ON THE RELATIONS BETWEEN THE PARAMETERS OF GRAPHS

Zhongfu Zhang, Jianxun Zhang and Jingwen Li

Abstract

Let $G(V, E)$ be a graph of order p. Denote by $\sigma(G), \sigma_{1}(G)$, $\alpha_{T}(G)$ and $\beta_{T}(G)$ the dominating number, the edge dominating number, the total covering number and the total independence number of $G(V, E)$, respectively. Let \bar{G} denote the complement graph of G. This paper establishes some relations among $\sigma(G), \beta_{T}(G), \alpha_{T}(G), \sigma_{1}(G), \sigma(\bar{G})$ and $\sigma_{1}(\bar{G})$.

1. Notation

Let $G(V, E)$ be a graph. For $u \in V(G)$, let $N_{G}(u)=\{v \mid v \in V(G)$ and $u v \in$ $E(G)\}$. For a subset $V_{1} \subset V(G)$, let $N_{G}\left(V_{1}\right)=\bigcup_{u \in V_{1}} N_{G}(u)$. Denote by $\delta(G)$ the minimum degree of $G(V, E)$, and by $G[S]$ the subgraph of G induced by S.

A subset S of $V(G)$ is called a dominating set of $G(V, E)$ if $S \bigcup N_{G}(S)=$ $V(G)$. The dominating number of $G(V, E)$ is $\sigma(G)=\min \left\{|S| \mid S \subset V, S \bigcup N_{G}(S)=\right.$ $V\}$. A set $T \subset E(G)$ is called an edge dominating set of $G(V, E)$ if for all $e \in E(G), e$ is adjacent to at least one edge $e^{\prime} \in T$ or $e \in T$. The edge dominating number of $G(V, E)$ is $\sigma_{1}(G)=\min \{|T| \mid T$ is an edge dominating set of $G\}$. If $S \bigcup N_{G}(S)=V$ and $|S|=\sigma(G)$, then S is called a minimum dominating set of $G(V, E)$. Similarly, we define a minimum edge dominating set.

Let $a, b \in V(G) \bigcup E(G)$, and $C \subset V(G) \bigcup E(G)$. The elements a and b are called dependent if a and b are adjacent or incident or $a=b$. Otherwise a and b are called independent. A element a is dependent upon C if a is dependent upon at least one element of C. Otherwise, a and C are called independent. A subset $A \subset V(G) \bigcup E(G)$ is called a total covering of $G(V, E)$ if for $\forall a \in V(G) \bigcup E(G)$, a and A are dependent. The quantity $\alpha_{T}(G)=\min \{|A| \mid A$ is a total covering of $G\}$ is called the total covering number of $G(V, E)$. A subset $B \subset V(G) \bigcup E(G)$ is called a total independent set of $G(V, E)$ if the elements of B are mutually

[^0]independent. The quantity $\beta_{T}(G)=\max \{|B| \mid B$ is a total independent set of $G\}$ is called the total independent number of $G(V, E)[6,7]$.

2. The Main Results

Theorem 1. Let $G(V, E)$ be a graph with $\delta(G)>0$ and $|V|=p$, then

$$
\sigma(G)+\beta_{T}(G) \leq p+\left\lfloor\frac{p}{4}\right\rfloor .
$$

Moreover, the upper bound is sharp.
Proof. Let $B=V_{T} \bigcup E_{T}$ be a maximum total independent set of $G(V, E)$ such that $\left|E_{T}\right|$ is maximum.

If $V_{T}=\emptyset$, then B is a 1 -factor of $G(V, E)$ and $\sigma(G) \leq \frac{p}{2}$. Hence

$$
\sigma(G)+\beta_{T}(G) \leq \frac{p}{2}+\frac{p}{2}
$$

If $V_{T} \neq \emptyset$, then the selection of B implies that $V\left(E_{T}\right) \bigcup V_{T}=V(G)$. For otherwise, there exists $u \in V \backslash\left(V\left(E_{T}\right) \bigcup V_{T}\right)$ and $v \in V_{T}$ such that $u v \in E$. Let $B^{\prime}=(B \backslash\{v\}) \bigcup\{u v\}$. Then $\left|B^{\prime}\right|=\beta_{T}(G), B^{\prime}$ is a total independent set of $G(V, E)$, and $\left|B^{\prime} \cap E\right|>\left|E_{T}\right|$. This contradicts the selection of B. Since $\delta(G)>0$ and $V\left(E_{T}\right) \cup V_{T}=V$, it is clear that $E_{T} \neq \emptyset$. For $e \in E(G) \backslash E_{T}$, we have $\sigma(G-e) \geq \sigma(G)$ and $\beta_{T}(G-e) \geq \beta_{T}(G)$. For each $u \in V_{T}$, select a vertex $u_{0} \in N_{G}(u)$. Let $E^{\prime}=E_{T} \cup\left\{u u_{0}: u \in V_{T}\right\}$. Then E^{\prime} induces a spanning subgraph G^{\prime} of G, which is a forest and each component of G^{\prime} is a tree with the diameter at most 3. Obviously $\sigma\left(G^{\prime}\right) \geq \sigma(G)$ and $\beta_{T}\left(G^{\prime}\right) \geq \beta_{T}(G)$. Let T be any tree with diameter at most 3 . Then

$$
\begin{aligned}
& \sigma(T)=2 \text { if } d(T)=3 \text { and } \sigma(T)=1 \text { otherwise. } \\
& \beta_{T}(T)=1 \text { if } d(T)=1 \text { and } \beta_{T}(T)=|V(T)|-1 \text { otherwise. }
\end{aligned}
$$

Hence $\sigma\left(G^{\prime}\right)+\beta_{T}\left(G^{\prime}\right)=p+m$, where m is the number of the components of G_{1} with diameter exactly 3 . Since each component of G_{1} with diameter 3 contains at least 4 vertices, $m \leq\left\lfloor\frac{p}{4}\right\rfloor$ and equality hold if each component of G_{1} with diameter 3 contains 4 vertices. Therefore

$$
\sigma(G)+\beta_{T}(G) \leq \sigma\left(G^{\prime}\right)+\beta_{T}\left(G^{\prime}\right) \leq p+\left\lfloor\frac{p}{4}\right\rfloor,
$$

and the upper bound is sharp for any number p.
Lemma 1. For any graph G, there exists an independent edge dominating set T of G such that $|T|=\sigma_{1}(G)$.

The proof of Lemma 1 is easy and omitted.
Theorem 2. Let $G(V, E)$ be a graph of order p. Then

$$
\sigma_{1}(G)+\beta_{T}(G)=p
$$

Proof. Let T be a minimum edge dominating set. Then $V \backslash V(T)$ is an independent set of G such that $T \bigcup(V \backslash V(T))$ is a total independent set of G. And

$$
p=|T|+|T \bigcup(V \backslash V(T))| \leq \sigma_{1}(G)+\beta_{T}(G)
$$

Let $B=V_{T} \bigcup E_{T}$ be a maximum total independence set of G such that $\left|E_{T}\right|$ is as large as possible. By the proof of Theorem 1, $V_{T} \cup V\left(E_{T}\right)=V$, and E_{T} is an edge dominating set of G. So $\sigma_{1}(G)+\beta_{T}(G) \leq\left|E_{T}\right|+|B|=p$. Hence

$$
\sigma_{1}(G)+\beta_{T}(G)=p
$$

Lemma 2. Let $G(V, E)$ be a graph of order p and with $\delta(G)>0$. Then there exists a minimum total covering $A=E_{T} \bigcup V_{T}$ of G such that $V\left(E_{T}\right) \bigcap V_{T}=\emptyset$, and E_{T} is independent. Let

$$
\begin{aligned}
& V_{0}=V \backslash\left(V_{T} \cup V\left(E_{T}\right)\right), V_{1}^{\prime}=\left\{u \mid u \in V_{T}, N_{G}(u) \cap V_{0} \neq \emptyset\right\} \\
& V_{2}^{\prime}=V_{T} \backslash V_{1}^{\prime} .
\end{aligned}
$$

Then for $\forall u \in V_{1}^{\prime}$, there exist at least two vertices u_{1}, u_{2} of V_{0} such that $N_{G}\left(u_{1}\right) \bigcap$ $V_{1}^{\prime}=N_{G}\left(u_{2}\right) \bigcap V_{1}^{\prime}=\{u\}$. And if $u v \in E_{T}, u u_{1}, v v_{1} \in E, u_{1}, v_{1} \in V_{2}^{\prime}$, then $u_{1}=v_{1}, V_{2}^{\prime}$ is independent.

Proof. Let $A=V_{T} \bigcup E_{T}$ be a minimal total covering of G such that the number of edges in E_{T} dependent upon V_{T} is as small as possible. If $u \in V_{T} \bigcap V\left(E_{T}\right)$, then $u u_{1} \in E_{T}$ and $A^{\prime}=A \backslash\left\{u u_{1}\right\}$ is not a total covering of G, so that there exists $u_{1} v \in E$ and $u_{1} v$ is independent to A^{\prime}. It is easy to see that $A^{\prime} \bigcup\left\{u_{1} v\right\}$ is a minimal total covering of G. And $\left(E_{T} \backslash\left\{u u_{1}\right\}\right) \bigcup\left\{u_{1} v\right\}$ contains less edges dependent upon V_{T} than E_{T} does. This is a contradiction. Hence $V_{T} \bigcap V\left(E_{T}\right)=\emptyset$.

Let $A=E_{T} \bigcup V_{T}$ be a minimum total covering of G such that $V_{T} \bigcap V\left[E_{T}\right]=\emptyset$ and $\left|V_{T}\right|$ is as large as possible. If $d_{G\left[E_{T}\right]}(u) \geq 2, u u_{1}, u u_{2} \in E_{T}\left(u_{1} \neq u_{2}\right)$, then $A^{\prime}=A \backslash\left\{u u_{1}\right\}$ is not a total covering of G. Let $A^{\prime \prime}=A^{\prime} \bigcup\left\{u_{1}\right\}$, then $A^{\prime \prime}$ is a minimal total covering of G satisfying $\left(A^{\prime \prime} \cap V\right) \bigcap V\left[A^{\prime \prime} \cap E\right]=\emptyset$ and $\left|A^{\prime \prime} \cap V\right|>\left|V_{T}\right|$. This is a contradiction so that E_{T} is independent.

Let $A=E_{T} \cup V_{T}$ be a minimum total covering of G such that $V_{T} \cap V\left[E_{T}\right]=\emptyset$, E_{T} is independent, V_{0}, V_{1}^{\prime}, and V_{2}^{\prime} as defined in this Lemma and $\left|E_{T}\right|$ as large as possible. Then V_{2}^{\prime} is independent. Otherwise, if $u_{1} u_{2} \in E, u_{1}, u_{2} \in V_{2}^{\prime}$,
then $A^{\prime}=\left(A \backslash\left\{u_{1}, u_{2}\right\}\right) \bigcup\left\{u_{1} u_{2}\right\}$ is a smaller total covering of G than A. If $u v \in E_{T}, u u^{\prime}, v v^{\prime} \in E$ and $u^{\prime}, v^{\prime} \in V_{2}^{\prime}$, then $u^{\prime}=v^{\prime}$. Otherwise $u^{\prime} \neq v^{\prime}$, $\left(A \backslash\left\{u v, u^{\prime}, v^{\prime}\right\}\right) \bigcup\left\{u u^{\prime}, v v^{\prime}\right\}$ is a smaller total covering of G than A. If $u \in V_{1}^{\prime}$ and there exists exactly one vertex $u_{1} \in V_{0}$ such that $N_{G}\left(u_{1}\right) \bigcap V_{1}^{\prime}=\{u\}$, then $A^{\prime}=$ $(A \backslash\{u\}) \bigcup\left\{u u_{1}\right\}$ is a minimum total covering of $G,\left(A^{\prime} \cap V\right) \cap V\left(A^{\prime} \cap E\right)=\emptyset$, $A^{\prime} \cap E$ is independent and $\left|A^{\prime} \cap E\right|>\left|E_{T}\right|$. This is a contradiction so that Lemma 2 is true.

Theorem 3. Let $G(V, E)$ be a graph with $\delta(G)>0$ and $|V|=p$, Then

$$
\sigma(G)+\alpha_{T}(G) \leq p
$$

Moreover, the upper bound is sharp.
Proof. Let $A=E_{T} \bigcup V_{T}$ be a minimum total covering of G satisfying the conditions of Lemma 2. Choose a set V_{1} of vertices as follows: For $\forall u v \in E_{T}$, if u is adjacent to a vertex of V_{2}^{\prime}, choose u, otherwise choose v. Then $V_{1} \bigcup V_{1}^{\prime}$ is a dominating set of G, and

$$
\begin{aligned}
& \sigma(G)+\alpha_{T}(G) \leq\left|V_{1}\right|+\left|V_{1}^{\prime}\right|+|A| \\
= & 2\left|E_{T}\right|+2\left|V_{1}^{\prime}\right|+\left|V_{2}^{\prime}\right| \\
\leq & 2\left|E_{T}\right|+\left|V_{T}\right|+\left|V_{0}\right|=p .
\end{aligned}
$$

If G is 1-regular, then $\sigma(G)+\alpha_{T}(G)=p$.
Theorem 4. Let $G(V, E)$ be a graph of order p. Then

$$
\sigma_{1}(G)+\alpha_{T}(G) \leq p
$$

Moreover, the upper bounds is sharp.
Proof. Let V^{\prime} be the set of the isolated vertices of G. Then the minimum degree of $G-V^{\prime}=G^{\prime}$ is at least 1 . Let A be the minimum total covering of G^{\prime} satisfying Lemma 2. Let M be a matching from V_{1}^{\prime} to V_{0} that saturated v_{1}^{\prime} by Lemma 2. Then $A \bigcup V^{\prime}$ is a minimum total covering of G and $E_{T} \bigcup M$ is an edge dominating set of G. Hence

$$
\begin{aligned}
\sigma_{1}(G)+\alpha_{T}(G) & \leq\left|E_{T}\right|+|M|+\left|V^{\prime}\right|+\left|V_{T}\right|+\left|E_{T}\right| \\
& \leq 2\left|E_{T}\right|+\left|V^{\prime}\right|+\left|V_{T}\right|+\left|V_{0}\right|=p .
\end{aligned}
$$

It is easy to see if G is 1 -regular or $E=\phi$ then $\sigma_{1}(G)+\alpha_{T}(G)=p$.

Theorem 5. Let $G(V, E)$ be a graph of order p. Then

$$
\left\lceil\frac{p+3}{2}\right\rceil \leq \sigma(\bar{G})+\beta_{T}(G) \leq\left\lceil\frac{3 p}{2}\right\rceil
$$

Moreover, the bounds are sharp.
Proof. At first, we prove the inequality on the right hand side. Let $A=$ $V_{T} \bigcup E_{T}$ be a maximum total independent set of G such that $\left|E_{T}\right|$ is as large as possible. By the proof of Theorem 1, we have $V_{T} \cup V\left(E_{T}\right)=V$.

If $V_{T}=\emptyset$, then $\beta_{T}(G)=\frac{p}{2}$. Since $\sigma(\bar{G}) \leq p$, we have

$$
\sigma(\bar{G})+\beta_{T}(G) \leq\left\lceil\frac{3 p}{2}\right\rceil .
$$

If $E_{T}=\emptyset$, then by the proof of Theorem 1, we have $G=\bar{K}_{p}$ and $\bar{G}=K_{p}$. Hence

$$
\sigma(\bar{G})+\beta_{T}(G)=1+p \leq\left\lceil\frac{3 p}{2}\right\rceil .
$$

Assume that $V_{T} \neq \emptyset$ and $E_{T} \neq \emptyset$. Since V_{T} is independent, $\bar{G}\left[V_{T}\right]=K_{\left|V_{T}\right|}$. Hence

$$
\begin{aligned}
& \sigma(\bar{G}) \leq 1+\sigma\left(\bar{G}\left[V\left(E_{T}\right)\right]\right) \leq 1+2\left|E_{T}\right|=1+p-\left|V_{T}\right|, \\
& \sigma(\bar{G})+\beta_{T}(G) \leq 1+p-\left|V_{T}\right|+\left|V_{T}\right|+\left|E_{T}\right|=1+p+\left|E_{T}\right| \\
= & 1+p+\frac{p-\left|V_{T}\right|}{2}=\frac{3 p}{2}+1-\frac{\left|V_{T}\right|}{2} \leq \frac{3 p}{2}+\frac{1}{2} .
\end{aligned}
$$

Since $\sigma(\bar{G})+\beta_{T}(G)$ is an integer, hence

$$
\sigma(\bar{G})+\beta_{T}(G) \leq\left\lfloor\frac{3 p+1}{2}\right\rfloor=\left\lceil\frac{3 p}{2}\right\rceil .
$$

If $G=K_{p}$, then $\sigma(\bar{G})=p, \beta_{T}(G)=\left\lceil\frac{p}{2}\right\rceil$ and the right holds the equality.
Now, we prove the left hand inequality. Let M be a maximum matching of G and $V_{1}=V \backslash V(M)$. Then $M \bigcup V_{1}$ is a total independent set of G and $\beta_{T}(G) \geq$ $\left|M \bigcup V_{1}\right|=\frac{p+\left|V_{1}\right|}{2}$.

If G has an isolated vertex, then $\sigma(\bar{G})=1$ and $\left|V_{1}\right| \geq 1$. Hence

$$
\sigma(\bar{G})+\beta_{T}(G) \geq \frac{p+\left|V_{1}\right|+2}{2} \geq \frac{p+3}{2} .
$$

Assume $\delta(G)>0$. Then $\sigma(\bar{G})>1$ and $\beta_{T}(G) \geq \frac{p}{2}$. Hence

$$
\sigma(\bar{G})+\beta_{T}(G) \geq \frac{p}{2}+2 \geq\left\lceil\frac{p+3}{2}\right\rceil .
$$

If $G=K_{p-1} \bigcup K_{1}$, then $\sigma(\bar{G})=1, \beta_{T}(G)=1+\left\lceil\frac{p-1}{2}\right\rceil$ and

$$
\sigma(\bar{G})+\beta_{T}(G)=2+\left\lceil\frac{p-1}{2}\right\rceil=\left\lceil\frac{p+3}{2}\right\rceil .
$$

Theorem 6. Let $G(V, E)$ be a graph of order p. Then

$$
\left\lceil\frac{p}{2}\right\rceil \leq \sigma_{1}(\bar{G})+\beta_{T}(G) \leq\left\lfloor\frac{3 p}{2}\right\rfloor .
$$

Moreover, the bounds are sharp.
Proof. At first, we prove the right hand inequality. Let $V_{T}^{\prime} \bigcup E_{T}^{\prime}, V_{T} \bigcup E_{T}$ be the maximum total independent sets of \bar{G} and G, respectively; such that $V_{T}^{\prime} \cup V\left(E_{T}^{\prime}\right)$ $=V=V_{T} \bigcup V\left(E_{T}\right)$. Then

$$
\beta_{T}(G)=\frac{p+\left|V_{T}\right|}{2}, \quad \beta_{T}(\bar{G})=\frac{p+\left|V_{T}^{\prime}\right|}{2} .
$$

By Theorem 2,

$$
\sigma_{1}(\bar{G})+\beta_{T}(\bar{G})=p
$$

Therefore

$$
\begin{aligned}
& \sigma_{1}(\bar{G})+\beta_{T}(G)=p+\beta_{T}(G)-\beta_{T}(\bar{G}) \\
= & p+\frac{\left|V_{T}\right|-\left|V_{T}^{\prime}\right|}{2} \leq \frac{3 p}{2} .
\end{aligned}
$$

Hence $\sigma_{1}(\bar{G})+\beta_{T}(G) \leq\left\lfloor\frac{3 p}{2}\right\rfloor$, and $\sigma_{1}(\bar{G})+\beta_{T}(G)=\left\lfloor\frac{3 p}{2}\right\rfloor$ if $G=\bar{K}_{p}$.
Since $\beta_{T}(G) \geq\left\lceil\frac{p}{2}\right\rceil$, hence the left hand inequality is trivial, and $\sigma_{1}(\bar{G})+$ $\beta_{T}(G)=\left\lceil\frac{p}{2}\right\rceil$ if $G=K_{p}$.

Theorem 7. Let $G(V, E)$ be a graph of order p. Then

$$
\sigma(\bar{G})+\alpha_{T}(G) \leq\left\lceil\frac{3 p}{2}\right\rceil .
$$

Moreover, the bound is sharp.
Proof. Let $B=V_{T} \bigcup E_{T}$ be a minimum total covering of G and satisfying the conditions of Lemma 2.

If G is disconnected, then \bar{G} has a spanning complete bipartite subgraph. Hence $\sigma(\bar{G}) \leq 2$, and $\sigma(\bar{G})=1$ if $p=2$. By $\alpha_{T}(G) \leq p$ and $\sigma(\bar{G}) \leq\left\lceil\frac{p}{2}\right\rceil$, we have $\alpha_{T}(G)+\sigma(\bar{G}) \leq p+\left\lceil\frac{p}{2}\right\rceil \leq\left\lceil\frac{3 p}{2}\right\rceil$.

Assume G is connected. By Lemma 2, V_{2}^{\prime} is independent, $N_{G}\left(V_{2}^{\prime}\right) \subseteq V\left(E_{T}\right)$, and $\left|V_{0}\right| \geq 2\left|V_{1}^{\prime}\right|$.

Case 1. If $V_{2}^{\prime} \neq \emptyset, \sigma(\bar{G}) \leq 1+\sigma\left(\bar{G}\left[V\left(E_{T}\right)\right]\right) \leq 1+2\left|E_{T}\right|$. Therefore

$$
\begin{aligned}
& \sigma(\bar{G})+\alpha_{T}(G) \leq 1+3\left|E_{T}\right|+\left|V_{T}\right| \\
= & 1+\frac{3\left(p-\left|V_{T}\right|-\left|V_{0}\right|\right)}{2}+\left|V_{T}\right| \\
= & \frac{3 p}{2}+1-\frac{3\left|V_{0}\right|}{2}-\frac{\left|V_{T}\right|}{2} \leq \frac{3 p+1}{2} .
\end{aligned}
$$

Case 2. If $V_{2}^{\prime}=\emptyset$, then

$$
\alpha_{T}(G)=\frac{p-\left|V_{T}\right|-\left|V_{0}\right|}{2}+\left|V_{T}\right|=\frac{p+\left|V_{T}\right|-\left|V_{0}\right|}{2} \leq \frac{p}{2}
$$

Therefore $\sigma(\bar{G})+\alpha_{T}(G) \leq p+\alpha_{T}(G) \leq \frac{3 p}{2} \leq\left\lceil\frac{3 p}{2}\right\rceil$.
If $G=K_{p}$, then $\sigma(\bar{G})+\alpha_{T}(G)=\left\lceil\frac{3 p}{2}\right\rceil$.
Theorem 8. Let $G(V, E)$ be a graph of order p. Then

$$
\left\lceil\frac{p}{2}\right\rceil \leq \sigma_{1}(\bar{G})+\alpha_{T}(G) \leq\left\lfloor\frac{3 p}{2}\right\rfloor
$$

Moreover, the bounds are sharp.
Proof. At first, we prove the right hand inequality. By $\sigma_{1}(\bar{G}) \leq\left\lfloor\frac{p}{2}\right\rfloor$ and $\alpha_{T}(G) \leq p$, we have

$$
\sigma_{1}(\bar{G})+\alpha_{T}(G) \leq\left\lfloor\frac{3 p}{2}\right\rfloor
$$

And $\sigma_{1}(\bar{G})+\alpha_{T}(G)=\left\lfloor\frac{3 p}{2}\right\rfloor$ if $G=\bar{K}_{p}$.
Now, we prove the left hand inequality. By Lemma 1 , let S be a minimal independent edge dominating set of \bar{G} and $V_{1}=V \backslash V(S)$. Then V_{1} is an independent set of \bar{G} and $G\left[V_{1}\right]=K_{\left|V_{1}\right|}, \alpha_{T}(G) \geq \alpha_{T}\left(G\left[V_{1}\right]\right)=\left\lceil\frac{\left|V_{1}\right|}{2}\right\rceil$. Hence

$$
\sigma_{1}(\bar{G})+\alpha_{T}(G) \geq|S|+\left\lceil\frac{\left|V_{1}\right|}{2}\right\rceil=|S|+\left\lceil\frac{p-2|S|}{2}\right\rceil=\left\lceil\frac{p}{2}\right\rceil
$$

And $\sigma_{1}(\bar{G})+\alpha_{T}(G)=\left\lceil\frac{p}{2}\right\rceil$ if $G=K_{p}$.

Acknowledgment

We would like to thank the referees for their valuable suggestions.

References

1. S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math., 2 (1998), 173-179.
2. M.-J. Jou and G. J. Chang, The number of maximum independent sets in graphs, Taiwanese J. Math., 4 (2000), 685-695.
3. C.-S. Liao and G. J. Chang, Algorithmic aspect of k-tuple domination in graphs, Taiwanese J. Math., 6 (2002), 415-420.
4. R.-J. Shao, C.-H. Lu and T.-X. Yao, On (d,2)-dominating numbers of butterfly networks, Taiwanese J. Math., 6 (2002), 515-521.
5. P. Erdos and A. Meirm, On total matching number and total covering number of complementary graphs, Discrete Math., 19 (1977), 229-233.
6. Zhongfu Zhang, On relations between the covering number of a graph and its complementary graph, Chinese Science Bulletin, 14 (1988), 1118.
7. G. Chartrand and L. L. Foster, Graphs and Digraphs, Prindle, Weber and Shmit, 1986.
[^1]
[^0]: Received January 16, 2004; revised June 24, 2005.
 Communicated by Xuding Zhu.
 2000 Mathematics Subject Classification: 05C70.
 Key words and phrases: Graph, Parameters of graph.
 This research is supported by NSFC of China (No. 40301037).

[^1]: Zhongfu Zhang
 Department of Mathematics,
 Northwest Normal University,
 Lanzhou 730070, P. R. China
 and
 Department of Mathematics,
 Lanzhou Jiao Tong University,
 Lanzhou 730070, P. R. China
 and
 Department of Computer,
 Lanzhou Normal College,
 Lanzhou 730070, P. R. China
 E-mail: zhang-zhong-fu@yahoo.com.cn
 Jianxun Zhang
 Department of Mathematics,
 Ningbo University, Ningbo,
 Zhejiang 315211, P. R. China
 Jingwen Li
 College of Information and Electrical Engineering,
 Lanzhou JiaoTong University,
 Lanzhou, 730070, P. R. China
 E-mail: leejwen@yahoo.com.cn

