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BOUNDEDNESS OF COMMUTATORS WITH LIPSCHITZ FUNCTIONS
IN NON-HOMOGENEOUS SPACES

Yan Meng and Dachun Yang

Abstract. Under the assumption that µ is a non-doubling measure on R
d,

the authors obtain the boundedness of commutators generated by Calderón-
Zygmund operators or fractional integrals with Lipschitz functions in the
Lebesgue space and the Hardy space.

1. INTRODUCTION

During recent years, considerable attention has been paid to the study for bound-
edness of singular integrals with non-doubling measure; see [1, 4, 11-20, 7]. A
Radon measure µ on R

d is called a non-doubling measure if it only satisfies the
following growth condition that

µ (B(x, r)) ≤ Crn

for all x ∈ R
d and r > 0, where C > 0 is a constant independent of x and r, and n

is a fixed number satisfying 0 < n ≤ d. The Euclidean space R
d with non-doubling

measure µ is called a non-homogeneous space. Here µ is not assumed to satisfy
the doubling condition. We recall that µ is said to satisfy the doubling condition
if there exists some positive constant C such that µ (B(x, 2r)) ≤ Cµ (B(x, r))
for all x ∈ supp (µ) and r > 0. It is well-known that the doubling condition
is a key assumption in the analysis on spaces of homogeneous type. However,
some recent research has revealed that in some theories, for example, the theory of
Calderón-Zygmund operators, the doubling condition is superfluous. The motivation
for developing the analysis on non-homogeneous spaces and some examples of non-
doubling measures can be found in [22]. We only point out that the analysis on

Received January 21, 2005; accepted January 27, 2005.
Communicated by Der-Chen Chang.
2000 Mathematics Subject Classification: Primary 47B47; Secondary 43A99.
Key words and phrases: Commutator, Calderón-Zygmund operator, Fractional integral, Lipschitz
space, Lebesgue space, Hardy space.

1443



1444 Yan Meng and Dachun Yang

non-homogeneous spaces played an essential role in solving the famous Painlevé’s
problem by Tolsa in [21].

Let K be a function on R
d × R

d \ {(x, y) : x = y} and satisfy that

(1.1) |K(x, y)| ≤ C|x − y|−n

for x �= y, and if |x − y| ≥ 2|x− x′|,

(1.2) |K(x, y)− K(x′, y)|+ |K(y, x) − K(y, x′)| ≤ C
|x− x′|δ
|x − y|n+δ

,

where δ ∈ (0, 1] and C > 0 is a positive constant. The Calderón-Zygmund operator
associated to the above kernel K and the measure µ is formally defined by

(1.3) Tf(x) =
∫

Rd

K(x, y)f(y)dµ(y).

This integral may be not convergent for many functions. Thus we consider the
truncated operator Tε for ε > 0 defined by

Tε(f)(x) =
∫
|x−y|>ε

K(x, y)f(y)dµ(y).

We say that T is bounded on Lp(µ) if the operators Tε are bounded on Lp(µ)
uniformly on ε > 0. In what follows, we always assume that T in (1.3) is bounded
on L2(µ).

Now we define multilinear commutators generated by Calderón-Zygmund oper-
ators and Lipschitz functions. First we recall the following definition of Lipschitz
functions in [2].

Definition 1.1. Let β > 0 and b be a µ-locally integrable function on R
d. We

say b belongs to the space Lip (β, µ) if there is a constant C > 0 such that

(1.4) |b(x)− b(y)| ≤ C|x − y|β

for µ−almost every x and y in the support of µ. The minimal constant C appeared
in (1.4) is the Lip (β, µ) norm of b and is denoted simply by ‖b‖Lip (β).

Let T be the Calderón-Zygmund operator as in (1.3), m ∈ N and bi ∈ Lip (βi, µ),
i = 1, 2, · · · m, the multilinear commutator T�b

is formally defined by

(1.5) T�b
(f)(x) = [bm, · · · , [b2, [b1, T ]] · · ·] (f)(x),

where �b = (b1, b2, · · · , bm), and

(1.6) [b1, T ](f)(x) = b1(x)T (f)(x)− T (b1f)(x).
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Here in (1.5) and (1.6), T stands for a weak limit as ε → 0 of some subsequence of
uniformly bounded operators Tε; see [17, p. 141]. In what follows, if m = 1 and
�b = b, we denote T�b

(f) simply by Tb(f). In this paper, we will study behaviors of
the commutator defined by (1.6) and the multilinear commutator defined by (1.5)
in the Lebesgue space and the Hardy space. The boundedness of commutators with
BMO functions in some spaces of homogeneous type can be found in [8] and [9].

In Section 2, we focus on the boundedness in Lebesgue spaces. In [17], Tolsa
first introduced the space RBMO(µ) and obtained the Lp(µ)-boundedness of com-
mutators generated by Calderón-Zygmund operators and RBMO(µ) functions for
1 < p < ∞. In [6], Hu and the authors obtained the (Lp(µ), Lp(µ))-type estimate
(1 < p < ∞) and the weak type endpoint estimate for multilinear commutators gen-
erated by Calderón-Zygmund operators and RBMO(µ) functions. Let 0 < βi ≤ 1
for i = 1, · · · , m. In this paper, we will establish the (Lp(µ), Lq(µ))-type es-
timate for multilinear operators defined by (1.5) with 1 < p < n/(

∑m
i=1 βi) and

1/q = 1/p − (
∑m

i=1 βi)/n, and their weak (L1(µ), Ln/(n−∑m
i=1 βi)(µ))-type esti-

mate, where 0 <
∑m

i=1 βi < n. When m = 1, we also consider the boundedness
of Tb in the case that n/β < p < ∞ and the endpoint cases, namely, p = n/β or
p = ∞.

It is well-known that when b ∈ BMO(Rd), the commutator Tb is not bounded
on the classical Hardy space H1(Rd) with the d-dimensional Lebesgue measure in
general; see [5]. However, it is not the case for b ∈ Lipβ(Rd); see [10]. Similar to
the result in [10], we will prove that the multilinear commutator defined by (1.5) is
bounded from the Hardy space H1(µ) to some Lebesgue space with non-doubling
measures in Section 3.

In Section 4, we also obtain corresponding results of commutators generated by
fractional integrals with Lipschitz functions in the Lebesgue space and the Hardy
space. We recall that for 0 < α < n and all x ∈ supp (µ), the fractional integral
Iα is defined by

Iα(f)(x) =
∫

Rd

1
|x − y|n−α

f(y) dµ(y).

The behavior of such fractional integrals on a metric space was recently studied by
Garcĺa-Cuerva and Gatto in [3].

Let 0 < α < n. For any m ∈ N, bi ∈ Lip (βi, µ), i = 1, 2, · · · , m, where
0 < βi ≤ 1 and 0 < α +

∑m
i=1 βi < n, the multilinear commutator, I

α;�b
, is defined

by [bm, · · · , [b2, [b1, Iα]] · · · ], that is,

(1.7) I
α;�b

(f)(x) =
∫

Rd

m∏
j=1

[bj(x) − bj(y)]
f(y)

|x − y|n−α
dµ(y),
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and

(1.8) [b1, Iα]f(x) =
∫

Rd

[b1(x)− b1(y)]
f(y)

|x − y|n−α
dµ(y).

If m = 1 and �b = b, we denote I
α;�b

simply by Iα; b.
In what follows, C > 0 always denotes a constant that is independent of main

parameters involved but whose value may differ from line to line. For any index
p ∈ [1,∞], we denote by p′ its conjugate index, namely, 1/p + 1/p′ = 1.

2. BOUNDEDNESS IN LEBESGUE SPACES

This section is devoted to the behavior of commutators in Lebesgue spaces.
Noting that bi ∈ Lip (βi, µ), 0 < βi ≤ 1 for 1 ≤ i ≤ m, we easily deduce that

if 0 <
∑m

i=1 βi < n, then for µ−a. e. x ∈ supp (µ),

∣∣T�b
(f)(x)

∣∣ ≤ C

m∏
i=1

‖bi‖Lip (βi)Iβ(|f |)(x),

where β =
∑m

i=1 βi. From this and the fact that Iβ is bounded from Lp(µ) to
Lq(µ) provided that 1 < p < n/β and 1/q = 1/p − β/n and satisfies the weak
(L1(µ), Ln/(n−β)(µ))-type inequality (see [3]), it is easy to deduce the following
result, which is useful in the sequel.

Theorem 2.1. Let m ∈ N and for i = 1, 2, · · · , m, bi ∈ Lip (βi, µ) with
0 < βi ≤ 1. Let T�b

be as in (1.5). Suppose that 0 <
∑m

i=1 βi < n, then there exists
a constant C > 0 such that

(i) for all bounded functions f with compact support,

‖T�b
(f)‖Lq(µ) ≤ C‖b1‖Lip (β1) · · · ‖bm‖Lip (βm)‖f‖Lp(µ),

where 1 < p < n/(
∑m

i=1 βi) and 1/q = 1/p − (
∑m

i=1 βi)/n.

(ii) for all bounded functions f with compact support and all λ > 0,

µ
({

x∈R
d : |T�b

(f)(x)|>λ
})

≤C

m∏
i=1

‖bi‖Lip (βi)

(
λ−1‖f‖L1(µ)

)n/(n−∑m
i=1βi) .

By contrast with the endpoint estimate for multilinear commutators generated
by singular integrals and RBMO(µ) functions (see Theorem 2 in [6]), we can see
the behavior of multilinear commutators with Lipschitz functions is quite different



Commutators with Lipschitz Functions 1447

from that of multilinear commutators with RBMO(µ) functions; see also [10] for
the doubling measure case.

Now we assume m = 1. In the following, using Theorem 2.1, we consider the
boundedness of commutators defined by (1.6) for n/β < p < ∞, p = n/β and
p = ∞, respectively.

Theorem 2.2. Let b ∈ Lip (β, µ) for 0 < β ≤ δ and Tb be defined as in (1.6),
where δ is the same as in (1.2). If n/β < p < ∞, then there exists a constant
C > 0 such that for all bounded functions f with compact support,

‖Tb(f)‖Lip(β−n/p) ≤ C‖b‖Lip (β)‖f‖Lp(µ).

Remark 2.1. The method used in the proof of Theorem 2.2 is not applicable
to multilinear commutators defined by (1.5) for m ≥ 2.

To prove Theorem 2.2, we begin with recalling some necessary notation. By
a cube Q ⊂ R

d we mean a closed cube whose sides parallel to the axes and we
denote its side length by l(Q). For any α > 0 and any cube Q, αQ denotes the
cube concentric with Q and having side length αl(Q). For two cubes Q1 ⊂ Q2, set

KQ1,Q2 = 1 +
NQ1, Q2∑

k=1

µ(2kQ1)
l(2kQ1)n

,

where NQ1, Q2 is the first positive integer k such that l(2kQ1) ≥ l(Q2).
The following characterization of the space Lip (β, µ) for 0 < β ≤ 1 in [2]

plays a key role in the proof of Theorem 2.2.

Lemma 2.1. For a function b ∈ L1
loc (µ), conditions I, II and III below are

equivalent.

(i) There is a constant C1 ≥ 0 such that

|b(x)− b(y)| ≤ C1|x − y|β

for µ−almost every x and y in the support of µ.

(ii) There exist some constant C2 ≥ 0 and a collection of numbers bQ, one for
each cube Q, such that these two properties hold: For any cube Q

(2.1)
1

µ(2Q)

∫
Q
|b(x)− bQ| dµ(x) ≤ C2l(Q)β,

and for any cube R such that Q ⊂ R and l(R) ≤ 2l(Q),

(2.2) |bQ − bR| ≤ C2l(Q)β.
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(iii) For any given p, 1 ≤ p ≤ ∞, there is a constant C(p) ≥ 0, such that for
every cube Q, we have

[
1

µ(Q)

∫
Q
|b(x)− mQ(b)|p dµ(x)

]1/p

≤ C(p)l(Q)β,

where and in the sequel,

mQ(b) =
1

µ(Q)

∫
Q

b(y) dµ(y)

and also for any cube R such that Q ⊂ R and l(R) ≤ 2l(Q),

|mQ(b)− mR(b)| ≤ C(p)l(Q)β.

In addition, the quantities: inf{C1}, inf{C2} and inf{C(p)} with a fixed p are
equivalent.

We remark that Lemma 2.1 is a slight variant of Theorem 2.3 in [2]. To be
precise, if we replace all balls in Theorem 2.3 of [2] by cubes, we then obtain
Lemma 2.1.

Remark 2.2. For 0 < β ≤ 1, the estimate (2.2) is equivalent to

(2.3) |bQ − bR| ≤ C′
2KQ,Rl(R)β

for any two cubes Q ⊂ R; see Remark 2.7 in [2]. Note that (2.1) and (2.3) also make
sense for β = 0 and the space defined by using them is just the space RBMO(µ)
of Tolsa; see [17]. Therefore, the space Lip (β, µ) for 0 < β ≤ 1 can be seen as a
member of a family containing RBMO(µ).

Proof of Theorem 2.2. Without loss of generality, we may assume ‖b‖Lip (β) =
1. For any cube Q in R

d and any cube R such that Q ⊂ R satisfying l(R) ≤ 2l(Q),
let

aQ = mQ

[
Tb(fχ

Rd\ 3
2
Q)
]
,

and
aR = mR

[
Tb(fχ

Rd\ 3
2
R)
]
.

From Theorem 2.1, it is easy to see that aQ and aR are real numbers. By Lemma
2.1, we need to show that there exists a constant C > 0 such that

(2.4)
1

µ(2Q)

∫
Q
|Tb(f)(x)− aQ| dµ(x) ≤ C‖f‖Lp(µ)l(Q)β−n/p
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and

(2.5) |aQ − aR| ≤ C‖f‖Lp(µ)l(Q)β−n/p.

Let us first establish the estimate (2.4). Decompose f = f1 + f2, where f1 =
fχ3

2
Q and f2 = f − f1. Write

1
µ(2Q)

∫
Q

|Tb(f)(x)− aQ| dµ(x)

≤ 1
µ(2Q)

∫
Q
|Tb(f1)(x)| dµ(x)+

1
µ(2Q)

∫
Q
|Tb(f2)(x)− aQ| dµ(x)

= I1 + I2.

Choose 1 < p1 < n/β < p and q1 such that 1/q1 = 1/p1 − β/n. From the Hölder
inequality and Theorem 2.1, it follows that

I1 ≤ 1
µ(2Q)

[∫
Q
|Tb(f1)(x)|q1 dµ(x)

]1/q1

µ(Q)1−1/q1

≤ C
1

µ(2Q)

[∫
3
2
Q
|f(x)|p1 dµ(x)

]1/p1

µ(Q)1−1/q1

≤ C
1

µ(2Q)

[∫
3
2
Q

|f(x)|p dµ(x)

]1/p

µ

(
3
2
Q

)1/p1−1/p

µ(Q)1−1/q1

≤ C‖f‖Lp(µ)l(Q)β−n/p.

To estimate I2, we need to calculate the difference |Tb(f2)(x) − aQ|. For µ−a. e.
x, y ∈ Q, by (1.1), (1.2) and the Hölder inequality, we obtain

|Tb(f2)(x)− Tb(f2)(y)| ≤
∫

Rd\ 3
2
Q

|[b(x)− b(z)]K(x, z)

−[b(y)− b(z)]K(y, z)| |f(z)| dµ(z)

≤
∫

Rd\ 3
2
Q
|[b(x)−b(z)][K(x, z)−K(y, z)]||f(z)| dµ(z)

+
∫

Rd\ 3
2
Q

|[b(x)−b(z)]−[b(y)−b(z)]| |K(y, z)||f(z)|dµ(z)

≤ C

∞∑
k=1

∫
2k 3

2
Q\2k−1 3

2
Q
|x − z|β |x− y|δ

|x− z|n+δ
|f(z)| dµ(z)

+C

∞∑
k=1

∫
2k 3

2
Q\2k−1 3

2
Q

|x− y|β
|y − z|n |f(z)| dµ(z)
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≤ C
∞∑

k=1

l(2kQ)β−n−δl(Q)δ

∫
2k 3

2
Q\2k−1 3

2
Q

|f(z)| dµ(z)

+C

∞∑
k=1

l(2kQ)−nl(Q)β

∫
2k 3

2
Q\2k−1 3

2
Q

|f(z)| dµ(z)

≤ C‖f‖Lp(µ)

∞∑
k=1

l(2kQ)β−n−δl(Q)δµ

(
2k 3

2
Q

)1−1/p

+C‖f‖Lp(µ)

∞∑
k=1

l(2kQ)−nl(Q)βµ

(
2k 3

2
Q

)1−1/p

≤ C‖f‖Lp(µ)l(Q)β−n/p

{ ∞∑
k=1

2k(β−δ−n/p) +
∞∑

k=1

2−kn/p

}

≤ C‖f‖Lp(µ)l(Q)β−n/p,

where we have used the facts that b ∈ Lip (β, µ) and β ≤ δ, and that if x, y ∈ Q
and z ∈ R

d \ 3
2Q, then

(2.6) |K(x, z) − K(y, z)| ≤ C
|x − y|δ

|x − z|n+δ
,

which is true by (1.2) and (1.1). From the above estimate and the choice of aQ, we
deduce that for µ−a. e. x ∈ Q,

|Tb(f2)(x)− aQ| ≤ C‖f‖Lp(µ)l(Q)β−n/p,

which in turn gives us that

I2 ≤ C‖f‖Lp(µ)l(Q)β−n/p.

Combining the estimates for I1 and I2 yields the estimate (2.4).
Now we turn to estimate (2.5). For µ−a. e. x ∈ Q and µ−a. e. y ∈ R, write∣∣∣Tb(fχ

Rd\ 3
2
Q)(x)− Tb(fχ

Rd\ 3
2
R)(y)

∣∣∣
=

∣∣∣∣∣
∫

Rd\ 3
2
R
[b(x)−b(z)]K(x, z)f(z) dµ(z)

+
∫

3
2
R\ 3

2
Q
[b(x)−b(z)]K(x, z)f(z) dµ(z)

−
∫

Rd\ 3
2
R
[b(y)− b(z)]K(y, z)f(z) dµ(z)

∣∣∣∣∣
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≤
∫

Rd\ 3
2
R
|[b(x)− b(z)]K(x, z) − [b(y)− b(z)]K(y, z)| |f(z)| dµ(z)

+C

∫
3
2
R\ 3

2
Q

|b(x)− b(z)|
|x− z|n |f(z)| dµ(z)

= II1 + II2.

An argument similar to the estimate for I2 tells us that

II1 ≤ C‖f‖Lp(µ)l(R)β−n/p ≤ C‖f‖Lp(µ)l(Q)β−n/p.

Noting that Q ⊂ R and l(R) ≤ 2l(Q), we easily obtain

II2 ≤ C

∫
3
2
R\ 3

2
Q

|f(z)|
|x − z|n−β

dµ(z)

≤ C‖f‖Lp(µ)l(Q)β−nµ
(

3
2R
)1−1/p

≤ C‖f‖Lp(µ)l(Q)β−n/p.

The estimates for II1 and II2 indicate that

|aQ − aR| ≤ C‖f‖Lp(µ)l(Q)β−n/p.

Thus, we have proved (2.5) and completed the proof of Theorem 2.2.
For the endpoint case that p = n/β, we have the following result.

Theorem 2.3. Let b ∈ Lip (β, µ) for 0 < β ≤ 1 and Tb be defined as in (1.6).
Then there is a constant C > 0 such that for all bounded functions f with compact
support,

‖Tb(f)‖RBMO(µ) ≤ C‖b‖Lip (β)‖f‖Ln/β(µ).

Here, we will not give the details for the proof of Theorem 2.3 since we can
prove Theorem 2.3 by a way similar to that of Theorem 2.2. Moreover, this theorem
can be deduced from Theorem 3.1 below in Section 3 by a dual argument.

For another endpoint case that p = ∞, using Theorem 2.2, we obtain the
following result and we point out that some idea of its proof comes from [5].

Theorem 2.4. Let b ∈ Lip (β, µ) for 0 < β < δ and Tb be defined as in (1.6),
where δ is the same as in (1.2). Then the following statements are equivalent.

(1) There exists a constant C > 0 such that for all bounded functions f with
compact support,

‖Tb(f)‖Lip (β) ≤ C‖b‖Lip (β)‖f‖L∞(µ).
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(2) There exists a constant C > 0 such that the function b satisfies the following
conditions: For any cube Q and u ∈ Q,

(2.7)

1
µ(Q)

∫
Q
|b(x)− mQ(b)| dµ(x)

∣∣∣∣∣
∫

Rd\2Q
K(u, y)f(y) dµ(y)

∣∣∣∣∣
≤ C‖f‖L∞(µ)l(Q)β,

and for any cube R such that Q ⊂ R and l(R) ≤ 2l(Q), and any v ∈ R,

(2.8) |mR(b)− mQ(b)|
∣∣∣∣∣
∫

Rd\2R

K(v, y)f(y) dµ(y)

∣∣∣∣∣ ≤ C‖f‖L∞(µ)l(Q)β.

Proof. For any bounded function f with compact support and any cube Q, by
Lemma 2.1 (III) with p = 1, we need to show that

(2.9)
1

µ(Q)

∫
Q

|Tb(f)(x)− mQ[Tb(f)]| dµ(x) ≤ C‖f‖L∞(µ)l(Q)β

is equivalent to (2.7), and for any cube R such that Q ⊂ R and l(R) ≤ 2l(Q),

(2.10) |mR[Tb(f)]− mQ[Tb(f)]| ≤ C‖f‖L∞(µ)l(Q)β

is equivalent to (2.8).
First we prove that (2.9) is equivalent to (2.7). For x ∈ Q, write

Tb(f)(x)− mQ[Tb(f)]

= Tb(fχ2Q)(x)− 1
µ(Q)

∫
Q

Tb(fχ2Q)(z) dµ(z)

+Tb(fχ
Rd\2Q)(x)− 1

µ(Q)

∫
Q

Tb(fχ
Rd\2Q)(z) dµ(z)

= Tb(fχ2Q)(x)−mQ[Tb(fχ2Q)]+ [b(x)− mQ(b)]T (fχ
Rd\2Q)(x)

−T ([b − mQ(b)]fχ
Rd\2Q)(x)− 1

µ(Q)

∫
Q
[b(z)−mQ(b)]T (fχ

Rd\2Q)(z) dµ(z)

+
1

µ(Q)

∫
Q

T ([b − mQ(b)]fχ
Rd\2Q)(z) dµ(z).

From this, it follows that for any x, u ∈ Q,
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Tb(f)(x)− mQ[Tb(f)]

= Tb(fχ2Q)(x)− mQ[Tb(fχ2Q)]

+[b(x)− mQ(b)][T (fχ
Rd\2Q)(x)− T (fχ

Rd\2Q)(u)]

+[b(x)− mQ(b)]T (fχ
Rd\2Q)(u)

− 1
µ(Q)

∫
Q
[b(z)− mQ(b)][T (fχ

Rd\2Q)(z)− T (fχ
Rd\2Q)(u)] dµ(z)

+
1

µ(Q)

∫
Q

[
T ([b−mQ(b)]fχ

Rd\2Q)(z)−T ([b−mQ(b)]fχ
Rd\2Q)(x)

]
dµ(z).

Now, if we define

η1(x) = Tb(fχ2Q)(x),

η2(x, u) = [b(x)− mQ(b)][T (fχ
Rd\2Q)(x)− T (fχ

Rd\2Q)(u)],

η3(x) =
1

µ(Q)

∫
Q

[
T ([b−mQ(b)]fχ

Rd\2Q)(z)−T ([b−mQ(b)]fχ
Rd\2Q)(x)

]
dµ(z)

and
η4(x, u) = [b(x)− mQ(b)]T (fχ

Rd\2Q)(u),

then we easily see

(2.11)
Tb(f)(x)− mQ[Tb(f)] = η1(x)− mQ(η1) + η2(x, u)

−mQ[η2(·, u)] + η3(x) + η4(x, u).

We claim that

(2.12)
1

µ(Q)

∫
Q

|η1(x) − mQ(η1)| dµ(x) ≤ C‖f‖L∞(µ)l(Q)β,

(2.13)
1

µ(Q)

∫
Q
|η2(x, u)| dµ(x) ≤ C‖f‖L∞(µ)l(Q)β

and

(2.14)
1

µ(Q)

∫
Q
|η3(x)| dµ(x) ≤ C‖f‖L∞(µ)l(Q)β.
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Take n/β < p2 < ∞. Theorem 2.2 together with the fact that fχ2Q ∈ Lp2(µ)
gives us that

1
µ(Q)

∫
Q
|η1(x)−mQ(η1)| dµ(x) ≤ C‖fχ2Q‖Lp2(µ)l(Q)β−n/p2 ≤ C‖f‖L∞(µ)l(Q)β.

For (2.13), noting u ∈ Q, by (2.6) and Lemma 2.1 (III) with p = 1, we obtain

1
µ(Q)

∫
Q
|η2(x, u)| dµ(x)

≤ 1
µ(Q)

∫
Q
|b(x)− mQ(b)|

∫
Rd\2Q

|K(x, z) − K(u, z)|f(z)| dµ(z) dµ(x)

≤C‖f‖L∞(µ)
1

µ(Q)

∫
Q
|b(x)−mQ(b)|

∞∑
k=1

∫
2k+1Q\2kQ

|x − u|δ
|x − z|n+δ

dµ(z)dµ(x)

≤C‖f‖L∞(µ)l(Q)β.

Finally we prove (2.14). For x, z ∈ Q, by (2.6),∣∣∣T ([b − mQ(b)]fχ
Rd\2Q)(z) − T ([b − mQ(b)]fχ

Rd\2Q)(x)
∣∣∣

≤
∫

Rd\2Q

|K(z, y) − K(x, y)||b(y)− mQ(b)||f(y)| dµ(y)

≤ C‖f‖L∞(µ)

∞∑
k=1

∫
2k+1Q\2kQ

|x − z|δ
|x − y|n+δ

|b(y)− mQ(b)| dµ(y)

≤ C‖f‖L∞(µ)

∞∑
k=1

l(Q)δl(2kQ)−n−δ l(2kQ)nl(2kQ)β

≤ C‖f‖L∞(µ)l(Q)β,

where we used the fact that β < δ. From this, it follows that

1
µ(Q)

∫
Q
|η3(x)| dµ(x) ≤ C‖f‖L∞(µ)l(Q)β.

Now the equivalence between (2.7) and (2.9) follows easily. Assume first (2.9)
holds. By (2.11), for x, u ∈ Q, we have

η4(x, u) = {Tb(f)(x)− mQ[Tb(f)]} − {η1(x)− mQ(η1)}
−{η2(x, u) − mQ[η2(·, u)]} − η3(x).



Commutators with Lipschitz Functions 1455

Taking the mean over Q in x and using the boundedness of Tb and the estimates
(2.12), (2.13) and (2.14), we obtain

(2.15)

1
µ(Q)

∫
Q
|η4(x, u)| dµ(x) ≤ 1

µ(Q)

∫
Q
|Tb(f)(x)−mQ[Tb(f)]| dµ(x)

+
1

µ(Q)

∫
Q
|η1(x)− mQ(η1)| dµ(x)

+
1

µ(Q)

∫
Q

|η2(x, u)−mQ[η2(·, u)]| dµ(x)

+
1

µ(Q)

∫
Q

|η3(x)| dµ(x)

≤ C‖f‖L∞(µ)l(Q)β.

This means that for any cube Q and u ∈ Q, (2.7) holds. Conversely, assume (2.7)
holds. As we have just seen, this is equivalent to (2.15). Therefore going back to
(2.11) and inserting the estimates (2.12), (2.13), (2.14) and (2.15), we obtain (2.9).

Now we turn our attention to verify that (2.8) is equivalent to (2.10). For any
cube R such that Q ⊂ R and l(R) ≤ 2l(Q), write
(2.16)

mQ[Tb(f)]− mR[Tb(f)] = {mQ[Tb(fχ2R)]− mR[Tb(fχ2R)]}

+
{
mQ[Tb(fχ

Rd\2R)]− mR[Tb(fχ
Rd\2R)]

}
= H1 + H2.

From Theorem 2.2 and Lemma 2.1 (III), it follows that for any n/β < p < ∞,

|H1| ≤ C‖fχ2R‖Lp(µ)l(Q)β−n/p ≤ C‖f‖L∞(µ)l(Q)β.

To estimate H2, for any x ∈ Q and v ∈ R, we write

(2.17)
Tb(fχ

Rd\2R)(x) − mR(Tbfχ
Rd\2R)

= η′
2(x, v)− mR[η′

2(·, v)] + η′
3(x) + η′

4(x, v),

where

η′
2(x, v) = [b(x)− mR(b)][T (fχ

Rd\2R)(x) − T (fχ
Rd\2R)(v)],

η′
3(x) = mR[T ([b− mR(b)]fχ

Rd\2R)] − T ([b − mR(b)]fχ
Rd\2R)(x)

and
η′
4(x, v) = [b(x)− mR(b)]T (fχ

Rd\2R)(v).
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Some computations similar to that for (2.13) and (2.14) tell us that

mR[η′
2(·, v)] ≤ C‖f‖L∞(µ)l(R)β ≤ C‖f‖L∞(µ)l(Q)β,

mQ[η′
2(·, v)] ≤ C‖f‖L∞(µ)l(Q)β

and
mQ(η′

3) ≤ C‖f‖L∞(µ)l(R)β ≤ C‖f‖L∞(µ)l(Q)β.

Taking the mean over x ∈ Q in (2.17) and by (2.16), we obtain

mQ[η′
4(·, v)] = {mQ[Tb(f)]− mR[Tb(f)]} − H1

−mQ[η′
2(·, v)] + mR[η′

2(·, v)]− mQ(η′
3).

An argument similar to the proof of the equivalence between (2.7) and (2.9) tells
us that (2.8) is equivalent to (2.10). This finishes the proof of Theorem 2.4.

3. BOUNDEDNESS IN HARDY SPACE H1(µ)

To study the boundedness of multilinear commutators generated by Calderón-
Zygmund operators with Lipschitz functions in the Hardy space H1(µ) of Tolsa in
[17, 19], we first recall the definition of the “grand” maximal operator MΦ of Tolsa
in [19].

Definition 3.1. Given f ∈ L1
loc (µ), we define

MΦf(x) = sup
ϕ∼x

∣∣∣∣
∫

Rd

fϕ dµ

∣∣∣∣ ,
where the notation ϕ ∼ x means that ϕ ∈ L1(µ) ∩ C1(Rd) and satisfies

(i) ‖ϕ‖L1(µ) ≤ 1,

(ii) 0 ≤ ϕ(y) ≤ 1
|y − x|n for all y ∈ R

d, and

(iii) |∇ϕ(y)| ≤ 1
|y − x|n+1

for all y ∈ R
d.

Based on Theorem 1.2 of Tolsa in [19], we can define the Hardy space H1(µ)
as follows; see also [17].

Definition 3.2. The Hardy space H1(µ) is the set of all functions f ∈ L1(µ)
satisfying that

∫
Rd f dµ = 0 and MΦf ∈ L1(µ). Moreover, we define the norm of

f ∈ H1(µ) by
‖f‖H1(µ) = ‖f‖L1(µ) + ‖MΦf‖L1(µ).
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Using Theorem 2.1, we can obtain the following boundedness of multilinear
commutators in the Hardy space H1(µ).

Theorem 3.1. Let m ∈ N and for i = 1, 2, · · · , m, bi ∈ Lip (βi, µ) and
0 < βi ≤ 1. Let T�b

be as in (1.5). Suppose that 0 <
∑m

i=1 βi < n and 1/q =
1 − (

∑m
i=1 βi)/n. Then T�b

is bounded from H 1(µ) to Lq(µ) with the operator
norm at most C‖b1‖Lip (β1) · · · ‖bm‖Lip (βm).

Remark 3.1. In [17], Tolsa showed that the space RBMO(µ) is the dual
of the Hardy space H1(µ) as in the doubling case. Using this and the fact that
Ln/β(µ) is the dual of Ln/(n−β)(µ), we can deduce Theorem 2.3 from Theorem
3.1. We omit the details.

To prove Theorem 3.1, we first recall the definition of the atomic Hardy space
H1,∞

atb (µ), which has been proved to be the same space as the Hardy space H1(µ);
see [17, 19].

Definition 3.3. Let ρ > 1. A function h ∈ L1
loc(µ) is called a atomic block if

(1) there exists some cube R such that supp (h) ⊂ R,
(2)

∫
Rd h(x) dµ(x) = 0,

(3) for i = 1, 2, there are functions ai supported on cubes Qi ⊂ R and numbers
λi ∈ R such that h = λ1a1 + λ2a2, and

‖ai‖L∞(µ) ≤ [µ(ρQi)KQi,R]−1 .

Then we define
|h|

H
1,∞
atb (µ)

= |λ1| + |λ2|.

We say that f ∈ H1,∞
atb (µ) if there are atomic blocks {hj}j∈N such that

f =
∞∑

j=1

hj

with
∑∞

j=1 |hj|H1,∞
atb (µ)

< ∞. The H1,∞
atb (µ) norm of f is defined by

‖f‖
H1,∞

atb (µ)
= inf



∑

j

|hj|H1,∞
atb (µ)


 ,

where the infimum is taken over all possible decompositions of f in atomic blocks.
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The definition of H1,∞
atb (µ) does not depend on the constant ρ > 1, which was

proved by Tolsa in [17].

Proof of Theorem 3.1. For simplicity, set β =
∑m

i=1 βi. Without loss of
generality, we may assume that ‖bi‖Lip (βi) = 1 for i = 1, · · · , m. It is easy to see
that we only need to prove the theorem for atomic blocks h as in Definition 3.3
with ρ = 4. Let R be a cube such that supp (h) ⊂ R,

∫
Rd h(x) dµ(x) = 0, and

(3.1) h(x) = λ1a1(x) + λ2a2(x),

where λi for i = 1, 2 is a real number, |h|H1,∞
atb (µ) = |λ1| + |λ2|, ai for i = 1, 2 is

a bounded function supported on some cube Qi ⊂ R and satisfies

‖ai‖L∞(µ) ≤ [µ(4Qi)KQi, R]−1 .

Write

‖T�b
(h)‖Lq(µ) ≤

[∫
2R

∣∣T�b
(h)(x)

∣∣q dµ(x)
]1/q

+

[∫
Rd\2R

∣∣T�b
(h)(x)

∣∣q dµ(x)

]1/q

= L1 + L2.

By (3.1), we can further decompose

L1≤|λ1|
[∫

2R

|T�b
(a1)(x)|q dµ(x)

]1/q

+|λ2|
[∫

2R

|T�b
(a2)(x)|qdµ(x)

]1/q

= J1+J2.

To estimate J1, we write

J1 ≤ |λ1|
[∫

2Q1

∣∣T�b
(a1)(x)

∣∣q dµ(x)
]1/q

+ |λ1|
[∫

2R\2Q1

∣∣T�b
(a1)(x)

∣∣q dµ(x)

]1/q

= J11 + J12.

Choose 1 < p3 < n/β and q3 such that 1/q3 = 1/p3 − β/n; then 1 < q < q3. The
Hölder inequality, the fact that KQ1,R ≥ 1, and the (Lp3(µ), Lq3(µ))-type estimate
satisfied by T�b

, which is indicated by Theorem 2.1 in Section 2, tell us that

J11 ≤ |λ1|
[∫

2Q1

∣∣T�b
(a1)(x)

∣∣q3 dµ(x)
]1/q3

µ(2Q1)1/q−1/q3

≤ C|λ1|‖a1‖Lp3(µ)µ(2Q1)1/q−1/q3

≤ C|λ1|‖a1‖L∞(µ)µ(2Q1)1/p3+1/q−1/q3

≤ C|λ1|.
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Denote N2Q1, 2R simply by N1. Invoking the fact that ‖a1‖L∞(µ) ≤ [µ(4Q1)
KQ1, R]−1, we have

J12 ≤ C|λ1|
{

N1+1∑
k=1

∫
2k+1Q1\2kQ1

[∫
Q1

∏m
i=1 |bi(x)−bi(y)|

|x−y|n |a1(y)|dµ(y)
]q

dµ(x)

}1/q

≤ C|λ1|
{

N1+1∑
k=1

l(2kQ1)q(β−n)

∫
2k+1Q1\2kQ1

[∫
Q1

|a1(y)| dµ(y)
]q

dµ(x)

}1/q

≤ C|λ1|
{

N1+1∑
k=1

l(2kQ1)q(β−n)µ(2k+1Q1)‖a1‖q
L∞(µ)µ(Q1)q

}1/q

≤ C|λ1|
{

K−q
Q1,R

N1+2∑
k=2

µ(2kQ1)
l(2kQ1)n

}1/q

≤ C|λ1|,
where we have used the fact that

N1+2∑
k=2

µ(2kQ1)
l(2kQ1)n

≤ CKQ1, R;

see [17, 19]. The estimates for J11 and J12 give the desired estimate for J1. An
argument similar to the estimate for J1 tells us that

J2 ≤ C|λ2|.
Combining the estimates for J1 and J2 yields the desired estimate for L1.

Now we turn our attention to the estimate for L2. For 1 ≤ i ≤ m, we denote
by Cm

i the family of all finite subset σ = {σ(1), · · · , σ(i)} of {1, 2, · · · , m}
with i different elements. For any σ ∈ Cm

i , the complementary sequence σ′ is
given by σ′ = {1, 2 · · · , m} \ σ. For any σ = {σ(1), σ(2), · · · , σ(i)} ∈ Cm

i , set
βσ = βσ(1) + · · ·+βσ(i) and βσ′ = β−βσ. For 1 ≤ i ≤ m, all σ ∈ Cm

i , all y ∈ R
d

and all cubes R, write

[b(y)− mR(b)]σ = [bσ(1)(y) − mR(bσ(1))] · · · [bσ(i)(y) − mR(bσ(i))].

Let xR be the center of R. With the aid of the formula
m∏

i=1

[bi(x)− bi(y)] =
m∑

i=0

∑
σ∈Cm

i

[b(x)− mR(b)]σ[mR(b)− b(y)]σ′,

the estimate (2.6), and the fact that∫
R

h(x) dµ(x) = 0,
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we obtain

L2

≤ C

{ ∞∑
k=1

∫
2k+1R\2kR

∣∣∣∣∣
m∏

i=1

[bi(x)− mR(bi)]
∫

R
K(x, y)h(y) dµ(y)

∣∣∣∣∣
q

dµ(x)

}1/q

+C




∞∑
k=1

∫
2k+1R\2kR

∣∣∣∣∣∣
m∑

i=1

∑
σ∈Cm

i

[b(x)− mR(b)]σ′

×
∫

R
[mR(b)− b(y)]σK(x, y)h(y) dµ(y)

∣∣∣∣
q

dµ(x)
}1/q

≤ C

{ ∞∑
k=1

∫
2k+1R\2kR

∣∣∣∣l(2kR)β

∫
R

[K(x, y)− K(x, xR)]h(y)dµ(y)
∣∣∣∣q dµ(x)

}1/q

+C




∞∑
k=1

∫
2k+1R\2kR

∣∣∣∣∣∣
m∑

i=1

∑
σ∈Cm

i

l(2kR)βσ′
∫

R

l(R)βσ

|x−y|n |h(y)|dµ(y)

∣∣∣∣∣∣
q

dµ(x)




1/q

≤ C

{∞∑
k=1

∫
2k+1R\2kR

∣∣∣∣∣l(2kR)β

∫
R

|y − xR|δ
|x − y|n+δ

(
2∑

i=1

|λi||ai(y)|
)

dµ(y)

∣∣∣∣∣
q

dµ(x)

}1/q

+C




∞∑
k=1

∫
2k+1R\2kR

∣∣∣∣∣∣
m∑

i=1

∑
σ∈Cm

i

l(R)βσ

l(2kR)n−βσ′

∫
R

(
2∑

i=1

|λi||ai(y)|
)

dµ(y)

∣∣∣∣∣∣
q

dµ(x)




1/q

≤ C

(
2∑

i=1

|λi|
){ ∞∑

k=1

l(2kR)q(β−n−δ)l(R)δqµ(2k+1R)

}1/q

+C

(
2∑

i=1

|λi|
)


∞∑
k=1

m∑
i=1

∑
σ∈Cm

i

l(2kR)q(βσ′−n)l(R)βσqµ(2k+1R)




1/q

≤ C

(
2∑

i=1

|λi|
)( ∞∑

k=1

2−qδk

)1/q

+ C

(
2∑

i=1

|λi|
) ∞∑

k=1

m∑
i=1

∑
σ∈Cm

i

2−qβσk




1/q

≤ C

(
2∑

i=1

|λi|
)

.

Combining the estimates for L1 and L2 yields that

‖T�b(h)‖Lq(µ) ≤ C|h|H1, ∞
atb (µ)

and this finishes the proof of Theorem 3.1.
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4. COMMUTATORS OF FRACTIONAL INTEGRALS

In this section, we study the boundedness of commutators defined by (1.8) and
multilinear commutators defined by (1.7) in the Lebesgue space and the Hardy space.

From the facts that for µ−a. e. x ∈ supp (µ),

∣∣∣Iα;�b
(f)(x)

∣∣∣ ≤ C

m∏
i=1

‖bi‖Lip (βi)Iα+β(|f |)(x),

where β =
∑m

i=1 βi and 0 < α + β < n, and the boundedness of Iα+β in [3], we
easily deduce the following result.

Theorem 4.1. Let 0 < α < n, m ∈ N and for i = 1, 2, · · · , m, bi ∈ Lip

(βi, µ), where 0 < βi ≤ 1. Let I
α;�b

be as in (1.7). Suppose that 0 < α+
∑m

i=1 βi <
n, then

(i) there exists a constant C > 0 such that for all bounded functions f with
compact support,

‖I
α;�b

(f)‖Lq(µ) ≤ C‖b1‖Lip (β1) · · · ‖bm‖Lip (βm)‖f‖Lp(µ),

where 1 < p < n/(α +
∑m

i=1 βi) and 1/q = 1/p − (α +
∑m

i=1 βi)/n.

(ii) there exists a constant C > 0 such that for all bounded functions f with
compact support and any λ > 0,

µ
({

x ∈ R
d : |I

α;�b
(f)(x)| > λ

})
≤ C‖b1‖Lip (β1) · · · ‖bm‖Lip (βm)

(
λ−1‖f‖L1(µ)

)n/(n−α−∑m
i=1 βi) .

Using Theorem 4.1, by a method similar to the proof of Theorem 3.1, we can
obtain the following boundedness in the Hardy space H1(µ) of fractional multilinear
commutators (1.7). We omit the details.

Theorem 4.2. Let 0 < α < n, m ∈ N and for i = 1, 2, · · · , m, bi ∈
Lip (βi, µ) and 0 < βi ≤ 1. Let I

α;�b
be as in (1.7). Suppose that 0 < α +∑m

i=1 βi < n and 1/q = 1 − (α +
∑m

i=1 βi)/n, then I
α;�b

is bounded from H 1(µ)
to Lq(µ) with the operator norm at most C‖b 1‖Lip (β1) · · · ‖bm‖Lip (βm).

The following results are true only for commutators defined by (1.8) and can
not extend to the case m ≥ 2.
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Theorem 4.3. Let 0 < α < n and b ∈ Lip (β, µ) for 0 < β ≤ 1. Let Iα; b be
as in (1.8). Suppose n/(α + β) < p < n/α. Then there exists a constant C > 0
such that for all bounded functions f with compact support,

‖Iα; b(f)‖Lip(β+α−n/p) ≤ C‖b‖Lip (β)‖f‖Lp(µ).

Theorem 4.4. Let 0 < α < n and b ∈ Lip (β, µ) for 0 < β ≤ 1. Let Iα; b be
as in (1.8). Then there exists a constant C > 0 such that for all bounded functions
f with compact support,

‖Iα; b(f)‖RBMO(µ) ≤ C‖b‖Lip (β)‖f‖Ln/(α+β)(µ).

Theorem 4.5. Let 0 < α < n and b ∈ Lip (β, µ) for 0 < β < 1. Let Iα; b be
as in (1.8). Then the following statements are equivalent.

(i) There exists a constant C > 0 such that for all bounded functions f with
compact support,

‖Iα; b(f)‖Lip (β) ≤ C‖b‖Lip (β)‖f‖Ln/α(µ).

(ii) There exists a constant C > 0 such that the function b satisfies the following
conditons: For any cube Q and u ∈ Q,

[
1

µ(Q)

∫
Q
|b(x)− mQ(b)| dµ(x)

]∣∣∣∣∣
∫

Rd\2Q
K(u, y)f(y) dµ(y)

∣∣∣∣∣
≤ C‖f‖Ln/α(µ)l(Q)β,

and for any cube R such that Q ⊂ R and l(R) ≤ 2l(Q) and v ∈ R,

|mR(b)− mQ(b)|
∣∣∣∣∣
∫

Rd\2R
K(v, y)f(y) dµ(y)

∣∣∣∣∣ ≤ C‖f‖Ln/α(µ)l(Q)β.

The proofs of Theorem 4.3 and Theorem 4.5 are just linguistic iterations with
a slight modification of the proofs of Theorem 2.2 and Theorem 2.4. Moreover,
Theorem 4.4 can be deduced from Theorem 4.2 by a standard dual argument. We
leave all the details to the reader.
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