TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 6, pp. 1549-1556, December 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE RELATIONS BETWEEN THE PARAMETERS OF GRAPHS

Zhongfu Zhang, Jianxun Zhang and Jingwen Li

Abstract. Let G(V, E) be a graph of order p. Denote by $\sigma(G)$, $\sigma_1(G)$, $\alpha_T(G)$ and $\beta_T(G)$ the dominating number, the edge dominating number, the total covering number and the total independence number of G(V, E), respectively. Let \overline{G} denote the complement graph of G. This paper establishes some relations among $\sigma(G)$, $\beta_T(G)$, $\alpha_T(G)$, $\sigma_1(G)$, $\sigma(\overline{G})$ and $\sigma_1(\overline{G})$.

1. NOTATION

Let G(V, E) be a graph. For $u \in V(G)$, let $N_G(u) = \{v | v \in V(G) \text{ and } uv \in E(G)\}$. For a subset $V_1 \subset V(G)$, let $N_G(V_1) = \bigcup_{u \in V_1} N_G(u)$. Denote by $\delta(G)$ the minimum degree of G(V, E), and by G[S] the subgraph of G induced by S.

A subset S of V(G) is called a dominating set of G(V, E) if $S \bigcup N_G(S) = V(G)$. The dominating number of G(V, E) is $\sigma(G) = \min\{|S||S \subset V, S \bigcup N_G(S) = V\}$. A set $T \subset E(G)$ is called an *edge dominating set* of G(V, E) if for all $e \in E(G)$, e is adjacent to at least one edge $e' \in T$ or $e \in T$. The *edge dominating number* of G(V, E) is $\sigma_1(G) = \min\{|T||T \text{ is an edge dominating set of } G\}$. If $S \bigcup N_G(S) = V$ and $|S| = \sigma(G)$, then S is called a minimum dominating set of G(V, E). Similarly, we define a minimum edge dominating set.

Let $a, b \in V(G) \bigcup E(G)$, and $C \subset V(G) \bigcup E(G)$. The elements a and b are called dependent if a and b are adjacent or incident or a = b. Otherwise a and bare called independent. A element a is dependent upon C if a is dependent upon at least one element of C. Otherwise, a and C are called independent. A subset $A \subset V(G) \bigcup E(G)$ is called a total covering of G(V, E) if for $\forall a \in V(G) \bigcup E(G)$, a and A are dependent. The quantity $\alpha_T(G) = \min\{|A||A \text{ is a total covering of } G\}$ is called the total covering number of G(V, E). A subset $B \subset V(G) \bigcup E(G)$ is called a total independent set of G(V, E) if the elements of B are mutually

2000 Mathematics Subject Classification: 05C70.

Key words and phrases: Graph, Parameters of graph.

Received January 16, 2004; revised June 24, 2005.

Communicated by Xuding Zhu.

This research is supported by NSFC of China (No. 40301037).

independent. The quantity $\beta_T(G) = \max\{|B||B \text{ is a total independent set of } G\}$ is called the total independent number of G(V, E) [6,7].

2. The Main Results

Theorem 1. Let G(V, E) be a graph with $\delta(G) > 0$ and |V| = p, then

$$\sigma(G) + \beta_T(G) \le p + \lfloor \frac{p}{4} \rfloor.$$

Moreover, the upper bound is sharp.

Proof. Let $B = V_T \bigcup E_T$ be a maximum total independent set of G(V, E) such that $|E_T|$ is maximum.

If $V_T = \emptyset$, then B is a 1-factor of G(V, E) and $\sigma(G) \leq \frac{p}{2}$. Hence

$$\sigma(G) + \beta_T(G) \le \frac{p}{2} + \frac{p}{2}$$

If $V_T \neq \emptyset$, then the selection of B implies that $V(E_T) \bigcup V_T = V(G)$. For otherwise, there exists $u \in V \setminus (V(E_T) \bigcup V_T)$ and $v \in V_T$ such that $uv \in E$. Let $B' = (B \setminus \{v\}) \bigcup \{uv\}$. Then $|B'| = \beta_T(G)$, B' is a total independent set of G(V, E), and $|B' \cap E| > |E_T|$. This contradicts the selection of B. Since $\delta(G) > 0$ and $V(E_T) \bigcup V_T = V$, it is clear that $E_T \neq \emptyset$. For $e \in E(G) \setminus E_T$, we have $\sigma(G - e) \ge \sigma(G)$ and $\beta_T(G - e) \ge \beta_T(G)$. For each $u \in V_T$, select a vertex $u_0 \in N_G(u)$. Let $E' = E_T \cup \{uu_0 : u \in V_T\}$. Then E' induces a spanning subgraph G' of G, which is a forest and each component of G' is a tree with the diameter at most 3. Obviously $\sigma(G') \ge \sigma(G)$ and $\beta_T(G') \ge \beta_T(G)$. Let T be any tree with diameter at most 3. Then

$$\sigma(T) = 2$$
 if $d(T) = 3$ and $\sigma(T) = 1$ otherwise.
 $\beta_T(T) = 1$ if $d(T) = 1$ and $\beta_T(T) = |V(T)| - 1$ otherwise.

Hence $\sigma(G') + \beta_T(G') = p + m$, where *m* is the number of the components of G_1 with diameter exactly 3. Since each component of G_1 with diameter 3 contains at least 4 vertices, $m \leq \lfloor \frac{p}{4} \rfloor$ and equality hold if each component of G_1 with diameter 3 contains 4 vertices. Therefore

$$\sigma(G) + \beta_T(G) \le \sigma(G') + \beta_T(G') \le p + \lfloor \frac{p}{4} \rfloor,$$

and the upper bound is sharp for any number p.

Lemma 1. For any graph G, there exists an independent edge dominating set T of G such that $|T| = \sigma_1(G)$.

The proof of Lemma 1 is easy and omitted.

Theorem 2. Let G(V, E) be a graph of order p. Then

$$\sigma_1(G) + \beta_T(G) = p.$$

Proof. Let T be a minimum edge dominating set. Then $V \setminus V(T)$ is an independent set of G such that $T \bigcup (V \setminus V(T))$ is a total independent set of G. And

$$p = |T| + |T \bigcup (V \setminus V(T))| \le \sigma_1(G) + \beta_T(G).$$

Let $B = V_T \bigcup E_T$ be a maximum total independence set of G such that $|E_T|$ is as large as possible. By the proof of Theorem 1, $V_T \bigcup V(E_T) = V$, and E_T is an edge dominating set of G. So $\sigma_1(G) + \beta_T(G) \le |E_T| + |B| = p$. Hence

$$\sigma_1(G) + \beta_T(G) = p$$

Lemma 2. Let G(V, E) be a graph of order p and with $\delta(G) > 0$. Then there exists a minimum total covering $A = E_T \bigcup V_T$ of G such that $V(E_T) \bigcap V_T = \emptyset$, and E_T is independent. Let

$$V_0 = V \setminus (V_T \bigcup V(E_T)), V_1' = \{u | u \in V_T, N_G(u) \cap V_0 \neq \emptyset\}$$
$$V_2' = V_T \setminus V_1'.$$

Then for $\forall u \in V'_1$, there exist at least two vertices u_1, u_2 of V_0 such that $N_G(u_1) \bigcap V'_1 = N_G(u_2) \bigcap V'_1 = \{u\}$. And if $uv \in E_T$, $uu_1, vv_1 \in E$, $u_1, v_1 \in V'_2$, then $u_1 = v_1, V'_2$ is independent.

Proof. Let $A = V_T \bigcup E_T$ be a minimal total covering of G such that the number of edges in E_T dependent upon V_T is as small as possible. If $u \in V_T \bigcap V(E_T)$, then $uu_1 \in E_T$ and $A' = A \setminus \{uu_1\}$ is not a total covering of G, so that there exists $u_1v \in E$ and u_1v is independent to A'. It is easy to see that $A' \bigcup \{u_1v\}$ is a minimal total covering of G. And $(E_T \setminus \{uu_1\}) \bigcup \{u_1v\}$ contains less edges dependent upon V_T than E_T does. This is a contradiction. Hence $V_T \bigcap V(E_T) = \emptyset$.

Let $A = E_T \bigcup V_T$ be a minimum total covering of G such that $V_T \cap V[E_T] = \emptyset$ and $|V_T|$ is as large as possible. If $d_{G[E_T]}(u) \ge 2$, $uu_1, uu_2 \in E_T$ $(u_1 \ne u_2)$, then $A' = A \setminus \{uu_1\}$ is not a total covering of G. Let $A'' = A' \bigcup \{u_1\}$, then A'' is a minimal total covering of G satisfying $(A'' \cap V) \cap V[A'' \cap E] = \emptyset$ and $|A'' \cap V| > |V_T|$. This is a contradiction so that E_T is independent.

Let $A = E_T \bigcup V_T$ be a minimum total covering of G such that $V_T \bigcap V[E_T] = \emptyset$, E_T is independent, V_0, V'_1 , and V'_2 as defined in this Lemma and $|E_T|$ as large as possible. Then V'_2 is independent. Otherwise, if $u_1u_2 \in E$, $u_1, u_2 \in V'_2$, then $A' = (A \setminus \{u_1, u_2\}) \bigcup \{u_1 u_2\}$ is a smaller total covering of G than A. If $uv \in E_T$, $uu', vv' \in E$ and $u', v' \in V'_2$, then u' = v'. Otherwise $u' \neq v'$, $(A \setminus \{uv, u', v'\}) \bigcup \{uu', vv'\}$ is a smaller total covering of G than A. If $u \in V'_1$ and there exists exactly one vertex $u_1 \in V_0$ such that $N_G(u_1) \cap V'_1 = \{u\}$, then $A' = (A \setminus \{u\}) \bigcup \{uu_1\}$ is a minimum total covering of G, $(A' \cap V) \cap V(A' \cap E) = \emptyset$, $A' \cap E$ is independent and $|A' \cap E| > |E_T|$. This is a contradiction so that Lemma 2 is true.

Theorem 3. Let G(V, E) be a graph with $\delta(G) > 0$ and |V| = p, Then

 $\sigma(G) + \alpha_T(G) \le p.$

Moreover, the upper bound is sharp.

Proof. Let $A = E_T \bigcup V_T$ be a minimum total covering of G satisfying the conditions of Lemma 2. Choose a set V_1 of vertices as follows: For $\forall uv \in E_T$, if u is adjacent to a vertex of V'_2 , choose u, otherwise choose v. Then $V_1 \bigcup V'_1$ is a dominating set of G, and

$$\sigma(G) + \alpha_T(G) \le |V_1| + |V_1'| + |A|$$

= 2|*E_T*| + 2|*V*₁'| + |*V*₂'|
 $\le 2|E_T| + |V_T| + |V_0| = p.$

If G is 1-regular, then $\sigma(G) + \alpha_T(G) = p$.

Theorem 4. Let G(V, E) be a graph of order p. Then

$$\sigma_1(G) + \alpha_T(G) \le p.$$

Moreover, the upper bounds is sharp.

Proof. Let V' be the set of the isolated vertices of G. Then the minimum degree of G - V' = G' is at least 1. Let A be the minimum total covering of G' satisfying Lemma 2. Let M be a matching from V'_1 to V_0 that saturated v'_1 by Lemma 2. Then $A \bigcup V'$ is a minimum total covering of G and $E_T \bigcup M$ is an edge dominating set of G. Hence

$$\sigma_1(G) + \alpha_T(G) \le |E_T| + |M| + |V'| + |V_T| + |E_T|$$

$$\le 2|E_T| + |V'| + |V_T| + |V_0| = p.$$

It is easy to see if G is 1-regular or $E = \phi$ then $\sigma_1(G) + \alpha_T(G) = p$.

1552

Theorem 5. Let G(V, E) be a graph of order p. Then

$$\lceil \frac{p+3}{2} \rceil \le \sigma(\overline{G}) + \beta_T(G) \le \lceil \frac{3p}{2} \rceil.$$

Moreover, the bounds are sharp.

Proof. At first, we prove the inequality on the right hand side. Let $A = V_T \bigcup E_T$ be a maximum total independent set of G such that $|E_T|$ is as large as possible. By the proof of Theorem 1, we have $V_T \bigcup V(E_T) = V$.

If $V_T = \emptyset$, then $\beta_T(G) = \frac{p}{2}$. Since $\sigma(\overline{G}) \le p$, we have

$$\sigma(\overline{G}) + \beta_T(G) \le \lceil \frac{3p}{2} \rceil.$$

If $E_T = \emptyset$, then by the proof of Theorem 1, we have $G = \overline{K}_p$ and $\overline{G} = K_p$. Hence

$$\sigma(\overline{G}) + \beta_T(G) = 1 + p \le \lceil \frac{3p}{2} \rceil.$$

Assume that $V_T \neq \emptyset$ and $E_T \neq \emptyset$. Since V_T is independent, $\overline{G}[V_T] = K_{|V_T|}$. Hence

$$\sigma(\overline{G}) \le 1 + \sigma(\overline{G}[V(E_T)]) \le 1 + 2|E_T| = 1 + p - |V_T|,$$

$$\sigma(\overline{G}) + \beta_T(G) \le 1 + p - |V_T| + |V_T| + |E_T| = 1 + p + |E_T|$$

$$= 1 + p + \frac{p - |V_T|}{2} = \frac{3p}{2} + 1 - \frac{|V_T|}{2} \le \frac{3p}{2} + \frac{1}{2}.$$

Since $\sigma(\overline{G}) + \beta_T(G)$ is an integer, hence

$$\sigma(\overline{G}) + \beta_T(G) \le \lfloor \frac{3p+1}{2} \rfloor = \lceil \frac{3p}{2} \rceil.$$

If $G = K_p$, then $\sigma(\overline{G}) = p$, $\beta_T(G) = \lceil \frac{p}{2} \rceil$ and the right holds the equality.

Now, we prove the left hand inequality. Let M be a maximum matching of G and $V_1 = V \setminus V(M)$. Then $M \bigcup V_1$ is a total independent set of G and $\beta_T(G) \ge |M \bigcup V_1| = \frac{p+|V_1|}{2}$.

If G has an isolated vertex, then $\sigma(\overline{G}) = 1$ and $|V_1| \ge 1$. Hence

$$\sigma(\overline{G}) + \beta_T(G) \ge \frac{p+|V_1|+2}{2} \ge \frac{p+3}{2}.$$

Assume $\delta(G) > 0$. Then $\sigma(\overline{G}) > 1$ and $\beta_T(G) \ge \frac{p}{2}$. Hence

$$\sigma(\overline{G}) + \beta_T(G) \ge \frac{p}{2} + 2 \ge \lceil \frac{p+3}{2} \rceil.$$

If $G = K_{p-1} \bigcup K_1$, then $\sigma(\overline{G}) = 1$, $\beta_T(G) = 1 + \lceil \frac{p-1}{2} \rceil$ and

$$\sigma(\overline{G}) + \beta_T(G) = 2 + \lceil \frac{p-1}{2} \rceil = \lceil \frac{p+3}{2} \rceil.$$

Theorem 6. Let G(V, E) be a graph of order p. Then

$$\lceil \frac{p}{2} \rceil \le \sigma_1(\overline{G}) + \beta_T(G) \le \lfloor \frac{3p}{2} \rfloor.$$

Moreover, the bounds are sharp.

Proof. At first, we prove the right hand inequality. Let $V'_T \bigcup E'_T$, $V_T \bigcup E_T$ be the maximum total independent sets of \overline{G} and G, respectively; such that $V'_T \bigcup V(E'_T) = V = V_T \bigcup V(E_T)$. Then

$$\beta_T(G) = \frac{p + |V_T|}{2}, \quad \beta_T(\overline{G}) = \frac{p + |V'_T|}{2}.$$

By Theorem 2,

$$\sigma_1(\overline{G}) + \beta_T(\overline{G}) = p.$$

Therefore

$$\sigma_1(\overline{G}) + \beta_T(G) = p + \beta_T(G) - \beta_T(\overline{G})$$
$$= p + \frac{|V_T| - |V'_T|}{2} \le \frac{3p}{2}.$$

Hence $\sigma_1(\overline{G}) + \beta_T(G) \le \lfloor \frac{3p}{2} \rfloor$, and $\sigma_1(\overline{G}) + \beta_T(G) = \lfloor \frac{3p}{2} \rfloor$ if $G = \overline{K}_p$.

Since $\beta_T(G) \geq \lceil \frac{p}{2} \rceil$, hence the left hand inequality is trivial, and $\sigma_1(\overline{G}) + \beta_T(G) = \lceil \frac{p}{2} \rceil$ if $G = K_p$.

Theorem 7. Let G(V, E) be a graph of order p. Then

$$\sigma(\overline{G}) + \alpha_T(G) \le \lceil \frac{3p}{2} \rceil.$$

Moreover, the bound is sharp.

Proof. Let $B = V_T \bigcup E_T$ be a minimum total covering of G and satisfying the conditions of Lemma 2.

If G is disconnected, then \overline{G} has a spanning complete bipartite subgraph. Hence $\sigma(\overline{G}) \leq 2$, and $\sigma(\overline{G}) = 1$ if p = 2. By $\alpha_T(G) \leq p$ and $\sigma(\overline{G}) \leq \lceil \frac{p}{2} \rceil$, we have $\alpha_T(G) + \sigma(\overline{G}) \leq p + \lceil \frac{p}{2} \rceil \leq \lceil \frac{3p}{2} \rceil$.

1554

Assume G is connected. By Lemma 2, V'_2 is independent, $N_G(V'_2) \subseteq V(E_T)$, and $|V_0| \geq 2|V'_1|$.

Case 1. If $V'_2 \neq \emptyset$, $\sigma(\overline{G}) \leq 1 + \sigma(\overline{G}[V(E_T)]) \leq 1 + 2|E_T|$. Therefore $\sigma(\overline{G}) + \alpha_T(G) \leq 1 + 3|E_T| + |V_T|$ $3(n - |V_T| - |V_0|)$

$$= 1 + \frac{3(p - 1)(1 + 1)(0)}{2} + |V_T|$$

= $\frac{3p}{2} + 1 - \frac{3|V_0|}{2} - \frac{|V_T|}{2} \le \frac{3p + 1}{2}.$

Case 2. If $V'_2 = \emptyset$, then

$$\alpha_T(G) = \frac{p - |V_T| - |V_0|}{2} + |V_T| = \frac{p + |V_T| - |V_0|}{2} \le \frac{p}{2}.$$

 $\begin{array}{l} \text{Therefore } \sigma(\overline{G}) + \alpha_T(G) \leq p + \alpha_T(G) \leq \frac{3p}{2} \leq \lceil \frac{3p}{2} \rceil.\\ \text{If } G = K_p \text{, then } \sigma(\overline{G}) + \alpha_T(G) = \lceil \frac{3p}{2} \rceil. \end{array}$

Theorem 8. Let G(V, E) be a graph of order p. Then

$$\lceil \frac{p}{2} \rceil \le \sigma_1(\overline{G}) + \alpha_T(G) \le \lfloor \frac{3p}{2} \rfloor.$$

Moreover, the bounds are sharp.

Proof. At first, we prove the right hand inequality. By $\sigma_1(\overline{G}) \leq \lfloor \frac{p}{2} \rfloor$ and $\alpha_T(G) \leq p$, we have

$$\sigma_1(\overline{G}) + \alpha_T(G) \le \lfloor \frac{3p}{2} \rfloor.$$

And $\sigma_1(\overline{G}) + \alpha_T(G) = \lfloor \frac{3p}{2} \rfloor$ if $G = \overline{K}_p$.

Now, we prove the left hand inequality. By Lemma 1, let S be a minimal independent edge dominating set of \overline{G} and $V_1 = V \setminus V(S)$. Then V_1 is an independent set of \overline{G} and $G[V_1] = K_{|V_1|}$, $\alpha_T(G) \ge \alpha_T(G[V_1]) = \lceil \frac{|V_1|}{2} \rceil$. Hence

$$\sigma_1(\overline{G}) + \alpha_T(G) \ge |S| + \lceil \frac{|V_1|}{2} \rceil = |S| + \lceil \frac{p-2|S|}{2} \rceil = \lceil \frac{p}{2} \rceil.$$

And $\sigma_1(\overline{G}) + \alpha_T(G) = \lceil \frac{p}{2} \rceil$ if $G = K_p$.

ACKNOWLEDGMENT

We would like to thank the referees for their valuable suggestions.

References

- 1. S. Arumugam and S. Velammal, Edge domination in graphs, *Taiwanese J. Math.*, 2 (1998), 173-179.
- 2. M.-J. Jou and G. J. Chang, The number of maximum independent sets in graphs, *Taiwanese J. Math.*, **4** (2000), 685-695.
- 3. C.-S. Liao and G. J. Chang, Algorithmic aspect of k-tuple domination in graphs, *Taiwanese J. Math.*, **6** (2002), 415-420.
- 4. R.-J. Shao, C.-H. Lu and T.-X. Yao, On (d, 2)-dominating numbers of butterfly networks, *Taiwanese J. Math.*, 6 (2002), 515-521.
- 5. P. Erdos and A. Meirm, On total matching number and total covering number of complementary graphs, *Discrete Math.*, **19** (1977), 229-233.
- 6. Zhongfu Zhang, On relations between the covering number of a graph and its complementary graph, *Chinese Science Bulletin*, **14** (1988), 1118.
- 7. G. Chartrand and L. L. Foster, *Graphs and Digraphs*, Prindle, Weber and Shmit, 1986.

Zhongfu Zhang Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China and Department of Mathematics, Lanzhou Jiao Tong University, Lanzhou 730070, P. R. China and Department of Computer, Lanzhou Normal College, Lanzhou 730070, P. R. China E-mail: zhang-zhong-fu@yahoo.com.cn Jianxun Zhang Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China

Jingwen Li College of Information and Electrical Engineering, Lanzhou JiaoTong University, Lanzhou, 730070, P. R. China E-mail: leejwcn@yahoo.com.cn