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APPROXIMATION TO OPTIMAL STOPPING RULES FOR
GUMBEL RANDOM VARIABLES WITH UNKNOWN

LOCATION AND SCALE PARAMETERS

Tzu-Sheng Yeh and Shen-Ming Lee

Abstract. An optimal stopping rule is a rule that stops the sampling pro-
cess at a sample size n that maximizes the expected reward. In this paper
we will study the approximation to optimal stopping rule for Gumbel ran-
dom variables, because the Gumbel-type distribution is the most commonly
referred to in discussions of extreme values. Let X1, X2, · · ·Xn, · · · be in-
dependent, identically distributed Gumbel random variables with unknown
location and scale parameters,α and β. If we define the reward sequence
Yn = max{X1, X2, · · · , Xn}−cn for c > 0, the optimal stopping rule for Yn

depends on the unknown location and scale parameters α and β. We propose
an adaptive stopping rule that does not depend on the unknown location and
scale parameters and show that the difference between the optimal expected
reward and the expected reward using the proposed adaptive stopping rule
vanishes as c goes to zero. Also, we use simulation in statistics to verify the
results.

1. INTRODUCTION

Extreme value statistics is the study of rare events that lie beyond common expe-
rience. The main contributions for extreme value theory are a set of limiting results
which enable one to analyze unusual events. It can be applied to extremes in many
fields, including nature, engineering, sport and economics. Accurate assessments
of the probabilities of extreme events are sought in a diversity of applications from
environmental impact assessment ([6, 9, 10, 19]) to financial risk management ([8,
14, 22]) and Internet traffic modeling ([16, 18]). The well-established branch of
statistics has been employed in insurance problems for many years, but has only re-
cently been applied in risk management settings. Its proponents argue that the tools

Received September 10, 2004, revised March 4, 2005.
Communicated by Yuh-Jia Lee.
2000 Mathematics Subject Classification: Primary 62L15, Secondary 60G40.
Key words and phrases: Optimal stopping, Uniform integrability, Last times, Gumbel distribution.

1047



1048 Tzu-Sheng Yeh and Shen-Ming Lee

provide many supplement or even substitute for the industry-standard approach to
risk measurement.

The Gumbel-type distribution is the most commonly referred to in discussions
of extreme values. The purpose of this paper is to find the approximation to opti-
mal stopping rule for Gumbel random variables with unknown location and scale
parameters, α and β in the hope to maximize the expected reward in the sampling
process.

An optimal stopping rule is a rule that stops the sampling process at a sample size
n that maximizes the expected reward. Let X1, X2, · · · , Xn, · · · be independent,
identically distributed Gumbel random variables with unknown location and scale
parameters, α and β. The Xi is observed sequentially and we are allowed to stop
observing at any stage. If we stop at the nth observation then we will receive
a reward Yn, where Yn is a measurable function of X1, X2, · · · , Xn. Optimal
stopping rule depends on the distribution of the X i which has the consequence
that determination of an optimal stopping rule requires complete knowledge of the
underlying distribution for the data. If only partial information is available, e.g.
some parameter values are unknown, then it becomes necessary to use an adaptive
stopping rule to approximate the optimal rule.

In this paper, we assume that the Xi is an independent Gumbel random variable
with common probability density function

g(x; α, β) =
1
β

exp(−x − α

β
) exp(− exp(−x − α

β
)), −∞<x<∞, α ∈ R, β > 0

where β and α, respectively, scale and location parameters. Let max{X1, X2, · · · ,

Xn} be the reward for the first n trials and let c > 0 be the cost for each
trial. Then we will consider reward or net gain functions of the form Yn =
max{X1, X2, · · · , Xn} − cn. Such reward function arises in the context of sam-
pling with recall. Discussion of their motivations and utility can be found in [5] or
[7].
The problem of finding an adaptive stopping rule to approximate stopping rule has
been studied by [1] that proved that in certain cases involving unknown location
parameters, the ratio of the expected reward under an adaptive stopping rule to the
optimal expected reward will approach one as c goes to zero. [15] assumed that Xi

is exponential distributed random variable with unknown mean. [21] considered the
case where the Xi has common density function (α − 1)x−αI[1,∞] with unknown
α , where IA(•) denotes the indicator function for the set A. [12] considered expo-
nential distributed random variables with unknown location and scale parameters.
Under the distribution discussed by [12, 15, 21] the optimal stopping rules have
closed forms. [20] considered the case where the Xi is normal with unknown mean
and [11] generalized [20]’s results to include the case where both the mean and vari-
ance are unknown. [13] treated the situation when the X i is Gamma distribution
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with unknown scale parameter, while [2] generalized [13]’s results to include the
case where both the location and scale parameters are unknown. In the situations of
[2, 11, 13, 20] the optimal stopping rules no longer have a closed form and adaptive
stopping rules were used to approximate the optimal stopping rules.

In this paper, we define the optimal stopping rule as

τ∗
c = inf{n ≥ 1 : Xn ≥ γc}(1)

where γc satisfies E(X1 − γc)+ = c, and (X1 − γc)+ = max{X1 − γc, 0}. The
stopping rule τ ∗

c , maximizes E(Yτ ) over all stopping rules τ with E(Y −
τ ) < ∞

where Y −
τ = min{Yτ , 0} and the expected reward is E(Yτ∗

c
) = E(Xτ∗

c
)−cE(τ∗

c ) =
γc. For more details see [4, p. 56-58].

However, in order to use the optimal stopping rule τ∗c it is necessary to know γc,
which in turn requires knowledge of distribution of Xi. If only partial information
about the distribution is available, it would be desirable to find an adaptive stopping
rule to approximate the optimal rule τ∗

c and the optimal reward E(Yτ∗
c
) as well.

Throughout the rest of this paper we assume that the Xi is independent Gumbel
random variable with common probability density function

g(x; α, β) =
1
β

exp(−x − α

β
) exp(− exp(−x − α

β
)), −∞<x<∞, α ∈ R, β>0

We define the function E(X1 − α − x)+ = f(x, β), and we can obtain

(2)

f(x, β) =
∫ ∞

α+x
(y − α − x)

1
β

exp(−y − α

β
) exp(− exp(−y − α

β
))dy

=
∫ e

− x
β

0
(α−βlnz) exp(−z)dz−(α+x)(1− exp(− exp(−x

β
))).

Let γc satisfy

f(γc − α, β) = c.(3)

In this case the optimal stopping rule τ ∗
c will depend on the unknown parameters,α

and β. Therefore, while α and β are replaced by its estimator α̂n and β̂n, we obtain
an adaptive stopping rule τ̂c which is

τ̂c = inf{n ≥ nc : Xn ≥ γ̂c,n},(4)

where γ̂c,n satisfies

f(γ̂c,n − α̂n, β̂n) = c.(5)
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Where

β̂n =

√√√√ 6
π2

1
n

n∑
i=1

(Xi − Xn)2, α̂n = Xn − β̂nd

and nc is a function of c. d is a constant, d = − ∫ ∞
0 ln z exp(−z)dz

.= 0.577216.
The purpose of this paper is to find an adaptive stopping rule in the case of

sequential observed Gumbel random variables with unknown location and scale
parameters. Using a proposed adaptive stopping rule we prove that the difference
between the optimal expected reward and the expected reward using the proposed
adaptive stopping rule vanishes as c goes to zero. In the next section, we give some
preliminary Lemmas which are useful in studying the behaviors of γc and τ ∗

c . In
Section 3, we study the performance of τ̂c and show that if nc = δc−θ for some
δ > 0 and 0 < θ < 1,

E(Yτ∗
c
)− E(Yτ̂c

) −→ 0 as c −→ 0.

In this paper, different from the previous studies [2] and [13], we especially, in
Section 4, use simulation in statistics to verify if the results from our simulation are
in accord with the theorem. In addition, Shu, W.Y. [21] conducted a simulation study
on approximation to optimal stopping rules with heavy tail when α is unknown. Our
study is more complicated because two parameters α and β are considered, and the
optimal stopping rules under Gumbel distribution do not have a closed form; that
is, γc cannot be expressed in explicit form of c, α and β.

2. PRIMARY RESULTS

First we state some properties of f(x, β) which will be needed later.

Lemma 2.1. For fixed β, f(x, β) is a strictly decreasing function in x.

Proof.

∂f

∂x
= −α + x

β
exp(−x

β
) exp(− exp(−x

β
))

−(1 − exp(− exp(−x

β
))) +

α + x

β
exp(−x

β
) exp(− exp(−x

β
))

= exp(− exp(−x

β
))− 1 < 0

We have proved that f(x, β) is a strictly decreasing function in x.
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Lemma 2.2. For fixed x, f(x, β) is a strictly increasing function in β .

Proof.

∂f

∂β
=

x(x + α)
β2

exp(−x

β
) exp(− exp(−x

β
))

−
∫ e

− x
β

0
ln z exp(−z)dz.

−x(x + α)
β2

exp(−x

β
) exp(− exp(−x

β
))

= −
∫ e

− x
β

0
ln z exp(−z)dz > 0.

We have proved that f(x, β) is a strictly increasing function in β .

Using Lemma 2.1 and Lemma 2.2, it is easy to obtain Lemma 2.3

Lemma 2.3. If 0 < β1 < β2, and f(x, β1) = f(y, β2) then y > x.

Let γc satisfy f(γc − α, β) = c , this implies E(X1 − γc)+ = c in this case.
For fixed β, by lemma 2.2, we have γc which is a decreasing function of c.

Lemma 2.4. For any b > 0, we can get γc = o(c−b), as c −→ 0.

Proof.

c = f(γc − α, β) =
∫ ∞

γc

(y − γc)
1
β

exp(−y − α

β
) exp(− exp(−y − α

β
))dy

≤
∫ ∞

γc

(y − γc)
1
β

exp(−y − α

β
)dy

= β exp(−γc − α

β
)

⇒ c ≤ β exp(−γc − α

β
)

⇒ ln c ≤ ln β − γc − α

β

⇒ γc ≤ α − β(ln c − lnβ).

For any b > 0, we can get γc = o(c−b), as c −→ 0.
Therefore, we can choose c0, which is small enough such that for all c ∈ (0, c0),

γc − α > 0,and obtain Lemma 2.5.
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Lemma 2.5. For 0 < c < c0, we have P (X1 ≥ γc)eβ ≥ c

Proof. From the equality as the following

P (X1 ≥ γc) =
∫ ∞

γc

1
β

exp(−x − α

β
) exp(− exp(−x − α

β
))dx

From this integral, we know x ≥ γc and −x−α
β ≤ −γc−α

β < 0. Therefore, we
obtain exp(−x−α

β ) < 1 and exp(− exp(−x−α
β )) > 1/e. Hence

P (X1 ≥ γc) ≥ 1
e

exp(−γc − α

β
)

≥ c

eβ
.

Therefore, we obtain P (X1 ≥ γc)eβ ≥ c.

Lemma 2.6. Let τ∗
c be as defined in (1) . Then {(cτ ∗

c )p : 0 ≤ c ≤ c0} is
uniformly integrable for all p > 0.

Proof. Since τ ∗
c is a geometric random variable, we have cE(τ∗c ) = c[P (X1 ≥

γc)]−1. Using Lemma 2.5 for all c ∈ (0, c0), we obtain sup0≤c≤c0 cE(τ∗
c ) ≤ eβ.

This implies
sup0≤c≤c0 E(cτ∗

c )p ≤ Mp(eβ)p, where Mp only depends on p.

3. PERFORMANCE OF τ̂c

For the rest of this section, we define d = − ∫ ∞
0 ln z exp(−z)dz

.= 0.577216.
Unlike τ ∗

c , the adaptive stopping rule τ̂c defined by (4) and (5) is not a geometric
random variable. The key to study the behavior of τ̂c is to approximate τ̂c by τ+

c,b

and τ−
c,b which are defined as follows:

τ+
c,b = inf{n ≥ 1 : Xn ≥ γ+

c,b}(6)

and

τ−
c,b = inf{n ≥ 1 : Xn ≥ γ−

c,b}(7)

where γ+
c,b and γ−

c,b satisfy

f(γ+
c,b − α − 24cbβd3/π2, (1 + 12cbd2/π2)β) = c,(8)
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and

f(γ−
c,b − α + 24cbβd3/π2, (1− 12cbd2/π2)β) = c,(9)

respectively. By lemma 2.3, we have γ−c,b < γc < γ+
c,b. For fixed positive β,

the function f(x, β) is a function of x only and denotes f(x, β) = h(x). From
(2),(3),(8) and (9) it is easy to obtain lemma 3.1.

Lemma 3.1. For fixed positive β, and β > 0, we have

(a) γc − α = h−1(c);

(b) γ+
c,b − α = (1 + 12cbd2/π2)h−1( c

1+12cbd2/π2 ) + 24cbβd3/π2;

(c) γ−
c,b − α = (1− 12cbd2/π2)h−1( c

1−12cbd2/π2 ) − 24cbβd3/π2.

Proof. From (2) , we have c = f(γc−α, β) = β
∫ ∞

γc−α
β

z exp(−z) exp(− exp(−z))dz

− (γc − α)
∫ ∞

γc−α
β

exp(−z) exp(− exp(−z))dz ≡ h(γc − α).
For fixed β,

f(γc − α, β) = h(γc − α) = c,

hence γc = h−1(c) + α.
For (b), from (2) and (8), we have

f(γ+
c,b − α − 24cbβd3/π2, (1 + 12cbd2/π2)β)

= (1 + 12cbd2/π2)β
∫ ∞

γ+
c,b

−α−24cbβd3/π2

(1+12cbd2/π2)β

z exp(−z) exp(− exp(−z))dz

−(γ+
c,b − α − 24cbβd3/π2)

∫ ∞
γ+
c,b

−α−24cbβd3/π2

(1+12cbd2/π2)β

exp(−z) exp(− exp(−z))dz

= (1 + 12cbd2/π2)h(
γ+

c,b − α − 24cbβd3/π2

1 + 12cbd2/π2
) = c.

We obtain γ+
c,b − α = (1 + 12cbd2/π2)h−1( c

1+12cbd2/π2 ) + 24cbβd3/π2. Similarly
we can obtain
γ−

c,b − α = (1− 12cbd2/π2)h−1( c
1−12cbd2/π2 ) − 24cbβd3/π2.

Lemma 3.2. For any b > 0, 0 ≤ γ+
c,b − γ−

c,b = o(cb/4) as c −→ 0.

Proof. Since

h−1(
c

1 + 12cbd2/π2
) ≥ h−1(

c

1− 12cbd2/π2
),
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and by Lemma 3.1, we have

0 ≤ γ+
c,b − γ−

c,b − 48cbβd3/π2

= h−1(
c

1 + 12cbd2/π2
) − h−1(

c

1 − 12cbd2/π2
)

+
12cbd2

π2

[
h−1(

c

1 + 12cbd2/π2
) + h−1(

c

1− 12cbd2/π2
)
]

≤ h−1(
c

1 + 12cbd2/π2
) − h−1(

c

1 − 12cbd2/π2
)

+
24cbd2

π2
h−1(

c

1 + 12cbd2/π2
).

Using the Mean-Value theorem, we get

h−1(
c

1 + 12cbd2/π2
) − h−1(

c

1− 12cbd2/π2
)

= (h−1)
′
(cx∗)

( −24cb+1d2/π2

1 − 144c2bd4/π4

)
=

(
24cb+1d2/π2

1− 144c2bd4/π4

){
1 − exp(− exp

(
−h−1(cx∗)

β

)
)
}−1

,

where x∗ ∈ ( 1
1+12cbd2/π2 , 1

1−12cbd2/π2 ) and (h−1)
′ is the first derivative of h−1.

Using

h−1(cx∗) ≤ h−1(
c

1 + 12cbd2/π2
) =

γ+
c,b − α − 24cbβd3/π2

1 + 12cbd2/π2
,

and letting c
′

= c
1+12cbd2/π2 in Lemma 3.1, we have γc′ − α = h−1(c

′
) =

γ+
c,b−α−24cbβd3/π2

1+12cbd2/π2 . Replacing c by c
′ in Lemma 2.5 and using Lemma 2.4, we

get

γ+
c,b − γ−

c,b ≤ 24c1+bd2/π2

P (X1≥γc
′ )(1−144c2bd4/π4)

+24cbd2(γc′−α)/π2+48cbβd3/π2

=
24cbd2/π2c

′

P (X1 ≥ γc
′ )(1− 12cbd2/π2)

+24cbd2(γc′ − α)/π2 + 48cbβd3/π2

≤ 24cbd2eβ

1− 12cbd2/π2
+ 24cbd2π−2o(c−b/4) + 48cbβd3/π2 ≤ o(cb/4).

Therefore 0 ≤ γ+
c,b − γ−

c,b = o(cb/4)as c −→ 0.
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Since τ+
c,b and τ−

c,b are geometric distributed, it is easy to obtain Lemma 3.3.

Lemma 3.3.
(i) {(cτ+

c,b)
p : 0 < c ≤ c0} is uniformly integrable for all p > 0.

(ii) {(cτ−
c,b)

p : 0 < c ≤ c0} is uniformly integrable for all p > 0.

Now, for all b > 0 define

L
(1)
c,b = sup{n ≥ 1 :

∣∣∣β̂n − β
∣∣∣ ≥ cb

(
12βd2

π2

)
};(10)

L
(2)
c,b = sup{n ≥ 1 : |α̂n − α| ≥ 2cb

(
12βd3

π2

)
},(11)

L
(2)
c,b,1 = sup{n ≥ 1 :

∣∣∣∣∣ 1n
n∑

i=1

X2
i − (α + βd)2 − β2π2

6

∣∣∣∣∣ ≥ cbβ2d2};(12)

and

L
(1)
c,b,1 = sup{n ≥ 1 :

∣∣Xn − α − βd
∣∣ ≥ cb β2d2

4(α + βd)
}.(13)

Lemma 3.4.

(i) {(c2bL
(1)
c,b )p : 0 < c < c0} is uniformly integrable for all p > 0.

(ii) {(c2bL
(2)
c,b )p : 0 < c < c0} is uniformly integrable for all p > 0.

Proof. For the case of α + βd > 0, we can choose c which is small enough
such that (α + βd)2 − cbβ2d2 > 0, then

{|X2
n − (α + βd)2| < cbβ2d2}

= {(α + βd)2 − cbβ2d2 < X
2
n < (α + βd)2 + cbβ2d2}

= {(α+βd)2(1−cbβ2d2/(α+βd)2)<X
2
n <(α+βd)2(1+cbβ2d2/(α+βd)2)}

⊇ {(α+βd)[1−cbβ2d2/(α+βd)2]1/2<Xn <(α+βd)[1+cbβ2d2/(α+βd)2]1/2}.
Using 0 < x < 1, the inequalities 1+x/4 ≤ (1+x)1/2 and (1−x)1/2 ≤ 1−x/4,

we have

{|X2
n − (α + βd)2| < cbβ2d2}

⊇ {(α + βd)(1− cbβ2d2

4(α + βd)2
) < Xn < (α + βd)(1 +

cbβ2d2

4(α + βd)2
)}

= {|Xn − α − βd| <
cbβ2d2

4(α + βd)
}.
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This implies

{|X2
n−(α + βd)2|≥cbβ2d2} ⊆ {|Xn−α−βd|≥ cbβ2d2

4(α+βd)
}.(14)

From (14), we have{∣∣∣∣∣ 1n
n∑

i=1

X2
i − X

2
n − β2π2

6

∣∣∣∣∣ ≥ 2cbβ2d2

}

⊆
{∣∣∣∣∣ 1n

n∑
i=1

X2
i −(α+βd)2−β2π2

6

∣∣∣∣∣≥cbβ2d2

}⋃{
|X2

n−(α+βd)2|≥cbβ2d2
}

⊆
{∣∣∣∣∣ 1n

n∑
i=1

X2
i −(α + βd)2−β2π2

6

∣∣∣∣∣≥cbβ2d2

}⋃{
|Xn−α−βd|≥ cbβ2d2

4(α+βd)

}
.

Therefore, we obtain{
|β̂2

n − β2| ≥ cb

(
12β2d2

π2

)}
=

{
π2

6
|β̂2

n − β2| ≥ 2cbβ2d2

}
⊆

{∣∣∣∣∣ 1n
n∑

i=1

X2
i −(α + βd)2−β2π2

6

∣∣∣∣∣≥cbβ2d2

}⋃{
|Xn−α − βd|≥ cbβ2d2

4(α+βd)

}
.

Since {∣∣∣β̂2
n − β2

∣∣∣ ≥ cb

(
12β2d2

π2

)}
=

{
β̂2

n ≥ β2

(
1 + cb 12d2

π2

)} ⋃{
β̂2

n ≤ β2

(
1 − cb 12d2

π2

)}
,

and using 0 < x < 1, the inequalities (1 + x)1/2 ≤ 1 + x and (1 − x)1/2 ≥ 1 − x,
we have {

|β̂2
n − β2| ≥ cb

(
12β2d2

π2

)}
=

{
β̂n ≥ β

(
1 + cb 12d2

π2

)1/2
}⋃{

β̂n ≤ β

(
1 − cb 12d2

π2

)1/2
}

⊇
{

β̂n ≥ β

(
1 + cb 12d2

π2

)}⋃{
β̂n ≤ β

(
1 − cb12d2

π2

)}
=

{∣∣∣β̂n − β
∣∣∣ ≥ cbβ

(
12d2

π2

)}
.
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This implies {∣∣∣β̂n − β
∣∣∣ ≥ cbβ

(
12d2

π2

)}
⊆

{∣∣∣∣∣ 1n
n∑

i=1

X2
i − (α + βd)2 − β2π2

6

∣∣∣∣∣ ≥ cbβ2d2

}
⋃{∣∣Xn − α − βd

∣∣ ≥ cbβ2d2

4(α + βd)

}
.

Hence, we have{
L

(1)
c,b > j

}
⊆

{
L

(1)
c,b,1 > j

}⋃{
L

(2)
c,b,1 > j

}
,

and this implies

P
(
L

(1)
c,b > j

)
≤ P

(
L

(1)
c,b,1 > j

)
+ P

(
L

(2)
c,b,1 > j

)
.(15)

By Theorem 7 in Chow and Lai(1975),{(
c2bL

(1)
c,b,1

)p
: 0 < c < c0

}
(16)

and {(
c2bL

(2)
c,b,1

)p
: 0 < c < c0

}
(17)

are uniformly integrable for all p > 0. From (15), (16), and (17), we have{(
c2bL

(1)
c,b

)p
: 0 < c < c0

}
is uniformly integrable for all p > 0.
For part (ii), since{

|α̂n − α| ≥ 2cb

(
12βd3

π2

)}
=

{∣∣∣(Xn − α − βd)− d(β̂n − β)
∣∣∣ ≥ 2cb

(
12βd3

π2

)}
⊆

{∣∣Xn − α − βd
∣∣ ≥ cb

(
12βd3

π2

)} ⋃{
d

∣∣∣β̂n − β
∣∣∣ ≥ cb

(
12βd3

π2

)}
=

{∣∣Xn − α − βd
∣∣ ≥ cb

(
12βd3

π2

)} ⋃{∣∣∣β̂n − β
∣∣∣ ≥ cb

(
12βd2

π2

)}
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Therefore, we have{
L

(2)
c,b > j

}
⊆

{
L

(1)
c,b > j

}⋃{
L

(1)
c,b,2 > j

}
,

where

L
(1)
c,b,2 = sup

{
n ≥ 1 :

∣∣Xn − α − βd
∣∣ ≥ cb

(
12βd3

π2

)}
.

This implies

P
(
L

(2)
c,b > j

)
≤ P

(
L

(1)
c,b > j

)
+ P

(
L

(1)
c,b,2 > j

)
.

Therefore, we obtain {(
c2bL

(2)
c,b

)p
: 0 < c < c0

}
is uniformly integrable for all p > 0.

For the case of α + βd = 0 and α + βd < 0,(13) can be simplified as follows:

L
(1)
c,b,1 = sup{n ≥ 1 :

∣∣Xn

∣∣ ≥ cbβ2d2}
and

L
(1)
c,b,1 = sup{n ≥ 1 :

∣∣Xn − α − βd
∣∣ ≥ cb β2d2

−4(α + βd)
}

respectively. Similarly,we can prove{(
c2bL

(2)
c,b

)p
: 0 < c < c0

}
is uniformly integrable for all p > 0.

Lemma 3.5. {(cτ̂c)p : 0 < c < c0} is uniformly integrable for all p > 0 as
c −→ 0

Proof. For K sufficiently large,c < c0, we have Kc−1 > 2nc. Treating
Kc−1/2 as an integer, we get P (cτ̂c > K) ≤ P (L(1)

c,b ≥ Kc−1/2) + P (L(2)
c,b ≥

Kc−1/2)+P (cτ̂c > K, L
(1)
c,b ≤ Kc−1/2, L

(2)
c,b ≤ Kc−1/2). From the definitions of

L
(1)
c,b , L

(2)
c,b and τ̂c, we have

{cτ̂c > K, L
(1)
c,b ≤ Kc−1/2, L

(2)
c,b ≤ Kc−1/2}

⊆ {Kc−1/2 < n < Kc−1, Xn < γ̂c,n, |β̂n − β|
≤ 12cbβd2/π2, |α̂n − α| ≤ 24cbβd3/π2}
= {Kc−1/2 < n < Kc−1, Xn < γ̂c,n, (1− 12cbd2/π2)β ≤ β̂n

≤ (1 + 12cbd2/π2)β, α − 24cbβd3/π2

≤ α̂n ≤ α + 24cbβd3/π2}.
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Since γ̂c,n satisfies f(γ̂c,n− α̂n, β̂n) = c, and we can get f(γ̂c,n−α−24cbβd3/π2,

β̂n) > c by Lemma 2.1. From Lemma 2.2, we have f(γ̂c,n −α−24cbβd3/π2, (1+
12cbd2/π2)β) > c. Because of f(γ+

c,b − α − 24cbβd3/π2, (1 + 12cbd2/π2)β) = c,
we obtain γ+

c,b−α−24cbβd3/π2 > γ̂c,n−α−24cbβd3/π2. This implies γ+
c,b > γ̂c,n,

and

{cτ̂c > K, L
(1)
c,b ≤ Kc−1/2, L

(2)
c,b ≤ Kc−1/2}

⊆ {Kc−1/2 < n < Kc−1, Xn < γ+
c,b}

⊆ {τ̃+
c,b > Kc−1/2}

where τ̃+
c,b ≡ inf{m ≥ 1 : Xm+Kc−1/2 ≥ γ+

c,b}. Therefore

P (cτ̂c > K) ≤ P (cL(1)
c,b ≥ K/2) + P (cL(2)

c,b ≥ K/2) + P (cτ̃+
c,b > K/2)

= P (cL(1)
c,b ≥ K/2) + P (cL(2)

c,b ≥ K/2) + P (cτ+
c,b > K/2).

From Lemma 3.3 and Lemma 3.4, {(cτ̂c)p : 0 < c < c0} is uniformly integrable
for all p > 0 as c −→ 0.

Lemma 3.6. Let τ̂c be as defined in (4) and (5) with nc = δc−θ , δ > 0 and 0 <

θ < 1 . For 0 < b < θ
2 and as c −→ 0, we have E(τ̂c) ≤ o(1)+(nc−1)+E(τ+

c,b).

Proof. Using Lemma 3.4 for p > (θ/2 − b)−1 and Lemma 3.5 for p = 2, we
get

E(τ̂c) ≤ E(τ̂cI[L
(1)
c,b≥nc ]

) + E(τ̂cI[L
(2)
c,b≥nc ]

) + E(τ̂cI[L
(1)
c,b<nc ,L

(2)
c,b<nc ]

)

≤ [
E(τ̂2

c )
]1/2 {

[
P (L(1)

c,b ≥ nc)
]1/2

+
[
P (L(2)

c,b ≥ nc)
]1/2} + E(inf{n ≥ nc : Xn ≥ γ+

c,b})

≤ [
E(τ̂2

c )
]1/2

n−p/2
c {

[
E(L(1)

c,b )
p
]1/2

+
[
E(L(2)

c,b )p
]1/2}+(nc − 1)+E(τ+

c,b)

≤ [
c2E(τ̂2

c )
]1/2 (c−bp + c−bp)c(θ/2)p−1o(1) + (nc − 1) + E(τ+

c,b)

= o(1) + (nc − 1) + E(τ+
c,b).

The proof is completed.

Lemma 3.7. Let τ̂c be as defined in (4) and (5) with nc = δc−θ , δ > 0 and
0 < θ < 1. Then for 0 < b < θ/2, as c −→ 0,

E(τ̂c) ≥ E(τ−
c,b) + (nc − 1)− o(1).
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Proof. Let L
(1)
c,b , L

(2)
c,b be as defined in (10) and (11) respectively.

E(τ̂c) ≥ E(τ̂cI [L
(1)
c,b<nc ,L

(2)
c,b<nc ]

)

≥ E([inf{n ≥ nc : Xn ≥ γ−
c,b}]I[L

(1)
c,b<nc ,L

(2)
c,b<nc ]

)

≥ E(inf{n ≥ nc : Xn ≥ γ−
c,b})

−E([inf{n ≥ nc : Xn ≥ γ−
c,b}][I[L

(1)
c,b≥nc ]

+ I
[L

(2)
c,b≥nc ]

]).

Taking p = 2 in Lemma 3.3 and p > (θ/2 − b)−1 in Lemma 3.4, we have

E(τ̂c) ≥ (nc − 1) + E(τ−
c,b) − {E[(nc − 1) + τ−

c,b]
2}1/2{[n−p

c E(L(1)
c,b )p]1/2

+[n−p
c E(L(2)

c,b )p]1/2}
≥ (nc − 1) + E(τ−

c,b) − {O(c−2θ) + O(c−θ−1) + O(c−2)}1/2O(c(θ/2−b)p)

≥ (nc − 1) + E(τ−
c,b) − O(c(θ/2−b)p−1)

≥ (nc − 1) + E(τ−
c,b) − o(cq), for some q > 0.

The proof is completed.

From Lemma 3.4, it is easy to obtain Lemma 3.8.

Lemma 3.8. Let L
(1)
c,b and L

(2)
c,b be as defined in (10) and (11) with nc = δc−θ

for some δ > 0 and 0 < θ < 1. Then for b ∈ (0, θ/2),

(i)
∞∑

j=nc

E(|Xj|I[L
(2)
c,b≥j]

) −→ 0, as c −→ 0;

(ii)
∞∑

j=nc

E(|Xj|I [L
(1)
c,b≥j]

) −→ 0, as c −→ 0.

Proof. For (i), since
∞∑

j=nc

E(|Xj|I [L
(2)
c,b≥j]

)

≤
∞∑

j=nc

{E(X2
j )P (L(2)

c,b ≥ j)}1/2

≤
∞∑

j=nc

{E(X2
j )E(L(2)

c,b )2p1/j2p1}1/2



Gumbel Random Variables with Unknown Location and Scale Parameters 1061

≤ {E(X2
1)}1/2{E[(c2bL

(2)
c,b )2p1]}1/2

∞∑
j=nc

c−2bp1j−p1

≤ {E(X2
1)}1/2{E[(c2bL

(2)
c,b )2p1]}1/2c−2bp1O(n−p1+1

c )

≤ O(c−2bp1−θ+p1θ)
= O(cp1(θ−2b)−θ).

Therefore taking p1 such that p1(θ − 2b)− θ > 0, we have
∞∑

j=nc

E(|Xj|I [L
(2)
c,b≥j]

) −→ 0, as c → 0.

Similarly, we can prove part (ii).

Lemma 3.9. E(Xτ̂c
) ≥ E(X1I[X1≥γ+

c,b ])E(τ−
c,b) + o(1) as c −→ 0.

Proof. Let L
(1)
c,b , L

(2)
c,b be as defined in (10) and (11) respectively.

E(Xτ̂c) =
∞∑

j=nc

E(XjI [τ̂c=j])

≥
∞∑

j=nc

E(XjI [τ̂c=j,L
(1)
c,b<j,L

(2)
c,b <j]

) + o(1)

≥
∞∑

j=nc

E(XjI [τ̂c=j,(1−12cbd2/π2)β≤β̂n≤(1+12cbd2/π2)β,|α̂n−α|<2cb
(

12βd3

π2

)
for all n ≥ j])

≥
∞∑

j=nc

E(XjI [τ̂c=j,(1−12cbd2/π2)β≤β̂n≤(1+12cbd2/π2)β,|α̂n−α|<2cb
(

12βd3

π2

)
for all n ≥ j, Xj ≥ γ+

c,b])

≥
∞∑

j=nc

E(XjI [τ̂c≥j,(1−12cbd2/π2)β≤β̂n≤(1+12cbd2/π2)β,|α̂n−α|<2cb
(

12βd3

π2

)
for all n ≥ j, Xj ≥ γ+

c,b])

=
∞∑

j=nc

E(XjI [Xj≥γ+
c,b ]I [τ̂c≥j,L

(1)
c,b <j,L

(2)
c,b <j]

)

≥
∞∑

j=nc

E(XjI [Xj≥γ+
c,b ]{I[τ̂c≥j] − I

[τ̂c≥j,L
(1)
c,b≥j]

− I
[τ̂c≥j,L

(2)
c,b≥j]

})
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≥
∞∑

j=nc

E(XjI [Xj≥γ+
c,b ]I [τ̂c≥j])−

∞∑
j=nc

E(|Xj|I[L
(1)
c,b≥j]

)

−
∞∑

j=nc

E(|Xj|I[L
(2)
c,b≥j]

).

From Lemma 3.8, it is easy to obtain

E(Xτ̂c
) ≥

∞∑
j=nc

P {τ̂c ≥ j}E(XjI [Xj≥γ+
c,b ]) + o(1)

= E(X1I [X1≥γ+
c,b ]) [E(τ̂c) − (nc − 1)] + o(1).

By Lemma 3.7, we have

E(Xτ̂c
) ≥ E(X1I[X1≥γ+

c,b]
)E(τ−

c,b) + o(1).

Lemma 3.10. For all b > 0, γc(1 − P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)) −→ 0 as
c −→ 0.

Proof. Note that

P (X1 ≥ γ+
c,b) = P (X1 − α ≥ γ+

c,b − α)

=
∫ ∞

γ+
c,b−α

1
β

exp(−y

β
) exp(− exp(−y

β
))dy.

≥ 1
e

exp(−γ+
c,b − α

β
).

and γc{1 − P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)} ≤ γc{P (γ−
c,b ≤ X1 ≤ γ+

c,b)}/P (X1 ≥
γ+

c,b). Using the Mean Value theorem to compute P (γ−
c,b ≤ X1 ≤ γ+

c,b), we have

P (γ−
c,b ≤ X1 ≤ γ+

c,b) ≤ (γ+
c,b − γ−

c,b)
1
β

exp(−γ−
c,b − α

β
) exp(− exp(−γ+

c,b − α

β
))

≤ (γ+
c,b − γ−

c,b)
1
β

exp(−γ−
c,b − α

β
).

Therefore

γc(1− P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)) ≤ γc(γ+
c,b − γ−

c,b)
e

β
exp(

γ+
c,b − γ−

c,b

β
)(18)



Gumbel Random Variables with Unknown Location and Scale Parameters 1063

By Lemma 2.4 and Lemma 3.2, take b < p/4 and we have

0 ≤ γc(1− P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b))

≤ o(c−b)o(cp/4)o(1) −→ 0 as c −→ 0.

Lemma 3.11. E(X1I [γc≤X1≤γ+
c,b]

)E(τ−
c,b) −→ 0 as c −→ 0.

Proof.

E(X1I [γc≤X1≤γ+
c,b ])E(τ−

c,b) ≤ E(X1I [γ−
c,b≤X1≤γ+

c,b]
)E(τ−

c,b)

≤ γ+
c,bP (γ−

c,b ≤ X1 ≤ γ+
c,b)/P (X1 ≥ γ−

c,b).

Using Lemma 3.2, we have γ+
c,b = γc + o(cb/4), therefore

0 ≤ E(X1I [γc≤X1≤γ+
c,b ])E(τ−

c,b)

≤ (γc + o(cb/4))(1− P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)).

Using Lemma 3.10 it is easy to obtain the result.

Lemma 3.12. c{E(τ̂c) − E(τ−
c,b)} −→ 0 as c −→ 0.

Proof. From Lemma 3.6., we have

c{E(τ̂c) − E(τ−
c,b)} ≤ c{E(τ+

c,b) − E(τ−
c,b)} + c(nc − 1) + o(1)

= c{E(τ+
c,b) − E(τ−

c,b)} + o(1)

=
cP (γ−

c,b ≤ X1 ≤ γ+
c,b)

P (X1 ≥ γ+
c,b)P (X1 ≥ γ−

c,b)
+ o(1)

≤ cP (γ−
c,b ≤ X1 ≤ γ+

c,b)

P (X1 ≥ γ+
c,b)P (X1 ≥ γc)

+ o(1).

Using (18), Lemma 2.5 and Lemma 3.10, we obtain
c{E(τ̂c) − E(τ−

c,b)} −→ 0 as c −→ 0.

Theorem. Let τ̂c be as defined in (4) and (5) with nc = δc−θ for some δ > 0
and 0 < θ < 1. Then

E(Yτ∗
c
)− E(Yτ̂c) −→ 0 as c −→ 0.
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That is, the expected loss due to not knowing α and β vanishes when we use the
approximating rule τ̂c as c −→ 0.

Proof.

0 ≤ E(Yτ∗
c
)− E(Yτ̂c) = γc − E(Xτ̂c) + cE(τ̂c)

≤ γc − E(X1I [X1≥γ+
c,b ])E(τ−

c,b) + cE(τ̂c)

≤ γc − {E(X1I [X1≥ γc])− E(X1I [γc≤X1≤γ+
c,b]

)}E(τ−
c,b) + cE(τ̂c) + o(1).

From the result in Lemma 3.9, the second inequality holds. Using Lemma 3.11
and the equality

E(X1I [X1≥γc ]) = c + γcP (X1 ≥ γc),

we have

0 ≤ E(Yτ∗
c
)− E(Yτ̂c)

≤ γc{1− P (X1 ≥ γc)/P (X1 ≥ γ−
c,b)}+ c{E(τ̂c) − E(τ−

c,b)} + o(1)

≤ γc{1− P (X1 ≥ γ+
c,b)/P (X1 ≥ γ−

c,b)} + c{E(τ̂c) − E(τ−
c,b)} + o(1).

By Lemma 3.10 and Lemma 3.12, we obtain

0 ≤ E(Yτ∗
c
) − E(Yτ̂c) −→ 0 as c −→ 0.

The main result is proven.

4. SIMULATION STUDY

In this section, we use simulation to compare E(Yτ∗
c
) and E(Yτ̂c,n) . Assuming

that α, β and c are known, we use the numerical method to compute the theoretical
values of E(Yτ∗

c
) . Let nc = [c−θ] + 1 and we try to find out the differences in

different c and θ. The combinations of (α, β),c and θ under our simulation are as
followed:

(1) (α, β) = (3, 2) and (1,1);

(2) c =0.01, 0.001 and 0.0001;

(3) θ = 0.4 and 0.5.

For each combination of (α, β), θ and c, we generate the sequence of X1, X2 · · ·Xn, · · ·
to evaluate Yτ∗

c
and Yτ̂c,n . In our simulation, 1000 data sets are generated. In these

1000 times of simulation, we obtain 1000 values of Yτ̂c,n
and thus compute the

mean of Yτ∗
c
− Yτ̂c,n .
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As seen from Table 1, both values of E(Yτ∗
c
) and the sample mean of Yτ∗

c
show

that the optimal reward grows larger as c becomes smaller. We also find the sample
mean of Yτ∗

c
under 1000 times of simulation is very close to E(Yτ∗

c
) , and the

sample mean of Yτ∗
c
−Yτ̂c,n approaches to 0 as the value of c becomes smaller. The

sample mean of Yτ∗
c
− Yτ̂c,n

when θ = 0.4, is larger than that when θ = 0.5. And
it is more robust and effective to evaluate the estimate of (α, β) when θ = 0.5 than
when θ = 0.4.

From the theorem we know the E(Yτ∗
c
)−E(Yτ̂c,n) ≥ 0, but in simulation results

Avg. Yτ∗
c
− Yτ̂c,n is negative when c = 0.0001. It is because as γ̂c,n > γc, we get

τ̂c,n > τ∗
c and Xτ∗

c
−Xτ̂c,n < 0 by the definition. Moreover, from Yτ∗

c
= Xτ∗

c
−cτ∗

c

and Yτ̂c,n = Xτ̂c,n − cτ̂c,n , we know that Avg. Yτ∗
c
− Yτ̂c,n is possibly negative

in simulation. When c = 0.0001, it took more than one week for the computer to
run 1000 times of simulation. If we want to get more accurate results, we need to
increase the times of simulation, but that will definitely take a very long period of
time. In general, the results show that the value of E(Yτ∗

c
) − E(Yτ̂c,n) approaches

to 0 as c −→ 0. The result accords with the theorem we have proved in Section 3.

Table 1. As different c, (α, β) and θ are concerned, a comparison of bias under the
1000 times of simulation

Ave. Ave.
(α, β) c θ E(Yτ∗

c
) Yτ∗

c
Yτ∗

c
− Yτ̂c,n

(3,2) .0100 .50 13.59413 13.47871 0.97365
.0010 .50 18.20155 18.08640 0.04780
.0001 .50 22.80695 22.73885 -0.01626

(3,2) .0100 .40 13.59413 13.54595 1.18501
.0010 .40 18.20155 18.13743 0.16041
.0001 .40 22.80695 22.82204 0.09603

(1,1) .0100 .50 5.60267 5.60619 0.55970
.0010 .50 7.90751 7.94844 0.23996
.0001 .50 10.21032 10.12079 -0.11683

(1,1) .0100 .40 5.60267 5.61478 0.74359
.0010 .40 7.90751 7.90466 0.27135
.0001 .40 10.21032 10.17189 -0.04366
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