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GENERALIZED KKM THEOREM WITH APPLICATIONS
TO GENERALIZED MINIMAX INEQUALITIES AND

GENERALIZED EQUILIBRIUM PROBLEMS

Lu-Chuan Zeng∗, Soon-Yi Wu∗∗ and Jen-Chih Yao∗∗

Abstract. In this paper, a generalized version of the famous KKM theorem
is obtained by using the concept of generalized KKM mappings introduced
by Chang and Zhang [5]. By employing our generalized KKM theorem, we
obtain a generalized minimax inequality which includes several existing ones
as special cases. Further, by applying our generalized minimax inequality we
establish an existence result for the saddle-point problem under general set-
ting. Finally, we also derive some existence results for generalized equilibrium
problems and generalized variational inequalities.

1. INTRODUCTION

It is well known that the famous Fan-Knaster-Kuratowski-Mazurkiewicz theo-
rem (i.e., FanKKM theorem) and Fan’s minimax inequality have played very im-
portant roles in the study of modern nonlinear analysis. Moreover, a great deal of
effort has gone into the theory and applications of the FanKKM theorem and Fan’s
minimax inequality; see [1-3, 5, 7, 8, 17].

Let E be a Hausdorff topological vector space and let X be a nonempty sub-
set of E . A multivalued mapping G : X → 2E is called a KKM mapping
if co{x1, ..., xn} ⊂ ∪n

i=1G(xi) for each finite subset {x1, ..., xn} ⊂ X where
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co{x1, ..., xn} denotes the convex hull of the set {x1, ..., xn}. In Ref. 1, Ky
Fan gave the following famous infinite-dimensional generalization of Knaster, Ku-
ratowski, and Mazurkiewicz’s classical finite-dimensional result [12].

Theorem 1.1. (FanKKM theorem). See Lemma 1 in [9]. Let E be a Hausdorff
topological vector space, X be a nonempty subset of E , and G : X → 2 E be a
KKM mapping with nonempty closed values. If there exists an x 0 ∈ X such that
G(x0) is a compact set of E , then ∩x∈XG(x) �= ∅.

On the other hand, in [10], Ky Fan also proved the following famous minimax
inequality.

Theorem 1.2. (Fan’s minimax inequality). See Theorem 1 in [10]. Let E be
a Hausdorff topological vector space and X be a nonempty compact convex subset
of E . If a function ϕ : X ×X → (−∞,+∞) satisfies the following conditions:

(i) ϕ(·, y) : X → (−∞,+∞) is upper semicontinuous for each y ∈ X ,
(ii) ϕ(x, ·) : X → (−∞,+∞) is quasiconvex for each x ∈ X , then there exists

a point x∗ ∈ X such that

inf
y∈X

ϕ(x∗, y) ≥ inf
x∈X

ϕ(x, x).

In this paper, we will derive a generalized version of the KKM theorem by
using the concept of generalized KKM mappings introduced by Chang and Zhang
[5]. Then by employing our generalized KKM theorem, we obtain a generalized
minimax inequality which includes several existing ones as special cases. Further,
by applying our generalized minimax inequality we establish an existence result
for the saddle-point problem under general setting. Finally, we also derive some
existence results for generalized equilibrium problems and generalized variational
inequalities.

2. GENERALIZED KKM THEOREM

First, we recall the following definition due to Chang and Zhang [5].

Definition 2.1. Let X be a nonempty subset of a topological vector space E .
A multivalued mapping F : X → 2E is called a generalized KKM mapping if, for
any finite set {x1, ..., xn} ⊂ X , there exists a finite subset {y1, ..., yn} ⊂ E such
that, for any subset {yi1, ..., yik} ⊂ {y1, ..., yn}, 1 ≤ k ≤ n, we have

co{yi1 , ..., yik} ⊂
k⋃

j=1

F (xij).
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Motivated and inspired by the above concept of generalized KKM mapping, we
introduce the following concept.

Definition 2.2. Let X be a nonempty subset of a topological vector space
E . A multivalued mapping F : X → 2E is called a generalized KKM mapping
with respect to K if there exists a nonempty subset K ⊂ E , and for any finite set
{x1, ..., xn} ⊂ X there is a finite subset {y1, ..., yn} ⊂ K such that for any subset
{yi1 , ..., yik} ⊂ {y1, ..., yn}, 1 ≤ k ≤ n, we have

co{yi1 , ..., yik} ⊂
k⋃

j=1

F (xij).

Remark 2.1. It is easy to see that every generalized KKM mapping is a
generalized KKM mapping with respect to E . Obviously, every generalized KKM
mapping with respect to K is a generalized KKM mapping.

We shall need the following result, which is used for proving the main result of
this section.

Lemma 2.1. See Theorem 3.1 in [5]. Let X be a nonempty convex subset
of a Hausdorff topological vector space E . Let F : X → 2 E be a multivalued
mapping such that, for each x ∈ X, F (x) is finitely closed; that is, for every
finite-dimensional subspace L in E, F (x)∩L is closed in the Euclidean topology
in L. Then the family of sets {F (x) : x ∈ X} has the finite intersection property
if and only if F : X → 2E is a generalized KKM mapping.

Definition 2.3. See [17]. Let Y and Z be two topological spaces. A multi-
valued mapping F : Y → 2Z is said to be transfer closed-valued on Y if, for every
x ∈ Y, y /∈ F (x), there exists an element x′ ∈ Y such that y /∈ F (x′), where Ā
denotes the closure of a subset A of a topological space.

It has been shown in [6, 17] that F is a transfer closed-valued mapping if and
only if ⋂

x∈Y

F (x) =
⋂

x∈Y

F (x).

Now we state and prove the main result of this section which will be used in the
sequel.

Theorem 2.1. Let X be a nonempty subset of a Hausdorff topological vector
space E . Let F : X → 2E be a transfer closed-valued mapping such that F̄ :
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X → 2E is a generalized KKM mapping with respect to K. If coK is compact
where coK denotes the closure of convex hull of K, then

⋂

x∈X

F (x) �= ∅.

Proof. Since F̄ : X → 2E is defined by F̄ (x) = F (x) for each x ∈ X , we
know that F̄ is a generalized KKM mapping with closed values. For each x ∈ X
we define

G(x) = coK ∩ F (x).

Consider any finite subset {x1, ..., xn} of X . From Definition 2.2 it follows that
there is a finite subset {y1, ..., yn} ⊂ K such that for any subset {yi1, ..., yik} ⊂
{y1, ..., yn}, 1 ≤ k ≤ n,

co{yi1 , ..., yik} ⊂
k⋃

j=1

F (xij).

Observe that
co{yi1 , ..., yik} ⊂ coK.

Hence it follows from these facts that

co{yi1, ..., yik} ⊂ coK ∩
k⋃

j=1

F (xij )

which implies that

co{yi1 , ..., yik} ⊂ coK ∩
k⋃

j=1

F (xij) =
k⋃

j=1

G(xij).

This shows that G : X → 2E is a generalized KKM mapping with respect to K
and so it is a generalized KKM mapping. Since G(x) is closed for each x ∈ X ,
from Lemma 2.1 we deduce that the family of sets {G(x) : x ∈ X} has the finite
intersection property. Note that G(x) is also compact for each x ∈ X . Thus we
have

coK ∩
⋂

x∈X

F (x) =
⋂

x∈X

coK ∩ F (x) =
⋂

x∈X

G(x) �= ∅

which implies that ⋂

x∈X

F (x) �= ∅.
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Since F is a transfer closed-valued mapping, we have
⋂

x∈X

F (x) =
⋂

x∈X

F (x) �= ∅.

3. GENERALIZED MINIMAX INEQUALITY

First we recall some definitions. Let E be a topological vector space and let X
and Y be two nonempty subsets of E . The following Definitions 3.1-3.3 can be
found in [18].

Definition 3.1. A function φ : X → (−∞,+∞) is said to be quasiconvex if,
for each λ ∈ (−∞,+∞), the set {x ∈ X : φ(x) ≤ λ} is convex; φ is said to be
quasiconcave if −φ is quasiconvex.

Note that φ is quasiconcave [resp., quasiconvex] if and only if, for each λ ∈
(−∞,+∞), the set {x ∈ X : φ(x) > λ} [resp., {x ∈ X : φ(x) < λ}] is convex
[resp., concave].

Definition 3.2. Let X be a nonempty convex subset of E . A function φ(x, y) :
X ×X → (−∞,+∞) is said to be diagonally quasiconvex in y if, for any finite
subset {y1, ..., yn} ⊂ X and any y0 ∈ co{y1, ..., yn}, we have

φ(y0, y0) ≤ max
1≤i≤n

φ(y0, yi);

φ(x, y) is said to be diagonally quasiconcave in y if −φ(x, y) is diagonally quasi-
convex in y.

Definition 3.3. Let X be a nonempty convex subset of E . A function φ(x, y) :
X × X → (−∞,+∞) is said to be γ-diagonally quasiconvex in y for some γ ∈
(−∞,+∞) if, for any finite subset {y1, ..., yn} ⊂ X and any y0 ∈ co{y1, ..., yn},
we have

γ ≤ max
1≤i≤n

φ(y0, yi);

φ(x, y) is said to be γ-diagonally quasiconcave in y for some γ ∈ (−∞,+∞) if
−φ(x, y) is −γ-diagonally quasiconvex in y.

In 1991, Chang and Zhang [5] introduced the following concepts.

Definition 3.4. See Definition 2.2 in [5]. Let X be a nonempty convex
subset of E . A function φ(x, y) : X×Y → (−∞,+∞) is said to be γ-generalized
quasiconvex in y for some γ ∈ (−∞,+∞) if, for any finite subset {y1, ..., yn} ⊂ Y ,
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there is a finite subset {x1, ..., xn} ⊂ X such that, for any subset {xi1 , ..., xik} ⊂
{x1, ..., xn} and any x0 ∈ co{xi1, ..., xik}, we have

γ ≤ max
1≤j≤k

φ(x0, yij);

φ(x, y) is said to be γ-generalized quasiconcave in y for some γ ∈ (−∞,+∞) if
−φ(x, y) is −γ-generalized quasiconvex in y.

Motivated and inspired by Definition 2.2 in [5], we introduce the following
concepts.

Definition 3.5. A function φ(x, y) : X × Y → (−∞,+∞) is said to be γ-
generalized quasiconvex in y with respect to K for some γ ∈ (−∞,+∞) and some
convex subset K ⊂ X if for any finite subset {y1, ..., yn} ⊂ Y , there is a finite
subset {x1, ..., xn} ⊂ K such that, for any subset {xi1 , ..., xik} ⊂ {x1, ..., xn} and
any x0 ∈ co{xi1, ..., xik}, we have

γ ≤ max
1≤j≤k

φ(x0, yij);

φ(x, y) is said to be γ-generalized quasiconcave in y with K for some γ ∈
(−∞,+∞) and some convex subset K ⊂ X if −φ(x, y) is −γ-generalized quasi-
convex in y with K.

Remark 3.1. It is easy to see that whenever K = X , every γ-generalized qua-
siconvex [resp., quasiconcave] function φ(x, y) in y is γ-generalized quasiconvex
[resp., quasiconcave] in y with respect to K .

In [5, Proposition 2.1], Chang and Zhang gave the relation between generalized
KKM mappings and γ-generalized convexity (concavity). Motivated and inspired
by their result, we have the following proposition.

Proposition 3.1. Let X and Y be two nonempty subsets of a topological vector
space E . Let K be a nonempty convex subset of X , φ(x, y) : X×Y → (−∞,+∞)
and γ ∈ (−∞,+∞). Then, the following statements are equivalent:

(i) The mapping G : Y → 2X defined by

G(y) = {x ∈ X : φ(x, y) ≤ γ} [resp., G(y) = {x ∈ X : φ(x, y) ≥ γ}]

is a generalized KKM mapping with respect to K;
(ii) φ(x, y) is γ-generalized quasiconcave in y [resp., quasiconvex] with respect

to K.
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Proof. By the careful analysis of the proof of Proposition 2.1 in [5], we can
readily see that Proposition 3.1 is valid.

Let Y and Z be two topological spaces. A function φ(x, y) : Y × Z →
(−∞,+∞) is said to be a γ-transfer lower semicontinuous function in x for some
γ ∈ (−∞,+∞) [17] if, for all x ∈ Y and y ∈ Z with φ(x, y) > γ , there exist
some point y′ ∈ Z and some neighborhood N (x) of x such that φ(z, y′) > γ for
all z ∈ N (x).

We now state and prove the following generalized minimax inequality.

Theorem 3.1. LetX and Y be two nonempty subsets of a Hausdorff topological
vector space E . Let K ⊂ X be a nonempty convex subset such that K is compact.
Let γ ∈ (−∞,+∞) be a given number, and let φ, ψ : X×Y → (−∞,+∞) satisfy
the following conditions:

(i) For any fixed y ∈ Y, φ(x, y) is a γ-transfer lower semicontinuous function
in x;

(ii) For any fixed x ∈ X, ψ(x, y) is a γ-generalized quasiconcave function in y
with respect to K;

(iii) φ(x, y) ≤ ψ(x, y), for all (x, y) ∈ X × Y .
Then there exists x̄ ∈ X such that

φ(x̄, y) ≤ γ, for all y ∈ Y.

In particular, we have
inf
x∈X

sup
y∈Y

φ(x, y) ≤ γ.

Proof. Define two multivalued mappings T, G : Y → 2X by

T (y) = {x ∈ X : ψ(x, y) ≤ γ} and G(y) = {x ∈ X : φ(x, y) ≤ γ},

for all y ∈ Y . Condition (i) implies that G is a transfer closed-valued mapping
on Y . Indeed, if x /∈ G(y), then φ(x, y) > γ . Since φ(x, y) is γ-transfer lower
semicontinuous in x, there is a y ′ ∈ Y and a neighborhood N (x) of x such that

φ(z, y′) > γ, for all z ∈ N (x).

Then G(y′) ⊂ X \ N (x). Hence x /∈ G(y′). Thus G is transfer closed-valued.
From condition (ii), T is a generalized KKM mapping with respect to K . From
condition (iii), we have that

T (y) ⊂ G(y), for all y ∈ Y,



1504 Lu-Chuan Zeng, Soon-Yi Wu and Jen-Chih Yao

and henceG is also a generalized KKM mapping withK . So, Ḡ is also a generalized
KKM mapping with K. Since K ⊂ X is a nonempty convex subset such that K
is compact, coK = K is compact. From Theorem 2.1, we get

⋂

y∈Y

G(y) �= ∅.

As a result, there exists x̄ ∈ X such that

φ(x̄, y) ≤ γ, for all y ∈ Y.

In particular, we have

inf
x∈X

sup
y∈Y

φ(x, y) ≤ γ.

Remark 3.1. If for every fixed y ∈ Y , the function φ(x, y) is lower semicon-
tinuous in x, then condition (i) of Theorem 3.1 is satisfied immediately.

As an application of Theorem 3.1, we derive the following existence result for
the saddle-point problem.

Theorem 3.2. LetX and Y be two nonempty subsets of a Hausdorff topological
vector space E . Let γ ∈ (−∞,+∞) be a given number and let φ : X × Y →
(−∞,+∞) satisfy the following conditions:

(i) φ(x, y) is γ-transfer lower semicontinuous in x and γ-generalized quasicon-
cave in y with respect to K where K ⊂ X is a nonempty convex subset such
that K is compact;

(ii) φ(x, y) is γ-transfer upper semicontinuous in y and γ-generalized quasicon-
vex in x with respect to M where M ⊂ Y is a nonempty convex subset such
that M is compact.
Then there exists a saddle point of φ(x, y); that is, there exists (x̄, ȳ) ∈ X×Y
such that

φ(x̄, y) ≤ φ(x̄, ȳ) ≤ φ(x, ȳ), for all (x, y) ∈ X × Y.

Moreover, we also have

inf
x∈X

sup
y∈Y

φ(x, y) = sup
y∈Y

inf
x∈X

φ(x, y) = γ.

Proof. By Theorem 3.1 with φ = ψ, there exists x̄ ∈ X such that

(1) φ(x̄, y) ≤ γ, for all y ∈ Y.
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Let f : Y ×X → (−∞,+∞) be defined as f(y, x) = −φ(x, y). By assumption (ii),
f(y, x) is γ-transfer lower semicontinuous in y and −γ-generalized quasiconcave
in x with respect to M where M ⊂ Y is a nonempty convex subset such that M is
compact. Therefore again by Theorem 3.1, there exists ȳ ∈ Y such that

f(ȳ, x) = −φ(x, ȳ) ≤ −γ, for all x ∈ X

which implies that

(2) φ(x, ȳ) ≥ γ, for all x ∈ X.

Combining (1) with (2), we have φ(x̄, ȳ) = γ and

(3) φ(x̄, y) ≤ φ(x̄, ȳ) ≤ φ(x, ȳ), for all (x, y) ∈ X × Y.

Finally, again from (1)-(3), we deduce that

supy∈Y infx∈X φ(x, y) ≤ infx∈X supy∈Y φ(x, y) ≤ supy∈Y φ(x̄, y)

≤ φ(x̄, ȳ) ≤ infx∈X φ(x, ȳ) ≤ supy∈Y infx∈X φ(x, y).

Consequently,
inf
x∈X

sup
y∈Y

φ(x, y) = sup
y∈Y

inf
x∈X

φ(x, y) = γ,

and the proof is completed.

Remark 3.2. For results related to Theorem 3.2, see for example [1, 5, 10, 14,
16].

4. GENERALIZED EQUILIBRIUM PROBLEMS

In this section, we shall employ Theorem 2.1 to derive some existence results
for generalized equilibrium problems. Let Y and Z be two topological spaces. The
multivalued mapping T : Y → 2Z is said to be upper semicontinuous at x0 ∈ Y [4]
if, for any open set V in Z containing T (x0), there is an open neighborhood U of
x0 in Y such that T (x) ⊂ V , for all x ∈ U . We say that T is upper semicontinuous
in Y [4] if it is upper semicontinuous at each point of Y and if also T (x) is a
compact set for each x ∈ Y . For any topological vector space E over real or
complex numbers, E∗ denotes the vector space of all linear continuous functionals
on E and 〈u, v〉 denotes the pairing between u ∈ E∗ and v ∈ E .

Theorem 4.1. Let X be a nonempty subset of a Hausdorff topological vector
space E . Let Φ : E∗ ×X ×X → (−∞,+∞) and f : X ×X → (−∞,+∞) be



1506 Lu-Chuan Zeng, Soon-Yi Wu and Jen-Chih Yao

two functions. Let T : X → 2E∗ be a multivalued mapping and γ ∈ (−∞,+∞)
be a given number. For any (x, y) ∈ X ×X , define φ, ψ : X ×X → (−∞,+∞)
as follows:

φ(x, y) = inf
u∈T (x)

Φ(u, x, y)+ f(x, y),

ψ(x, y) = sup
w∈T (y)

Φ(w, x, y) + f(x, y).

Suppose that the following conditions are satisfied:

(i) ψ(x, y) is lower semicontinuous in x and φ(x, y) is γ-generalized quasicon-
cave in y with respect to K such that φ(x, x) ≤ γ for all x ∈ X where
K ⊂ X is a nonempty convex subset such that K is compact;

(ii) T : X → 2E∗ has nonempty values such that for each fixed y ∈ X ,

{x ∈ X : φ(x, y) ≤ γ} ⊂ {x ∈ X : ψ(x, y) ≤ γ}.

Then there exists x̄ ∈ X such that

sup
w∈T (y)

Φ(w, x̄, y) + f(x̄, y) ≤ γ, for all y ∈ X.

Proof. We define two multivalued mappings G, F : X → 2X by

G(y) = {x ∈ X : ψ(x, y) ≤ γ}, and F (y) = {x ∈ X : φ(x, y) ≤ γ},
for all y ∈ X . Then from condition (ii) we have F (y) ⊂ G(y) for all y ∈ X . Since
φ(x, x) ≤ γ for all x ∈ X , it is known that

y ∈ F (y) ⊂ G(y) for all y ∈ X.

As ψ(x, y) is lower semicontinuous in x, G(y) is closed for each y ∈ X . So G is
transfer closed-valued. Note that φ(x, y) is γ-generalized quasiconcave in y with
respect to K. As a result, F is a generalized KKM mapping with respect to K by
Proposition 3.1. Since F (y) ⊂ G(y) for all y ∈ X , G is also a generalized KKM
mapping with respect to K. So Ḡ is also a generalized KKM mapping with respect
to K. Also note that coK = K is compact. Therefore by Theorem 2.1,

⋂

y∈X

G(y) �= ∅.

That is, there exists x̄ ∈ X such that

sup
w∈T (y)

Φ(w, x̄, y) + f(x̄, y) ≤ γ, for all y ∈ X.
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The proof is now completed.
By adopting the argument of Shih and Tan [15, Lemma 1], we derive the

following lemma which will be used for proving the next theorem.

Lemma 4.1. Let B be a reflexive Banach space, and let X be a nonempty
convex subset of B. Let T : X → 2B∗ be upper semicontinuous from the line
segments inX to the weak topology ofB ∗, let f : X×X → (−∞,+∞) be a convex
and lower semicontinuous function in the first variable, and let γ ∈ (−∞,+∞)
be a given number. Suppose that the function Φ : B ∗ × X × X → (−∞,+∞)
satisfies the following conditions:

(i) Φ(u, x, y) is weakly continuous in u;
(ii) For every bounded subset D ⊂ B ∗ and each {xn} ⊂ X such that xn →

x0 ∈ X , there holds

lim
n→∞ sup

u∈D
|Φ(u, xn, y)− Φ(u, x0, y)| = 0, for all y ∈ X.

Then for each fixed y ∈ X , the intersection of the following set:

A = {x ∈ X : inf
u∈T (x)

Φ(u, x, y) + f(x, y) ≤ γ}

with any line segment is closed in X .

Proof. For x1, x2 ∈ X , let [x1, x2] denote the line segment

[x1, x2] = {tx1 + (1 − t)x2 : t ∈ [0, 1]}.

Let {xn} be a sequence in A ∩ [x1, x2] such that xn → x0 ∈ [x1, x2]. Since
Φ(u, x, y) is weakly continuous in u, and since for each n, T (xn) is weakly compact,
there exists un ∈ T (xn) such that

Φ(un, xn, y) + f(xn, y) = inf
u∈T (xn)

Φ(u, xn, y) + f(xn, y) ≤ γ.

As T is upper semicontinuous on [x1, x2], which is compact, and since each T (xn)
is weakly compact, the set ∪x∈[x1,x2]T (x) is also weakly compact [4, Theorem 3, p.
110]. By the Eberlein-Smulian theorem [11], ∪x∈[x1,x2]T (x) is weakly sequentially
compact. Thus there exists a subsequence {unk

} of {un} such that unk
→ u0 in

the weak topology for some u0 ∈ ∪x∈[x1,x2]T (x). By the upper semicontinuity of
T , u0 ∈ T (x0). Note that condition (i) yields

lim
k→∞

Φ(unk
, x0, y) = Φ(u0, x0, y),
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since unk
→ u0 in the weak topology. Also note that

lim
k→∞

sup
u∈D

|Φ(u, xnk
, y)− Φ(u, x0, y)| = 0,

since D = {unk
} is bounded. Consequently,

lim sup
k→∞

|Φ(unk
, xnk

, y)− Φ(u0, x0, y)|

≤ lim sup
k→∞

|Φ(unk
, xnk

, y)− Φ(unk
, x0, y)|

+ lim sup
k→∞

|Φ(unk
, x0, y)− Φ(u0, x0, y)|

≤ lim sup
k→∞

sup
u∈D

|Φ(u, xnk
, y)− Φ(u, x0, y)|

+ lim sup
k→∞

|Φ(unk
, x0, y)− Φ(u0, x0, y)|

= lim
k→∞

sup
u∈D

|Φ(u, xnk
, y)− Φ(u, x0, y)|

+ lim
k→∞

|Φ(unk
, x0, y)− Φ(u0, x0, y)|

= 0,

so that
lim

k→∞
Φ(unk

, xnk
, y) = Φ(u0, x0, y).

Since f(x, y) is convex and lower semicontinuous in x, it is also lower semicon-
tinuous in the weak topology of B. Hence we have

f(x0, y) ≤ lim inf
k→∞

f(xnk
, y)

≤ lim inf
k→∞

(−Φ(unk
, xnk

, y) + γ)

= − lim sup
k→∞

Φ(unk
, xnk

, y) + γ

= −Φ(u0, x0, y) + γ.

Therefore for each fixed y ∈ X ,

inf
u∈T (x0)

Φ(u, x0, y) + f(x0, y) ≤ Φ(u0, x0, y) + f(x0, y) ≤ γ,

and hence
x0 ∈ A ∩ [x1, x2].

As a result, the set A ∩ [x1, x2] is closed and the proof is completed.
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Now we can derive the following result for generalized equilibrium problems.

Theorem 4.2. Let X be a nonempty convex subset of a reflexive Banach space
B. Let T : X → 2B∗ be upper semicontinuous from the line segments in X to the
weak topology of B∗, and let f : X × X → (−∞,+∞) be a convex and lower
semicontinuous function in the first variable. Let Φ : B ∗ ×X ×X → (−∞,+∞)
be a function and let φ, ψ : X ×X → (−∞,+∞) be define by

φ(x, y) = inf
u∈T (x)

Φ(u, x, y)+ f(x, y), for all (x, y) ∈ X ×X,

ψ(x, y) = sup
w∈T (y)

Φ(w, x, y) + f(x, y), for all (x, y) ∈ X ×X.

Suppose that the following conditions are satisfied:
(i) ψ(x, y) is lower semicontinuous in x and φ(x, y) is 0-generalized quasicon-

cave in y with respect to K where K ⊂ X is a nonempty convex subset such
that K is weakly compact;

(ii) T : X → 2B∗ has nonempty values such that, for each fixed y ∈ X ,

{x ∈ X : φ(x, y) ≤ 0} ⊂ {x ∈ X : ψ(x, y) ≤ 0};

(iii) For each (x, y) ∈ X ×X and each yt = ty + (1− t)x, t ∈ [0, 1], there holds

sup
w∈T (yt)

Φ(w, x, yt) + f(x, yt) ≤ 0 ⇒ sup
w∈T (yt)

Φ(w, x, y)+ f(x, y) ≤ 0;

(iv) Φ(u, x, y) is weakly continuous in u and convex in x such that Φ(u, x, x)+
f(x, x) ≤ 0 for all (u, x) ∈ B∗ ×X ;

(v) For every bounded subset D ⊂ B∗ and each {xn} ⊂ X such that xn → x0 ∈
X , there holds

lim
n→∞ sup

u∈D
|Φ(u, xn, y)− Φ(u, x0, y)| = 0, for all y ∈ X.

Then there exists x̄ ∈ X such that

(4) inf
u∈T (x̄)

Φ(u, x̄, y) + f(x̄, y) ≤ 0, for all y ∈ X.

In addition if Φ(u, x, y) is convex in u and T (x̄) is convex, then there exists
ū ∈ T (x̄) such that

(5) Φ(ū, x̄, y) + f(x̄, y) ≤ 0, for all y ∈ X.

Proof. Since all the assumptions of Theorem 4.1 are satisfied, there exists
x̄ ∈ X such that



1510 Lu-Chuan Zeng, Soon-Yi Wu and Jen-Chih Yao

(6) sup
w∈T (y)

Φ(w, x̄, y) + f(x̄, y) ≤ 0, for all y ∈ X.

Now we claim that inequality (4) holds for y ∈ X . Indeed, suppose that there exists
ȳ ∈ X such that

(7) inf
u∈T (x̄)

Φ(u, x̄, ȳ) + f(x̄, ȳ) > 0.

Let
yt = tȳ + (1− t)x̄ ∈ X, t ∈ [0, 1].

By (6), we have that for each t ∈ [0, 1],

sup
w∈T (yt)

Φ(w, x̄, yt) + f(x̄, yt) ≤ 0,

from which together with condition (iii), it follows that

(8) sup
w∈T (yt)

Φ(w, x̄, ȳ) + f(x̄, ȳ) ≤ 0, for all t ∈ [0, 1].

Now by Lemma 4.1 and (7), the set

U = {x ∈ X : inf
u∈T (x)

Φ(u, x, ȳ) + f(x, ȳ) > 0} ∩ [ȳ, x̄]

is open in [ȳ, x̄] and contains x̄. Since yt → x̄ as t → 0+, there exists t0 ∈ (0, 1]
such that yt ∈ U for all t ∈ (0, t0), so that

inf
w∈T (yt)

Φ(w, yt, ȳ) + f(yt, ȳ) > 0, for all t ∈ (0, t0).

Since f(x, y) is convex in x and Φ(u, x, y) is convex in x such that Φ(u, x, x) +
f(x, x) ≤ 0, ∀(u, x) ∈ B∗ ×X , it follows that for each t ∈ (0, t0),

0 < inf
w∈T (yt)

[Φ(w, yt, ȳ) + f(yt, ȳ)]

≤ inf
w∈T (yt)

[t(Φ(w, ȳ, ȳ) + f(ȳ, ȳ)) + (1− t)(Φ(w, x̄, ȳ) + f(x̄, ȳ))]

≤ inf
w∈T (yt)

[(1− t)(Φ(w, x̄, ȳ) + f(x̄, ȳ))]

= (1− t)[ inf
w∈T (yt)

(Φ(w, x̄, ȳ) + f(x̄, ȳ)].

Consequently,

inf
w∈T (yt)

Φ(w, x̄, ȳ) + f(x̄, ȳ) > 0, for all t ∈ (0, t0),
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which contradicts (8). This shows that (4) is valid.
In addition, suppose that Φ(u, x, y) is convex in u and T (x̄) is convex. Then

by the Kneser’s minimax theorem [13], we have

(9)

inf
u∈T (x̄)

sup
y∈X

Φ(u, x̄, y) + f(x̄, y)

= sup
y∈X

inf
u∈T (x̄)

Φ(u, x̄, y) + f(x̄, y) ≤ 0.

Note that the function

u �→ sup
y∈X

Φ(u, x̄, y) + f(x̄, y)

is convex and weakly lower semicontinuous on B∗. Since T (x̄) is weakly compact,
it follows from (9) that there exists ū ∈ T (x̄) such that

Φ(ū, x̄, y) + f(x̄, y) ≤ 0, for all y ∈ X,

and hence inequality (5) is proved.

Utilizing Theorem 4.2, we can derive the following result for generalized vari-
ational inequalities.

Corollary 4.1. Let X be a nonempty bounded closed convex subset of a
reflexive Banach space B. Suppose that the following conditions are satisfied:

(i) f : X × X → (−∞,+∞) is convex and lower semicontinuous in the first
variable and concave in the second variable such that f(x, x) = 0, for all
x ∈ X;

(ii) T : X → 2B∗ is upper semicontinuous from the line segments in X to the
weak topology of B∗ such that, for each x ∈ X, T (x) is a nonempty subset
of B∗ and, for each fixed y ∈ X ,

{x ∈ X : inf
u∈T (x)

Re〈u, x− y〉+ f(x, y) ≤ 0}
⊂ {x ∈ X : sup

w∈T (y)

Re〈w, x− y〉 + f(x, y) ≤ 0}.

Then there exists x̄ ∈ X such that

inf
u∈T (x̄)

Re〈u, x̄− y〉+ f(x̄, y) ≤ 0, for all y ∈ X.

In addition, if T (x̄) is convex, then there exists ū ∈ T (x̄) such that

Re〈ū, x̄− y〉+ f(x̄, y) ≤ 0, for all y ∈ X.
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Proof. Since B is reflexive and X is a nonempty bounded closed convex
subset of B, X is compact in the weak topology. Put K = X and define Φ :
B∗ ×X ×X → (−∞,+∞) by

Φ(u, x, y) = Re〈u, x− y〉, for all (u, x, y) ∈ B∗ ×X ×X.

Moreover, define φ, ψ : X ×X → (−∞,+∞) as follows:

φ(x, y) = inf
u∈T (x)

Re〈u, x− y〉, and ψ(x, y) = sup
w∈T (y)

Re〈w, x− y〉,

for all (x, y) ∈ X ×X . Next, we verify that conditions (i)-(v) in Theorem 4.2 are
satisfied. Indeed since for each fixed x ∈ X , the mapping

y �→ inf
u∈T (x)

Re〈u, x− y〉

is concave and hence is 0-diagonally concave. Thus, φ(x, y) is 0-generalized qua-
siconcave in y. In particular, φ(x, y) is 0-generalized quasiconcave in y with re-
spect to K. Also for each fixed y ∈ X, ψ(x, y) is lower semicontinuous in x.
This shows that condition (i) in Theorem 4.2 holds. Furthermore, it is easy to
see that conditions (ii), (iv), (v) in Theorem 4.2 also hold. Finally, we shall ver-
ify that condition (iii) in Theorem 4.2 is valid. Suppose that for each (x, y) ∈
X × X, supw∈T (yt) Φ(w, x, yt) + f(x, yt) ≤ 0, ∀yt = ty + (1 − t)x, t ∈ [0, 1].
Utilizing the facts that f(x, y) is concave in y and f(x̄, x̄) = 0, we conclude that

t[ sup
w∈T (yt)

Re〈w, x̄− ȳ〉+ f(x̄, ȳ)]

≤ t sup
w∈T (yt)

Re〈w, x̄− ȳ〉 + tf(x̄, ȳ) + (1 − t)f(x̄, x̄)

≤ sup
w∈T (yt)

Φ(w, x, yt) + f(x̄, yt) ≤ 0.

Consequently,

sup
w∈T (yt)

Re〈w, x̄− ȳ〉+ f(x̄, ȳ) ≤ 0, for all t ∈ [0, 1].

This implies that condition (iii) in Theorem 4.2 holds. Therefore, the conclusion
follows immediately from Theorem 4.2.
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