, three-point or multiple-point boundary value problems of the differential equations were presented and studied by many authors, see [9-10].

[^0]In this paper, we are concerned with the existence of three positive solutions for the fourth-order three-point boundary value problem (BVP for short) consisted of the p-Laplacian differential equation

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime \prime}-a(t) f(u(t))=0, \quad t \in(0,1) \tag{1}
\end{equation*}
$$

and the following boundary value conditions

$$
\begin{equation*}
u(0)=\xi u(1), u^{\prime}(1)=\eta u^{\prime}(0), u^{\prime \prime}(0)=\alpha_{1} u^{\prime \prime}(\delta), u^{\prime \prime}(1)=\beta_{1} u^{\prime \prime}(\delta) \tag{2}
\end{equation*}
$$

where $f: R \rightarrow[0,+\infty)$ and $a:(0,1) \rightarrow[0,+\infty)$ are continuous functions, $\alpha_{1}, \beta_{1} \geq 0, \xi \neq 1, \eta \neq 1,0<\delta<1$ and $\phi_{p}(z)=|z|^{p-2} z$ for $p>1$.

When $p=2$, (1) becomes $u^{(4)}(t)-a(t) f(u(t))=0, \quad t \in(0,1)$.
The fourth-order three-point boundary value problem (1) - (2) has not received as much attention in the literature as lidstone condition boundary value problem:

$$
\left\{\begin{array}{l}
u^{(4)}(t)=a(t) f(u(t)), \quad t \in(0,1) \tag{3}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

and as the three-point boundary value problem for the second-order differential equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+a(t) f(u(t))=0, \quad t \in(0,1) \tag{4}\\
u(0)=0, \quad u(1)=\alpha u(\eta)
\end{array}\right.
$$

that were extensively considered in [2-5] and [9-10], respectively. The results of existence of positive solutions of BVP (1)-(2) are relatively scarce. Recently, there is an increasing interest in obtaining twin or three positive solutions for two-point boundary value problems by using multiple fixed points theorems on cones. The purpose of this paper is to establish the existence of at least three positive solutions of (1)-(2). Our arguments involve the use of the concavity and integral representation of solutions and a fixed point theorem (Theorem 2.1) which is a nice generalization of the well-known Leggett-Williams fixed point Theorem. We will impose growth conditions on f which ensure the existence of at least three positive solutions of (1)-(2).

For the remainder of the paper, we assume that
(i) $0<\int_{0}^{1} a(s) d s<+\infty$.
(ii) q satisfies $\frac{1}{p}+\frac{1}{q}=1$ and $\left(\phi_{p}\right)^{-1}(z)=\phi_{q}(z)=|z|^{q-2} z$.

2. Preliminary

In this section, we present two definitions in Banach space, an appreciate generalized form of Leggett-Williams fixed point theorem by Avery and Henderson [7] and four lemmas.

Definition 2.1. Let X be a real Banach space and P be a cone of X. A map $\psi: P \rightarrow[0,+\infty)$ is called nonnegative continuous concave functional map if ψ is nonnegative, continuous and satisfies $\psi(t x+(1-t) y) \geq t \psi(x)+(1-t) \psi(y)$ for all $x, y \in P$ and $t \in[0,1]$.

Definition 2.2. Let X be a real Banach space and P be a cone of X. A map $\beta: P \rightarrow[0,+\infty)$ is called nonnegative continuous convex functional map if β is nonnegative, continuous and satisfies $\beta(t x+(1-t) y) \leq t \beta(x)+(1-t) \beta(y)$ for all $x, y \in P$ and $t \in[0,1]$.

Let γ, β and θ be nonnegative continuous convex functionals on P, and let α and ψ be nonnegative continuous concave functionals on P. For nonnegative numbers h, a, b, d and c, we define the following sets:

$$
\begin{aligned}
P(\gamma, c) & =\{x \in P: \gamma(x)<c\} \\
P(\gamma, \alpha, a, c) & =\{x \in P: a \leq \alpha(x), \gamma(x) \leq c\} \\
Q(\gamma, \beta, d, c) & =\{x \in P: \beta(x) \leq d, \gamma(x) \leq c\} \\
P(\gamma, \theta, \alpha, a, b, c) & =\{x \in P: a \leq \alpha(x), \theta(x) \leq b, \gamma(x) \leq c\} \\
Q(\gamma, \beta, \psi, h, d, c) & =\{x \in P: h \leq \psi(x), \beta(x) \leq d, \gamma(x) \leq c\}
\end{aligned}
$$

To obtain multiple positive solutions of BVP $(1)-(2)$, the following fixed point theorem in [7] is needed.

Theorem 2.1. [7] Let X be a real Banach space and P be a cone of X. Suppose that γ, β and θ are three nonnegative continuous convex functionals on P and α, ψ are two nonnegative continuous concave functionals on P such that for some positive numbers c and M,

$$
\alpha(x) \leq \beta(x), \quad\|x\| \leq M \gamma(x) \quad \text { for } \quad x \in \overline{P(\gamma, c)}
$$

Suppose further that $T: \overline{P(\gamma, c)} \rightarrow \overline{P(\gamma, c)}$ is completely continuous and there exist $h, d, a, b \geq 0$ with $0<d<a$ such that each of the following is satisfied:
(i) $\{x \in P(\gamma, \theta, \alpha, a, b, c): \alpha(x)>a\} \neq \emptyset$ and $x \in P(\gamma, \theta, \alpha, a, b, c)$ implies $\alpha(T x)>a$,
(ii) $\{x \in Q(\gamma, \beta, \psi, h, d, c): \beta(x)<d\} \neq \emptyset$ and $x \in Q(\gamma, \beta, \psi, h, d, c)$ implies $\beta(T x)<d$,
(iii) $x \in P(\gamma, \alpha, a, c)$ with $\theta(T x)>b$ implies $\alpha(T x)>a$,
(iv) $x \in Q(\gamma, \beta, d, c)$ with $\psi(T x)<h$ implies $\beta(T x)<d$. Then T has at least three fixed points $x_{1}, x_{2}, x_{3} \in \overline{P(\gamma, c)}$ such that

$$
\beta\left(x_{1}\right)<d, \quad a<\alpha\left(x_{2}\right), \quad d<\beta\left(x_{3}\right), \quad \text { with } \quad \alpha\left(x_{3}\right)<a .
$$

Lemma 2.1. If $f \in C(R, R), M=1-\phi_{p}\left(\alpha_{1}\right)-\left[\phi_{p}\left(\beta_{1}\right)-\phi_{p}\left(\alpha_{1}\right)\right] \delta \neq 0$. Then the unique solution of the following second-order three-point boundary value problem

$$
\left\{\begin{array}{l}
-y^{\prime \prime}=f(t), \quad t \in(0,1) \tag{5}\\
y(0)=\phi_{p}\left(\alpha_{1}\right) y(\delta), \quad y(1)=\phi_{p}\left(\beta_{1}\right) y(\delta)
\end{array}\right.
$$

is

$$
y(t)=\frac{1}{M} \int_{0}^{1} g(t, s) a(s) d s, \quad t \in(0,1)
$$

where
$g(t, s)= \begin{cases}s(1-t)+\phi_{p}\left(\beta_{1}\right) s(t-\delta), & 0 \leq s \leq t<\delta<1 \text { or } \\ & 0 \leq s \leq \delta \leq t \leq 1, \\ t(1-s)+\phi_{p}\left(\beta_{1}\right) t(s-\delta)+\phi_{p}\left(\alpha_{1}\right)(1-\delta)(s-t), & 0 \leq t \leq s \leq \delta<1, \\ s(1-t)+\phi_{p}\left(\beta_{1}\right) \delta(t-s)+\phi_{p}\left(\alpha_{1}\right)(1-t)(\delta-s), & 0 \leq \delta \leq s \leq t \leq 1, \\ (1-s)\left(t-\phi_{p}\left(\alpha_{1}\right) t+\phi_{p}\left(\alpha_{1}\right) \delta\right), & 0<\delta \leq t \leq s \leq 1 \text { or } \\ & 0 \leq t<\delta \leq s \leq 1 .\end{cases}$

Proof. In fact, if $y(t)$ is a solution of (5), then we suppose that

$$
y(t)=-\int_{0}^{t}(t-s) f(s) d s+A t+B, \quad t \in(0,1) .
$$

By the boundary conditions of (5), it follows that

$$
B=-\phi_{p}\left(\alpha_{1}\right) \int_{0}^{\delta}(\delta-s) f(s) d s+\phi_{p}\left(\alpha_{1}\right) \delta A+\phi_{p}\left(\alpha_{1}\right) B
$$

and
$-\int_{0}^{1}(1-s) f(s) d s+A+B=-\phi_{p}\left(\beta_{1}\right) \int_{0}^{\delta}(\delta-s) f(s) d s+\phi_{p}\left(\beta_{1}\right) \delta A+\phi_{p}\left(\beta_{1}\right) B$.
Hence,

$$
\begin{aligned}
y(t)= & -\int_{0}^{t}(t-s) f(s) d s+\frac{\left[1-\phi_{p}\left(\alpha_{1}\right)\right] t}{M} \int_{0}^{1}(1-s) f(s) d s \\
& -\frac{\left[\phi_{p}\left(\beta_{1}\right)-\phi_{p}\left(\alpha_{1}\right)\right] t}{M} \int_{0}^{\delta}(\delta-s) f(s) d s \\
& +\frac{\phi_{p}\left(\alpha_{1}\right) \delta}{M} \int_{0}^{1}(1-s) f(s) d s-\frac{\phi_{p}\left(\alpha_{1}\right)}{M} \int_{0}^{\delta}(\delta-s) f(s) d s \\
= & \frac{1}{M} \int_{0}^{1} g(t, s) f(s) d s
\end{aligned}
$$

We may verify that $g(t, s) \geq 0$ for $(t, s) \in[0,1] \times[0,1]$ if $M>0$.
Lemma 2.2. If $f \in C(R, R), M_{1}=(1-\xi)(1-\eta) \neq 0$. Then the unique solution of the following second-order boundary value problem

$$
\left\{\begin{align*}
-y^{\prime \prime} & =f(t), \quad t \in(0,1) \tag{6}\\
u(0) & =\xi y(1), u^{\prime}(1)=\eta y^{\prime}(0)
\end{align*}\right.
$$

is

$$
y(t)=\frac{1}{M_{1}} \int_{0}^{1} h(t, s) f(s) d s, \quad t \in[0,1]
$$

where

$$
h(t, s)= \begin{cases}s+\eta(t-s)+\xi \eta(1-t), & 0 \leq s \leq t \leq 1 \\ t+\xi(s-t)+\xi \eta(1-s), & 0 \leq t \leq s \leq 1\end{cases}
$$

Proof. In fact, if $y(t)$ is a solution of (6), then we suppose that

$$
y(t)=-\int_{0}^{t}(t-s) f(s) d s+A t+B, \quad t \in[0,1]
$$

By the boundary conditions (6), we get

$$
B=\xi\left[B+A-\int_{0}^{1}(1-s) f(s) d s\right]
$$

and

$$
A-\int_{0}^{1} f(s) d s=\eta A
$$

Hence,

$$
\begin{aligned}
y(t)= & -\int_{0}^{t}(t-s) f(s) d s+t \frac{\int_{0}^{1} f(s) d s}{1-\eta} \\
& +\frac{\xi}{1-\xi}\left[\frac{\int_{0}^{1} f(s) d s}{1-\eta}-\int_{0}^{1}(1-s) f(s) d s\right] \\
= & \frac{1}{M_{1}} \int_{0}^{1} h(t, s) f(s) d s
\end{aligned}
$$

Obviously, if $\xi, \eta \geq 0$, then $h(t, s) \geq 0$.
Suppose that $u(t)$ is solution of problem (1)-(2). By Lemma 2.1 and (5),
(7)

$$
u^{\prime \prime}(t)=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, s) a(s) f(u(s)) d s\right)
$$

By Lemma 2.2 and (6),

$$
u(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s) \phi_{q}\left(\int_{0}^{1} g(s, \tau) a(\tau) f(u(\tau)) d \tau\right) d s
$$

Lemma 2.3. Suppose that $0 \leq \xi, \eta<1,0<t_{1}<t_{2}<1$ and $\delta \in(0,1)$. If $s \in[0,1]$, then

$$
\begin{equation*}
\frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)} \geq \frac{t_{1}}{t_{2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h(1, s)}{h(\delta, s)} \leq \frac{1}{\delta} \tag{9}
\end{equation*}
$$

Proof. Let $s \in[0,1]$. Firstly, we prove (8).
If $s \leq t_{1}<t_{2}$, then

$$
\begin{aligned}
& \frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)}=\frac{s+\eta\left(t_{1}-s\right)+\xi \eta\left(1-t_{1}\right)}{s+\eta\left(t_{2}-s\right)+\xi \eta\left(1-t_{2}\right)}=\frac{s(1-\eta)+\xi \eta+\eta t_{1}(1-\xi)}{s(1-\eta)+\xi \eta+\eta t_{2}(1-\xi)} \\
& \geq \frac{\eta t_{1}(1-\xi)}{\eta t_{2}(1-\xi)}=\frac{t_{1}}{t_{2}}
\end{aligned}
$$

If $t_{1}<t_{2} \leq s$, then

$$
\frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)}=\frac{t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)}{t_{2}+\xi\left(s-t_{2}\right)+\xi \eta(1-s)} \geq \frac{t_{1}+\xi\left(s-t_{1}\right)}{t_{2}+\xi\left(s-t_{2}\right)} \geq \frac{t_{1}}{t_{2}} .
$$

If $t_{1}<s<t_{2}$, then

$$
\frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)}=\frac{t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)}{s+\eta\left(t_{2}-s\right)+\xi \eta\left(1-t_{2}\right)} .
$$

Since $\left[\xi\left(s-t_{1}\right)+\xi \eta(1-s)\right]-\left[\xi \eta\left(1-t_{2}\right)\right]=\xi\left(s-t_{1}\right)+\xi \eta\left(t_{2}-s\right) \geq 0$ and $\frac{t_{1}}{s+\eta\left(t_{2}-s\right)}-\frac{t_{1}}{t_{2}}=\frac{t_{1}\left(t_{2}-s\right)(1-\eta)}{t_{2}\left[s+\eta\left(t_{2}-s\right)\right.} \geq 0$, it follows that

$$
\frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)} \geq \frac{t_{1}+\xi \eta\left(1-t_{2}\right)}{s+\eta\left(t_{2}-s\right)+\xi \eta\left(1-t_{2}\right)} \geq \frac{t_{1}}{s+\eta\left(t_{2}-s\right)} \geq \frac{t_{1}}{t_{2}} .
$$

Now, we prove (9).
If $\delta \leq s$, then

$$
\begin{aligned}
\frac{h(1, s)}{h(\delta, s)}-\frac{1}{\delta} & =\frac{s+\eta(1-s)}{\delta+\xi(s-\delta)+\xi \eta(1-s)}-\frac{1}{\delta} \\
& \leq \frac{s+\eta(1-s)}{\delta+\xi \eta(1-s)}-\frac{1}{\delta}=\frac{\eta(1-s)(\eta-1)-\xi \eta(1-s)}{\delta[\delta+\xi \eta(1-s)]} \leq 0 .
\end{aligned}
$$

If $\delta \geq s$, then

$$
\begin{aligned}
& \frac{h(1, s)}{h(\delta, s)}-\frac{1}{\delta}=\frac{s+\eta(1-s)}{s+\eta(\delta-s)+\xi \eta(1-\delta)}-\frac{1}{\delta} \\
& \leq \frac{s+\eta(1-s)}{s+\eta(\delta-s)}-\frac{1}{\delta}=\frac{s(1-\delta)(\eta-1)}{\delta[s+\eta(\delta-s)]} \leq 0 .
\end{aligned}
$$

Lemma 2.4. Suppose that $\xi, \eta>1,0<t_{1}<t_{2}<1$ and $\delta \in(0,1)$. If $s \in[0,1]$, then

$$
\begin{equation*}
\frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)} \geq \frac{1-t_{2}}{1-t_{1}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h(0, s)}{h(\delta, s)} \leq \frac{1}{1-\delta} \tag{11}
\end{equation*}
$$

Proof. Let $s \in[0,1]$. Firstly, we prove (10).

If $s \leq t_{1}<t_{2}$, then

$$
\begin{aligned}
\frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)}-\frac{1-t_{2}}{1-t_{1}} & =\frac{s+\eta\left(t_{2}-s\right)+\xi \eta\left(1-t_{2}\right)}{s+\eta\left(t_{1}-s\right)+\xi \eta\left(1-t_{1}\right)}-\frac{1-t_{2}}{1-t_{1}} \\
& \geq \frac{\eta\left(t_{2}-s\right)+\xi \eta\left(1-t_{2}\right)}{\eta\left(t_{1}-s\right)+\xi \eta\left(1-t_{1}\right)}-\frac{1-t_{2}}{1-t_{1}} \\
& =\frac{\eta\left(t_{2}-t_{1}\right)(1-s)}{\left(1-t_{1}\right)\left[\eta\left(t_{1}-s\right)+\xi \eta\left(1-t_{1}\right)\right]}>0
\end{aligned}
$$

If $t_{1}<t_{2} \leq s$, then

$$
\begin{aligned}
\frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)}-\frac{1-t_{2}}{1-t_{1}} & =\frac{t_{2}+\xi\left(s-t_{2}\right)+\xi \eta(1-s)}{t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)}-\frac{1-t_{2}}{1-t_{1}} \\
& =\frac{\left(t_{2}-t_{1}\right)[1+\xi(1-s)(\eta-1)]}{\left(1-t_{1}\right)\left[t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)\right]}>0
\end{aligned}
$$

If $t_{1}<s<t_{2}$, then

$$
\begin{aligned}
\frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)}-\frac{1-t_{2}}{1-t_{1}} & =\frac{s+\eta\left(t_{2}-s\right)+\xi \eta\left(1-t_{2}\right)}{t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)}-\frac{1-t_{2}}{1-t_{1}} \\
& \geq \frac{s+\xi \eta\left(1-t_{2}\right)}{t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)}-\frac{1-t_{2}}{1-t_{1}} \\
& =\frac{\left(s-t_{1}\right)+t_{1}\left(t_{2}-s\right)+\xi\left(1-t_{2}\right)\left(s-t_{1}\right)(\eta-1)}{\left(1-t_{1}\right)\left[t_{1}+\xi\left(s-t_{1}\right)+\xi \eta(1-s)\right]}>0
\end{aligned}
$$

Now, we prove (11).
If $\delta \leq s$, then

$$
\begin{aligned}
\frac{h(0, s)}{h(\delta, s)}-\frac{1}{1-\delta} & =\frac{\xi s+\xi \eta(1-s)}{\delta+\xi(s-\delta)+\xi \eta(1-s)}-\frac{1}{1-\delta} \\
& \leq \frac{\xi s+\xi \eta(1-s)}{\delta+\xi \eta(1-s)}-\frac{1}{1-\delta}=\frac{\xi s(1-\delta)(1-\eta)-\delta}{(1-s)[\delta+\xi \eta(1-\delta)]} \leq 0
\end{aligned}
$$

If $\delta \geq s$, then

$$
\begin{aligned}
\frac{h(0, s)}{h(\delta, s)}-\frac{1}{1-\delta} & =\frac{\xi s+\xi \eta(1-s)}{s+\eta(\delta-s)+\xi \eta(1-\delta)}-\frac{1}{1-\delta} \\
& \leq \frac{\xi s+\xi \eta(1-s)}{s+\xi \eta(1-\delta)}-\frac{1}{1-\delta} \\
& =\frac{s \xi(1-\delta)(1-\eta)-s}{(1-\delta)[s+\xi \eta(1-\delta)]} \leq 0
\end{aligned}
$$

3. Three Positive Solutions of (1)-(2)

Now, let the classical Banach space $X=C([0,1])$ be endowed with the norm $\|x\|=\max _{0 \leq t \leq 1}|x(t)|$. The cones $P_{1}, P_{2} \subset X$ are defined as follows:
$P_{1}=\{u \in X: u(t)$ is nonnegative concave and nondecreasing on $(0,1)\}$,
$P_{2}=\{u \in X: u(t)$ is nonnegative concave and nonincreasing on $(0,1)\}$.
Next, let $t_{1}, t_{2}, t_{3} \in(0,1)$ with $t_{1}<t_{2}$. Define nonnegative continuous concave functionals α, ψ and nonnegative convex functionals β, θ, γ on P_{1} by

$$
\begin{aligned}
& \gamma(x)=\max _{t \in\left[0, t_{3}\right]} x(t)=x\left(t_{3}\right), \quad x \in P_{1}, \\
& \psi(x)=\min _{t \in[\delta, 1]} x(t)=x(\delta), \quad x \in P_{1}, \\
& \beta(x)=\max _{t \in[\delta, 1]} x(t)=x(1), \quad x \in P_{1}, \\
& \alpha(x)=\min _{t \in\left[t_{1}, t_{2}\right]} x(t)=x\left(t_{1}\right), \quad x \in P_{1}, \\
& \theta(x)=\max _{t \in\left[t_{1}, t_{2}\right]} x(t)=x\left(t_{2}\right), \quad x \in P_{1} .
\end{aligned}
$$

It is easy to prove that $\alpha(x)=x\left(t_{1}\right) \leq x(1)=\beta(x)$ and $\|x\|=x(1) \leq \frac{1}{t_{3}} x\left(t_{3}\right)=$ $\frac{1}{t_{3}} \gamma(x)$ for $x \in P_{1}$.

Theorem 3.1. Suppose that $0 \leq \xi, \eta<1$ and $M>0$. There exist positive numbers $0<a<b<c$ such that $0<a<b<\frac{t_{1}}{t_{2}} b \leq c$ and $f(w)$ satisfies the following conditions:

$$
\begin{gather*}
f(w)<\phi_{p}\left(\frac{a}{C}\right), \quad 0 \leq w \leq a \tag{12}\\
f(w)>\phi_{p}\left(\frac{b}{B}\right), \quad b \leq w \leq \frac{t_{2}}{t_{1}} b \tag{13}\\
f(w) \leq \phi_{p}\left(\frac{c}{A}\right), \quad 0 \leq w \leq \frac{1}{t_{3}} c \tag{14}
\end{gather*}
$$

where A, B and C are defined as follows:

$$
\begin{aligned}
A & =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right)\left[\phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right)\right] d s \\
B & =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right)\left[\phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) d r\right)\right] d s \\
C & =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s)\left[\phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right)\right] d s
\end{aligned}
$$

Then BVP (1)-(2) has at least three positive solutions $x_{1}, x_{2}, x_{3} \in \overline{P_{1}(\gamma, c)}$ such that

$$
\begin{equation*}
x_{1}\left(t_{1}\right)>b, x_{2}(1)<a, x_{3}\left(t_{1}\right)<b, x_{3}(1)>a \text { and } x_{i}(\delta) \leq c \text { for } i=1,2,3 \tag{15}
\end{equation*}
$$

Proof. Define the completely continuous operator $T: P_{1} \rightarrow X$ by

$$
T u(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s)\left[\phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right)\right] d s
$$

It is easy to know that u is a positive solution of (1)-(2) if and only if u is a fixed point of T on cone P_{1}.

Firstly, we prove $T: \overline{P_{1}(\gamma, c)} \rightarrow \overline{P_{1}(\gamma, c)}$.
For $u \in P_{1}$, since $M>0$ and $M_{1}=(1-\xi)(1-\eta)>0$, it follows that $T u \geq 0$. Furthermore,

$$
\begin{aligned}
&(T u)^{\prime}(t)= \frac{1-\xi}{M_{1} \phi_{q}(M)}\left[\eta \int_{0}^{t} \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s\right. \\
&\left.+\int_{t}^{1} \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s\right] \geq 0 \\
&(T u)^{\prime \prime}(t)=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, r) f(u(r)) a(r) d r\right) \leq 0
\end{aligned}
$$

So, $T P_{1} \subset P_{1}$.
For $u \in \overline{P_{1}(\gamma, c)}, 0 \leq u(t) \leq\|u\| \leq \frac{1}{t_{3}} \gamma(u) \leq \frac{1}{t_{3}} c$. By (14),

$$
\begin{aligned}
\gamma(T u) & =\max _{t \in\left[0, t_{3}\right]} T u(t)=T u\left(t_{3}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s \\
& \leq \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) \phi_{p}\left(\frac{c}{A}\right) a(r) d r\right) d s \\
& \leq \frac{c}{A} \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right) d s=c
\end{aligned}
$$

Therefore, $T: \overline{P_{1}(\gamma, c)} \rightarrow \overline{P_{1}(\gamma, c)}$.
Secondly, it is immediate that

$$
u_{1}(t) \in\left\{u \in P_{1}\left(\gamma, \theta, \alpha, b, \frac{t_{2}}{t_{1}} b, c\right): \alpha(u)>b\right\} \neq \emptyset
$$

$$
u_{2}(t) \in\{u \in Q(\gamma, \beta, \psi, \delta a, a, c): \beta(u)<a\} \neq \emptyset
$$

where

$$
\begin{aligned}
& u_{1}(t)=b+\varepsilon_{1} \text { for } 0<\varepsilon_{1}<\frac{t_{2}}{t_{1}} b-b \\
& u_{2}(t)=a-\varepsilon_{2} \text { for } 0<\varepsilon_{2}<a-\delta a
\end{aligned}
$$

In the following steps, we will verify the remaining conditions of Theorem 2.1.
Step 1. We prove that

$$
\begin{equation*}
u \in P\left(\gamma, \theta, \alpha, b, \frac{t_{2}}{t_{1}} b, c\right) \quad \text { implies } \quad \alpha(T u)>b \tag{16}
\end{equation*}
$$

In fact, $u(t) \geq u\left(t_{1}\right)=\alpha(u) \geq b$ and $u(t) \leq u\left(t_{2}\right)=\theta(u) \leq \frac{t_{2}}{t_{1}} b$ for $t \in\left[t_{1}, t_{2}\right]$. By (13),

$$
\begin{aligned}
\alpha(T u) & =\min _{t \in\left[t_{1}, t_{2}\right]} T u(t)=T u\left(t_{1}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& \geq \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) f(u(r)) d r\right) d s \\
& >\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) \phi_{p}\left(\frac{b}{B}\right) d r\right) d s \\
& =\frac{b}{M_{1} \phi_{q}(M) B} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) d r\right) d s=b .
\end{aligned}
$$

Step 2. We prove that

$$
\begin{equation*}
u \in Q(\gamma, \beta, \psi, \delta a, a, c) \quad \text { implies } \beta(T u)<a \tag{17}
\end{equation*}
$$

In fact, $0 \leq u(t) \leq u(1)=\beta(u) \leq a$ for $t \in[0,1]$. By (12),

$$
\begin{aligned}
\beta(T u) & =\max _{t \in[\delta, 1]} T u(t)=T u(1) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& <\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) \phi_{p}\left(\frac{a}{C}\right) d r\right) d s \\
& =\frac{a}{M_{1} \phi_{q}(M) C} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right) d s=a
\end{aligned}
$$

Step 3. We prove that

$$
\begin{equation*}
u \in P(\gamma, \alpha, b, c) \text { with } \theta(T u)>\frac{t_{2}}{t_{1}} b \text { implies } \alpha(T u)>b . \tag{18}
\end{equation*}
$$

By Lemma 2.3,

$$
\begin{aligned}
\alpha(T u) & =\min _{t \in\left[t_{1}, t_{2}\right]} T u(t)=T u\left(t_{1}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& \geq \frac{t_{1}}{t_{2}} T u\left(t_{2}\right)=\frac{t_{1}}{t_{2}} \theta(T u)>b .
\end{aligned}
$$

Step 4. We prove that

$$
\begin{equation*}
u \in Q(\gamma, \beta, a, c) \text { with } \psi(T u)<\delta a \text { implies } \beta(T u)<a . \tag{19}
\end{equation*}
$$

By Lemma 2.3,

$$
\begin{aligned}
\beta(T u) & =\max _{t \in[\delta, 1]} T u(t)=T u(1) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h(1, s)}{h(\delta, s)} h(\delta, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& \leq \frac{1}{\delta} T u(\delta)=\frac{1}{\delta} \psi(T u)<a .
\end{aligned}
$$

Therefore, the hypotheses of Theorem 2.1 are satisfied and there exist three positive solutions x_{1}, x_{2} and x_{3} for BVP (1) - (2) satisfying (15).

Similar to Theorem 3.1, let $t_{1}, t_{2}, t_{3} \in(0,1)$ with $t_{1}<t_{2}$. Define nonnegative continuous concave functionals α, ψ and nonnegative convex functionals β, θ, γ on P_{2} by

$$
\begin{aligned}
& \gamma(u)=\max _{t \in\left[t_{3}, 1\right]} u(t)=u\left(t_{3}\right), \quad u \in P_{2}, \\
& \psi(u)=\min _{t \in[0, \delta]} u(t)=u(\delta), \quad u \in P_{2}, \\
& \beta(u)=\max _{t \in[0, \delta]} u(t)=u(0), \quad u \in P_{2}, \\
& \alpha(u)=\min _{t \in\left[t_{1}, t_{2}\right]} u(t)=u\left(t_{2}\right), \quad u \in P_{2}, \\
& \theta(u)=\max _{t \in\left[t_{1}, t_{2}\right]} u(t)=u\left(t_{1}\right), \quad u \in P_{2} .
\end{aligned}
$$

by observation, $\alpha(u)=u\left(t_{2}\right) \leq u(0)=\beta(u)$ and $\|u\|=u(0) \leq \frac{1}{t_{3}} u\left(t_{3}\right)=\frac{1}{t_{3}} \gamma(u)$ for $u \in P_{2}$.

Theorem 3.2. Suppose that $\xi, \eta>1$ and $M>0$. There exist positive numbers $0<a<b<c$ such that $0<a<b<\frac{1-t_{1}}{1-t_{2}} b \leq c$ and $f(w)$ satisfies following conditions:

$$
\begin{gather*}
f(w)<\phi_{p}\left(\frac{a}{C}\right), \quad 0 \leq w \leq a \tag{20}\\
f(w)>\phi_{p}\left(\frac{b}{B}\right), \quad b \leq w \leq \frac{1-t_{1}}{1-t_{2}} b \tag{21}\\
f(w) \leq \phi_{p}\left(\frac{c}{A}\right), \quad 0 \leq w \leq \frac{1}{t_{3}} c \tag{22}
\end{gather*}
$$

where A, B and C are defined as follows:

$$
\begin{aligned}
A & =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right) d s \\
B & =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) d r\right) d s \\
C & =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right) d s
\end{aligned}
$$

Then BVP (1)-(2) has at least three positive solutions $x_{1}, x_{2}, x_{3} \in \overline{P(\gamma, c)}$ such that

$$
\begin{equation*}
x_{1}\left(t_{2}\right)>b, x_{2}(0)<a, x_{3}\left(t_{2}\right)<b, x_{3}(0)>a \text { and } x_{i}(\delta) \leq c \text { for } i=1,2,3 \tag{23}
\end{equation*}
$$

Proof. Define the completely continuous operator $T: P_{2} \rightarrow X$ by

$$
T u(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s
$$

It is easy to know that u is a positive solution of (1)-(2) if and only if u is a fixed point of T on cone P_{2}.

Firstly, we prove $T: \overline{P_{2}(\gamma, c)} \rightarrow \overline{P_{2}(\gamma, c)}$.
For $u \in P_{2}$, since $M_{1}>0$ and $M=(1-\xi)(1-\eta)>0$, it follows that $T u \geq 0$. Furthermore,

$$
\begin{aligned}
(T u)^{\prime}(t)= & \frac{1-\xi}{M_{1} \phi_{q}(M)}\left[\eta \int_{0}^{t} \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s\right. \\
& \left.+\int_{t}^{1} \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s\right] \leq 0
\end{aligned}
$$

$$
(T u)^{\prime \prime}(t)=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, r) f(u(r)) a(r) d r\right) \leq 0
$$

So, $T P_{2} \subset P_{2}$.
For $u \in \overline{P_{2}(\gamma, c)}, 0 \leq u(t) \leq\|u\| \leq \frac{1}{t_{3}} \gamma(u) \leq \frac{1}{t_{3}} c$. By (22),

$$
\begin{aligned}
\gamma(T u) & =\max _{t \in\left[t_{3}, 1\right]} T u(t)=T u\left(t_{3}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f(u(r)) a(r) d r\right) d s \\
& \leq \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) \phi_{p}\left(\frac{c}{A}\right) a(r) d r\right) d s \\
& \leq \frac{c}{M_{1} \phi_{q}(M) A} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right) d s=c
\end{aligned}
$$

Therefore, $T: \overline{P_{2}(\gamma, c)} \rightarrow \overline{P_{2}(\gamma, c)}$.
Secondly, it is immediate that

$$
\begin{aligned}
& u_{1}(t) \in\left\{u \in P\left(\gamma, \theta, \alpha, b, \frac{1-t_{1}}{1-t_{2}} b, c\right): \alpha(u)>b\right\} \neq \emptyset \\
& u_{2}(t) \in\{u \in Q(\gamma, \beta, \psi,(1-\delta) a, a, c): \beta(u)<a\} \neq \emptyset
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{1}(t)=b+\varepsilon_{1} \text { for } 0<\varepsilon_{1}<\frac{1-t_{1}}{1-t_{2}} b-b \\
& u_{2}(t)=a-\varepsilon_{2} \text { for } 0<\varepsilon_{2}<a-(1-\delta) a
\end{aligned}
$$

In the following steps, we will verify the remaining conditions of Theorem 2.1.
Step 1. We prove that

$$
\begin{equation*}
u \in P\left(\gamma, \theta, \alpha, b, \frac{1-t_{1}}{1-t_{2}} b, c\right) \quad \text { implies } \quad \alpha(T u)>b \tag{24}
\end{equation*}
$$

In fact, $u(t) \leq u\left(t_{1}\right)=\theta(u) \leq \frac{1-t_{1}}{1-t_{2}} b$ and $u(t) \geq u\left(t_{2}\right)=\alpha(u) \geq b$ for $t \in\left[t_{1}, t_{2}\right]$.
Thus by (21),

$$
\begin{aligned}
\alpha(T u) & =\min _{t \in\left[t_{1}, t_{2}\right]} T u(t)=T u\left(t_{2}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& \geq \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) f(u(r)) d r\right) d s \\
& >\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) \phi_{p}\left(\frac{b}{B}\right) d r\right) d s \\
& =\frac{b}{M_{1} \phi_{q}(M) B} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} g(s, r) a(r) d r\right) d s=b
\end{aligned}
$$

Step 2. We prove that

$$
\begin{equation*}
u \in Q(\gamma, \beta, \psi,(1-\delta) a, a, c) \text { implies } \beta(T u)<a . \tag{25}
\end{equation*}
$$

In fact, $0 \leq u(t) \leq u(0)=\beta(u) \leq a$ for $t \in[0,1]$. Thus by (20),

$$
\begin{aligned}
\beta(T u) & =\max _{t \in[0, \delta]} T u(t)=T u(0) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& <\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) \phi_{p}\left(\frac{a}{C}\right) d r\right) d s \\
& =\frac{a}{M_{1} \phi_{q}(M) C} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) d r\right) d s=a
\end{aligned}
$$

Step 3. We prove that

$$
\begin{equation*}
u \in P(\gamma, \alpha, b, c) \text { with } \theta(T u)>\frac{1-t_{1}}{1-t_{2}} b \text { implies } \alpha(T u)>b . \tag{26}
\end{equation*}
$$

By Lemma 2.4,

$$
\begin{aligned}
\alpha(T u) & =\min _{t \in\left[t_{1}, t_{2}\right]} T u(t)=T u\left(t_{2}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)} h\left(t_{1}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& \geq \frac{1-t_{2}}{1-t_{1}} T u\left(t_{1}\right)=\frac{1-t_{2}}{1-t_{1}} \theta(T u)>b .
\end{aligned}
$$

Step 4. We prove that

$$
\begin{equation*}
u \in Q(\gamma, \beta, a, c) \text { with } \psi(T u)<(1-\delta) a \text { implies } \beta(T u)<a . \tag{27}
\end{equation*}
$$

By Lemma 2.4,

$$
\begin{aligned}
\beta(T u) & =\max _{t \in[0, \delta]} T u(t)=T u(0) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h(0, s)}{h(\delta, s)} h(\delta, s) \phi_{q}\left(\int_{0}^{1} g(s, r) a(r) f(u(r)) d r\right) d s \\
& \leq \frac{1}{1-\delta} T u(\delta)=\frac{1}{1-\delta} \psi(T u)<a .
\end{aligned}
$$

Therefore, the hypotheses of Theorem 2.1 are satisfied and there exist three positive solutions x_{1}, x_{2} and x_{3} for BVP (1) $-(2)$ satisfying (23).

Remark. When $0 \leq \xi, \eta<1$ or $\xi, \eta>1$, similar to Theorem 3.1 and Theorem 3.2 , we can discuss the following four-point fourth-order BVP

$$
\left\{\begin{array}{l}
\left(\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime \prime}-a(t) f(u(t))=0, \quad t \in(0,1) \\
u(0)=\xi u(1), u^{\prime}(1)=\eta u^{\prime}(0) \\
\alpha_{2} u^{\prime \prime}(\lambda)=\beta_{2} u^{\prime \prime}(\delta), u^{\prime \prime \prime}(0)=0
\end{array}\right.
$$

where $f: R \rightarrow[0,+\infty)$ and $a:(0,1) \rightarrow[0,+\infty)$ are continuous functions, $0 \leq \delta, \lambda \leq 1$ and $\phi_{p}(z)=|z|^{p-2} z$ for $p>1$. The conclusions are similar to Theorem 3.1 and Theorem 3.2.

References

1. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive solutions of differential, difference, and integral equations, Kluwer Academic, Dordrecht, 1999.
2. R. Y. Ma and H. Y. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59 (1995), 225-231.
3. J. R. Graef and B. Yang, On a nonlinear boundary-value problem for fourth-order equations, Appl. Anal., 72 (1999), 439-448.
4. J. R. Graef and B. Yang, Existence and non-existence of positive solutions of fourthorder nonlinear boundary-value problems, Appl. Anal., 74 (2000), 201-214.
5. R. Ma, J. Zhang and S. Fu, The method of lower and upper solutions for fourth order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422.
6. B.G.Zhang and L.Z.Kong, Multiple positive solutions of a class of p-Laplacian equations(in Chinese), Annals Math., 6 (2001), 1-10.
7. R.I.Avery and J.Henderson, Three symmetric positive solutions for a second order boundary value problem, Appl. Math. Lett., 13 (2000), 1-7.
8. P.W.Eloe and J.Henderson, Positive solutions and nonlinear ($k, n-k$) conjugate eigenvalue problem, Diff. Equ. Dynam. Syst., 6 (1998), 309-317.
9. R.Y.Ma, Positive solutions of nonlinear three point boundary value problem, Electronic J. Diff. Equs., 34 (1998), 1-8.
10. R.Y.Ma, Existence theorems for a second order three point boundary value problems, J. Math. Anal. Appl., 212 (1997), 430-442.
11. W.Feng and J.R.L.Webb, Solvability of a three point nonlinear boundary value problems at resonance, Nonlinear Anal. TMA, 30(6) (1997), 3227-3238.

De-xiang Ma
Department of Mathematics,
North China Electric Power University,
Beijing 102206,
P. R. China
E-mail: madexiang@sohu.com
Yu Tian and Wei-gao Ge
School of Science,
Beijing University of Posts and Telecommunications,
Beijing 100876,
P. R. China
E-mail: tianyu2992@163.com China

[^0]: Received April 8, 2004; accepted May 4, 2005.
 Communicated by Wen-Wei Lin.
 2000 Mathematics Subject Classification: 34B10, 34B15.
 Key words and phrases: Boundary value problem, Multiple positive solutions, Cone, Avery-Henderson fixed point theorem (generalized Leggett-Williams fixed Theorem).
 Supported by National Natural Sciences Foundation of China(10371006)

