COLORING THE SQUARE OF AN OUTERPLANAR GRAPH

Ko-Wei Lih and Wei-Fan Wang

Abstract

Let G be an outerplanar graph with maximum degree $\Delta(G) \geq 3$. We prove that the chromatic number $\chi\left(G^{2}\right)$ of the square of G is at most $\Delta(G)+2$. This confirms a conjecture of Wegner [8] for outerplanar graphs. The upper bound can be further reduced to the optimal value $\Delta(G)+1$ when $\Delta(G) \geq 7$.

1. Introduction

Only simple graphs are considered in this paper. For two vertices u and v of a graph $G(V, E)$, let dist ${ }_{G}(u, v)$ denote the distance between u and v in G, that is the length of a shortest path connecting them. The square G^{2} of a graph G is the graph defined on the vertex set $V(G)$ such that u and v are adjacent in G^{2} if and only if $1 \leq \operatorname{dist}_{G}(u, v) \leq 2$. A proper k-coloring is a mapping ϕ from $V(G)$ to the set $\{1,2, \ldots, k\}$ such that $\phi(u) \neq \phi(v)$ whenever u and v are adjacent. Obviously, a k-coloring ϕ of G gives rise to a proper coloring of G^{2} if and only if $\phi(u) \neq \phi(v)$ whenever $1 \leq \operatorname{dist}_{G}(u, v) \leq 2$. We call such a coloring ϕ a square- k-coloring of G. The chromatic number $\chi(G)$ is the least number k such that G admits a proper k-coloring. Let $\Delta(G)$ denote the maximum degree of a vertex of the graph G. It is evident that $\chi\left(G^{2}\right) \geq \Delta(G)+1$ for any graph G. This lower bound is sharp. For instance, $\chi\left(T^{2}\right)=\Delta(T)+1$ for every tree T with at least one edge. On the other hand, it is easy to see that $\chi\left(G^{2}\right) \leq \Delta^{2}(G)+1$ for any graph G. This upper bound is also sharp. The 5 -cycle and the Petersen graph are two examples.

Wegner [8] first investigated the chromatic number of the square of a planar graph. He proved that $\chi\left(G^{2}\right) \leq 8$ for every planar graph G with $\Delta(G)=3$ and conjectured that the upper bound could be reduced to 7. Recently, Thomassen [6] has established Wegner's conjecture. Wegner [8] also proposed the following conjecture. The upper bounds are sharp if the conjecture is true.

[^0]Conjecture 1. Let G be a planar graph. Then

$$
\chi\left(G^{2}\right) \leq \begin{cases}\Delta(G)+5 & \text { if } 4 \leq \Delta(G) \leq 7 ; \\ \lfloor 3 \Delta(G) / 2\rfloor+1 & \text { if } \Delta(G) \geq 8 .\end{cases}
$$

This conjecture remains open. The best upper bound as far as we know is $5 \Delta(G) / 3+78$ established by Molloy and Salavatipour [5]. This improves other recently obtained upper bounds: $\lfloor 9 \Delta / 5\rfloor+2$ for $\Delta(G) \geq 749$ ([1]), $\lceil 9 \Delta / 5\rceil+1$ for $\Delta(G) \geq 47$ ([2]), and $2 \Delta(G)+25$ ([4]). For planar graphs of large girth, better upper bounds for $\chi\left(G^{2}\right)$ are known. Wang and Lih [7] proved that if G is a planar graph with girth $g(G)$, then $\chi\left(G^{2}\right) \leq \Delta(G)+5$ when $g(G) \geq 7$, $\chi\left(G^{2}\right) \leq \Delta(G)+10$ when $g(G) \geq 6$, and $\chi\left(G^{2}\right) \leq \Delta(G)+16$ when $g(G) \geq 5$.

The focus of this paper is to study the chromatic number of the square of an outerplanar graph. A planar graph is said to be outerplanar if it has a plane embedding such that all vertices lie on the boundary of the unbounded face. An outerplane graph is a particular embedding of an outerplanar graph. Bodlaender et al. [3] showed that there are polynomial time algorithms for coloring the square of an outerplanar graph G and $\chi\left(G^{2}\right) \leq \Delta(G)+5$. We will reduce the upper bound to $\Delta(G)+2$ when $\Delta(G) \geq 3$, and even to the optimal result $\chi\left(G^{2}\right)=\Delta(G)+1$ when $\Delta(G) \geq 7$.

2. Special Vertices of Degree 2

A vertex of degree k is called a k-vertex. The degree of v in the graph G is denoted by $d_{G}(v)$. For a vertex v of a graph G, define $N_{i}^{G}(v)=\{u \in V(G) \mid$ $\left.\operatorname{dist}_{G}(u, v)=i\right\}$ for $i \geq 1$ and define $\beta_{G}(v)=\left|N_{1}^{G}(v)\right|+\left|N_{2}^{G}(v)\right|$.

For an outerplane graph G, all faces are called inner faces, except that the unbounded one is called the outer face. The boundary edges of the outer face are called outer edges. All other edges are called inner edges. If G is 2-connected and $\Delta(G) \geq 3$, then an inner face f of G is called an end face if the boundary of f contains exactly one inner edge, i.e., the boundary of f contains exactly two vertices of degree 3 or more. The dual graph of G becomes a tree of order at least 2 when the vertex corresponding to the outer face is deleted. Thus there exist at least two leaves that determine two end faces of G.

Let $|G|$ denote the order of G. It is well-known that a 2 -connected outerplane graph G has at least one 2-vertex if $|G| \geq 3$, and at least two nonadjacent 2-vertices if $|G| \geq 4$.

Let M_{3} be the graph obtained from a path $x_{1}, x_{2}, \ldots, x_{7}$ of length 6 , where $x_{1} \neq x_{7}$, by adding the edges $x_{1} x_{3}, x_{3} x_{5}$, and $x_{5} x_{7}$. A graph G is said to contain the configuration M_{3} if M_{3} appears in G as a subgraph such that $d_{G}\left(x_{i}\right)=2$
for $i=2,4,6$ and $d_{G}\left(x_{j}\right)=4$ for $j=1,3,5,7$. Define the function f so that $f(\Delta)=\Delta+1$ when $3 \leq \Delta \leq 6$, and $f(\Delta)=\Delta$ when $\Delta \geq 7$.

Theorem 1. Let G be a 2-connected outerplane graph with $|G| \geq 3$. Suppose that $\Delta(G) \geq 3$ and G does not contain the configuration M_{3} when $\Delta(G)=4$. Then there exists a vertex u of degree 2 such that $\beta_{G}(u) \leq f(\Delta)$.

Proof. Let $\Delta=\Delta(G)$. If $\Delta=3$, then it is easy to see that $\beta_{G}(u) \leq 4$ for some 2-vertex in the boundary of an end face.

So we may assume that $\Delta \geq 4$. The smallest 2 -connected outerplane graph with maximum degree Δ consists of a vertex joined to every vertex of a path of length $\Delta-1$. Evidently, this graph has a 2 -vertex u such that $\beta_{G}(u)=\Delta \leq f(\Delta)$.

We now proceed by induction on $|G|$. Let C be the cycle consisting of all the outer edges.

Since $\Delta \geq 4$, there exists a subpath P of C of length at least 2 whose ends have degree at least 3 in G, but all of whose internal vertices have degree 2 in G. If the length of P is at least 3 , then we may contract the second edge from one end of P to get a shorter path. The result then follows by induction. Therefore we assume that no two 2 -vertices in C are adjacent.

Let an arbitrary 2-vertex u of G have neighbors v and w. If v and w are not adjacent and their degrees are both less than Δ, then we add a new edge $v w$. In so doing, we do not change the value of $\beta_{G}(u)$. We perform such additions wherever possible. So we may assume the following for G.

Convention. Let u be a 2-vertex with neighbors v and w such that $d_{G}(v) \geq$ $d_{G}(w)$. If v and w are not adjacent, then $d_{G}(v)=\Delta$.

In the sequel, we always label the two neighbors v and w of a 2-vertex u in such a way that $d_{G}(v) \geq d_{G}(w)$. Let x_{v} and x_{w} denote the neighbors in $C-u$ of v and w, respectively. Let $P(u): z_{0}, z_{1}, \ldots, z_{t}$ be the shortest subpath of C containing the path x_{v}, v, u, w, x_{w} and containing all the vertices in $N_{1}^{G}(v) \cup N_{1}^{G}(w)$. Then there exists an index i such that $z_{i-2}=x_{v}, z_{i-1}=v, z_{i}=u, z_{i+1}=w$, and $z_{i+2}=x_{w}$. Note that z_{0} and z_{t} are in $N_{1}^{G}(v) \cup N_{1}^{G}(w)$. Now we choose a vertex u such that $P(u)$ has the minimum length.

Case 1. The neighbors of u are not adjacent.
Then by the Convention, $d_{G}(v)=\Delta$. Let H be the graph obtained from G by deleting u and adding the edge $v w$. We see that $|H|<|G|, \Delta(H)=\Delta(G)$, and H satisfies the assumptions of the theorem. By the induction hypothesis, there exists a vertex x such that $d_{H}(x)=2$ and $\beta_{H}(x) \leq f(\Delta)$. Since $d_{H}(x)=2$ and both $d_{H}(v)$ and $d_{H}(w)$ are at least $3, x$ is different from v and w. Obviously, at
most one of v and w may be a neighbor of x. Suppose that both v and w are not neighbors of x. Then $\beta_{G}(x)=\beta_{H}(x)$ and x is what we are looking for.

Suppose that x is adjacent to v and z for some z different from w. If z is not a neighbor of w, then $N_{2}^{G}(x)=\left(N_{2}^{H}(x) \backslash\{w\}\right) \cup\{u\}$. Again, $\beta_{G}(x)=\beta_{H}(x)$. If z is a neighbor of w, then it implies that $d_{G}(v)=\Delta \leq 3$, contradicting our present assumption that $\Delta \geq 4$.

Suppose that x is adjacent to w and z for some z different from v. If z is not a neighbor of v, then $N_{2}^{G}(x)=\left(N_{2}^{H}(x) \backslash\{v\}\right) \cup\{u\}$. Again $\beta_{G}(x)=\beta_{H}(x)$. If z is a neighbor of v, then z and w must be adjacent. Now let the neighbor of z in $C-x$ be y, where $y \neq v$ as $d_{G}(v)=\Delta \geq 4$. Hence $d_{G}(z) \geq 4$. If y is adjacent to v, then $\beta_{G}(x)=5 \leq f(\Delta)$, and we are done. Suppose that y is not a neighbor of v. If $d_{G}(v)=4$, then $d_{G}(z)=4$ since $d_{G}(v)=\Delta$. Again, it follows that $\beta_{G}(x)=5 \leq f(\Delta)$, and we are done.

Suppose next $d_{G}(v) \geq 5$. Let $j \leq i-2$ be the largest index such that z_{j} is a neighbor of v. If $j=0$, then all the vertices at distance at most 2 from x are included in the path $z_{i-1}, z_{i}, \ldots, z_{t}$. It follows that $P(x)$ is strictly shorter than $P(u)$, a contradiction. Hence $j>0$. Let k be the smallest index, $j<k \leq i-2$, such that z_{k} is a 2 -vertex. If $k<i-2$, then all the vertices at distance at most 2 from z_{k} are included in the path $z_{0}, z_{1}, \ldots, z_{i-1}$. It follows that $P\left(z_{k}\right)$ is strictly shorter than $P(u)$, a contradiction. Now suppose that $k=i-2$. In this case, z_{i-2} and z_{j} must be adjacent, i.e., $j=i-3$. If z_{j-1} is also a neighbor of v, then $\beta_{G}\left(z_{i-2}\right)=d_{G}(v) \leq f(\Delta)$.

Suppose that z_{j-1} is not a neighbor of v. If there is at least one vertex z_{p}, $0<p<j-1$, that is adjacent to v, then there is some 2-vertex $z_{m}, p<m<j$, such that all the vertices at distance at most 2 from z_{m} are included in the path z_{0}, z_{1}, \ldots, z_{i-1}. Therefore, $P\left(z_{m}\right)$ is strictly shorter than $P(u)$, a contradiction. Now suppose that no such z_{p} exists. It implies that $d_{G}(v)=\Delta=5$. Hence, $d_{G}(z) \leq 5$. It follows that $\beta_{G}(x) \leq 6=f(\Delta)$, and we are done.

Case 2. The neighbors of u are adjacent.
If v is adjacent to x_{w}, then $\beta_{G}(u)=d_{G}(v) \leq \Delta \leq f(\Delta)$ and u is what we are looking for. Henceforth we assume that v and x_{w} are not adjacent.

Subcase 2.1. The number of indices $j, 0 \leq j<i-2$, such that z_{j} is adjacent to v is at least two.

Let $j<i-2$ be the largest index such that z_{j} is a neighbor of v. Let k be the smallest index, $j<k \leq i-2$, such that z_{k} is a 2 -vertex. If $k<i-2$ or z_{t} is not adjacent to v, then all the vertices at distance at most 2 from z_{k} are included in the path $z_{0}, z_{1}, \ldots, z_{i+1}$. It follows that $P\left(z_{k}\right)$ is strictly shorter than $P(u)$, a contradiction. Now suppose that $k=i-2$ and z_{t} is a neighbor of v. In this case,
z_{i-2} and z_{j} must be adjacent, i.e., $j=i-3$. If z_{j-1} is also a neighbor of v, then $\beta_{G}\left(z_{i-2}\right)=d_{G}(v) \leq f(\Delta)$, and we are done.

Suppose that z_{j-1} is not a neighbor of v. If there is at least one vertex z_{p}, $0<p<j-1$, that is adjacent to v, then there is some 2 -vertex $z_{m}, p<m<j$, such that all the vertices at distance at most 2 from z_{m} are included in the path z_{0}, z_{1}, \ldots, z_{i-1}. Therefore, $P\left(z_{m}\right)$ is strictly shorter than $P(u)$, a contradiction.

Now suppose that no such z_{p} exists. If $d_{G}(v) \geq 7$, or $d_{G}(w) \geq 5$, or $d_{G}(w)=4$ but w is not adjacent to z_{t}, then there is some $z_{s}, i+2<s<t$, that is a neighbor of v or w. It follows that there is some 2-vertex $z_{m}, i+2 \leq m<s$, such that all the vertices at distance at most 2 from z_{m} are included in the path z_{i-1}, z_{i}, \ldots, z_{t}. Therefore, $P\left(z_{m}\right)$ is strictly shorter than $P(u)$, a contradiction. The remaining possibilities are such that $d_{G}(v)=6$ and $d_{G}(w)=3$, or $d_{G}(w)=4$ and w is adjacent to z_{t}. We see that $\beta_{G}(u)=7 \leq f(\Delta)$ in both cases and u satisfies the theorem.

Subcase 2.2. The vertex z_{0} is precisely x_{v}.
If z_{t} is a neighbor of w, then $\beta_{G}(u) \leq 5 \leq f(\Delta)$ since $3 \leq d_{G}(w) \leq d_{G}(v) \leq 4$ in this case. Suppose that z_{t} is adjacent to v, but not to w. It is obvious that $d_{G}(v) \geq 4$. If $d_{G}(w) \geq 4$, then there is some $z_{j}, i+2<j<t$, that is adjacent to w. Thus there is some 2-vertex $z_{k}, i+2 \leq k<j$, such that all the vertices at distance at most 2 from z_{k} are included in the path $z_{i-1}, z_{i}, \ldots, z_{t}$. It follows that $P\left(z_{k}\right)$ is strictly shorter than $P(u)$, a contradiction. So suppose $d_{G}(w)=3$. If $d_{G}(v)=4$, then $\beta_{G}(u)=5 \leq f(\Delta)$, hence u satisfies the theorem. If $d_{G}(v) \geq 5$, then there is some $z_{p}, i+2<p<t$, that is adjacent to v. Since v is not adjacent to x_{w}, there is some 2 -vertex $z_{q}, i+2 \leq q<p$, such that all the vertices at distance at most 2 from z_{q} are included in the path $z_{i-1}, z_{i}, \ldots, z_{t}$. It follows that $P\left(z_{q}\right)$ is strictly shorter than $P(u)$, a contradiction.

Subcase 2.3. The vertex z_{0} is different from x_{v} and is a neighbor of v such that no vertices among $z_{j}, 0<j<i-2$, are adjacent to v.

First assume that z_{t} is not a neighbor of v. Thus $d_{G}(v)=4$. If $d_{G}(w)=3$, then $\beta_{G}(u)=5 \leq f(\Delta)$. If $d_{G}(w)=4$, then $\beta_{G}(u)=6 \leq f(\Delta)$ when $\Delta \geq 5$. In both cases, u satisfies the theorem.

Now assume that $\Delta=4$. If the degree of z_{i-2} is 4 , or is 3 but z_{i-2} is not a neighbor of z_{0}, then some $z_{j}, 0<j<i-2$, is a neighbor of z_{i-2}. Thus there is some 2-vertex $z_{k}, j<k<i-2$, such that all the vertices at distance at most 2 from z_{k} are included in the path $z_{0}, z_{1}, \ldots, z_{i-1}$. It follows that $P\left(z_{k}\right)$ is strictly shorter than $P(u)$, a contradiction.

Suppose that z_{i-2} is of degree 3 and adjacent to z_{0}. If z_{i-3} is of degree 2 and adjacent to z_{0}, then $\beta_{G}\left(z_{i-3}\right)=4<f(\Delta)$. Thus z_{i-3} satisfies the theorem. If z_{i-3} is of degree 2 , but not adjacent to z_{0}, then all the vertices at distance at most

2 from z_{i-3} are included in the path $z_{0}, z_{1}, \ldots, z_{i-1}$. It follows that $P\left(z_{i-3}\right)$ is strictly shorter than $P(u)$, a contradiction.

Suppose that the degree of z_{i-3} is at least 3. Then z_{i-3} cannot be a neighbor of z_{0}, for otherwise v would be a cut vertex. Then there is some 2 -vertex z_{k}, $1<k<i-3$, such that all the vertices at distance at most 2 from z_{k} are included in the path $z_{0}, z_{1}, \ldots, z_{i-2}$. It follows that $P\left(z_{k}\right)$ is strictly shorter than $P(u)$, a contradiction.

Consequently, the only possibility left for z_{i-2} is its degree is 2 . If z_{i-2} is not adjacent to z_{0}, then all the vertices at distance at most 2 from z_{i-2} are included in the path $z_{0}, z_{1}, \ldots, z_{i+1}$. It follows that $P\left(z_{i-2}\right)$ is strictly shorter than $P(u)$, a contradiction. If z_{i-2} is adjacent to z_{0}, i.e., $i=3$, and $d_{G}\left(z_{0}\right)=3$, then $\beta_{G}\left(z_{1}\right)=5=f(\Delta)$. Thus z_{1} satisfies the theorem. So the last remaining possibility is that z_{1} is a 2 -vertex, z_{1} is adjacent to z_{0}, and z_{0} is a 4 -vertex.

Now since $d_{G}(v)=d_{G}(w)=4$, an argument similar to the above for z_{i-2} can be applied to z_{5}. We either obtain a desired 2 -vertex or the degrees of z_{5} and z_{6} are 2 and 4 , respectively. Note that the vertices $z_{0}, z_{1}, \ldots, z_{6}$ would induce a configuration M_{3}. However, that is ruled out by the assumptions of the theorem.

Finally, suppose that z_{t} is a neighbor of v. This implies that $d_{G}(v) \geq 5$. If $d_{G}(v) \geq 6$, or $d_{G}(w) \geq 5$, or if $d_{G}(v)=5, d_{G}(w)=4$, and z_{t} is not adjacent to w, then there is some $z_{j}, i+2<j<t$, that is adjacent to v or w. It follows that there is some 2 -vertex $z_{k}, i+2 \leq k<j$, such that all the vertices at distance at most 2 from z_{k} are included in the path $z_{i-1}, z_{i}, \ldots, z_{t}$. Therefore, $P\left(z_{k}\right)$ is strictly shorter than $P(u)$, a contradiction. If $d_{G}(v)=5$, and $d_{G}(w)=3$ or $d_{G}(w)=4$ but z_{t} is adjacent to w, then $\beta_{G}(u)=6 \leq f(\Delta)$. Thus u satisfies the theorem.

Let $C_{5}+e$ be the graph obtained from a cycle of length 5 with two nonconsecutive vertices joined. Then its maximum degree is 3 and $\beta_{C_{5}+e}(u)=4$ for any vertex u.

For $n \geq 3$, let O_{n} denote the outerplane graph obtained by adding n edges $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n} u_{1}$ inside a cycle $u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{n}, v_{n}, u_{1}$ of length $2 n$. We have $\Delta\left(O_{3}\right)=4$ and $\beta_{O_{3}}(u)=5$ for any vertex u. Let A be the graph obtained from O_{4} by joining the vertices u_{1} and u_{3}. Then $\Delta(A)=5$ and $\beta_{A}(u)=6$ for any 2-vertex u. Let B be the graph obtained from O_{6} by adding the new triangle $u_{1} u_{3} u_{5}$. Then $\Delta(B)=6$ and $\beta_{B}(u)=7$ for any 2 -vertex u. Therefore, the upper bound in Theorem 1 cannot be further reduced when $3 \leq \Delta \leq 6$.

3. Coloring the Square

Let G be a connected graph. It is straightforward to verify the following facts.
(1) If $\Delta(G)=1$, then $\chi\left(G^{2}\right)=2$.
(2) If $\Delta(G)=2$ and G is a path, then $\chi\left(G^{2}\right)=3=\Delta(G)+1$. If $\Delta(G)=2$ and G is a cycle, then $3 \leq \chi\left(G^{2}\right) \leq 5$. Moreover, $\chi\left(G^{2}\right)=3=\Delta(G)+1$ if and only if $|G| \equiv 0(\bmod 3) ; \chi\left(G^{2}\right)=5=\Delta(G)+3$ if and only if $|G|=5$.

Lemma 2. Let x be a cut vertex of the graph G. Let G_{i} be the subgraph induced by $V_{i} \cup\{x\}$ for $i=1,2, \ldots, m$, where V_{i} 's are the vertex sets of the components of $G-x$. Then $\chi\left(G^{2}\right)=\max _{1 \leq i \leq m}\left\{d_{G}(x)+1, \chi\left(G_{i}^{2}\right)\right\}$.

Proof. Let $k=\max _{1 \leq i \leq m}\left\{d_{G}(x)+1, \chi\left(G_{i}^{2}\right)\right\}$. Since G_{i} is a subgraph of $G, \chi\left(G^{2}\right) \geq \chi\left(G_{i}^{2}\right)$ for every $i, 1 \leq i \leq m$. Moreover, it is obvious that $\chi\left(G^{2}\right) \geq \Delta(G)+1 \geq d_{G}(x)+1$. It follows that $\chi\left(G^{2}\right) \geq k$. Conversely, let each G_{i} be colored with a square- $\chi\left(G_{i}^{2}\right)$-coloring. Then all the neighbors of x in G_{i} have different colors. By suitably renaming the colors, we can color x with the same color in every G_{i} and all the neighbors of x in G are colored differently. It follows that $k \geq \chi\left(G^{2}\right)$.

Theorem 3. Let G be an outerplane graph with $\Delta(G) \geq 3$. Then $\chi\left(G^{2}\right) \leq$ $\Delta(G)+2$. Moreover, $\chi\left(G^{2}\right)=\Delta(G)+1$ if $\Delta(G) \geq 7$.

Proof. We proceed by induction on the order $|G|$. We may suppose the connectedness of G. If $|G| \leq 4$, the theorem holds trivially. Let $\Delta(G) \geq 3$ and $|G| \geq 5$.

Suppose that G is 2-connected. If $\Delta(G) \neq 4$, or $\Delta(G)=4$ but G does not contain the configuration M_{3}, then there is a 2 -vertex u of G such that $\beta_{G}(u) \leq$ $\Delta(G)+1$ by Theorem 1. Let v and w be the neighbors of u. If v and w are not adjacent, define H to be $G-u+v w$. If v and w are adjacent, define H to be $G-u$. Then $|H|<|G|, \Delta(H)=\Delta(G)$, and H is 2-connected. By the induction hypothesis, H has a square- $(\Delta(G)+2)$-coloring. We can extend this coloring to G since the vertex u has at most $\Delta(G)+1$ forbidden colors.

Now let $\Delta(G)=4$ and G contains the configuration M_{3}. Let $y_{1}, y_{2} \in N_{1}\left(x_{1}\right) \backslash$ $\left\{x_{2}, x_{3}\right\}$ and $z_{1}, z_{2} \in N_{1}\left(x_{7}\right) \backslash\left\{x_{5}, x_{6}\right\}$. If x_{1} is adjacent to x_{7}, we stipulate that $y_{2}=x_{7}$ and $z_{2}=x_{1}$. Define the graph H to be $G-\left\{x_{2}, x_{3}, \ldots, x_{6}\right\}$ if x_{1} is adjacent to x_{7}; to be $G-\left\{x_{2}, x_{3}, \ldots, x_{6}\right\}+x_{1} x_{7}$ otherwise. By the inductive hypothesis, H has a square- 6 -coloring ϕ with the color set $L=\{1,2, \cdots, 6\}$. In order to extend ϕ into a square- 6 -coloring of G, we consider the following two cases.

Assume that x_{1} is adjacent to x_{7}. Without loss of generality, we may let $\phi\left(y_{1}\right)=$ $1, \phi\left(x_{1}\right)=2, \phi\left(x_{7}\right)=3$, and $\phi\left(z_{1}\right)=a$. We first color x_{4} with $1, x_{5}$ with $b \in L \backslash\{1,2,3, a\}$, and x_{2} and x_{6} with $c \in L \backslash\{1,2,3, a, b\}$. Afterward, we assign a to x_{3} when $a \neq 1$; we color x_{3} with $d \in L \backslash\{1,2,3, b, c\}$ when $a=1$.

Assume that x_{1} is not adjacent to x_{7}. Since x_{1} is adjacent to x_{7} in $H, \phi\left(x_{1}\right) \notin$ $\left\{\phi\left(z_{1}\right), \phi\left(z_{2}\right)\right\}$ and $\phi\left(x_{7}\right) \notin\left\{\phi\left(y_{1}\right), \phi\left(y_{2}\right)\right\}$. Suppose that $\phi\left(y_{1}\right)=1, \phi\left(y_{2}\right)=2$,
$\phi\left(x_{1}\right)=3$, and $\phi\left(x_{7}\right)=4$. First we color x_{4} with $1, x_{6}$ with $3, x_{2}$ with 4 , and x_{3} with 5 . If 2 or $6 \notin\left\{\phi\left(z_{1}\right), \phi\left(z_{2}\right)\right\}$, we further color x_{5} with 2 or 6 . If $\left\{\phi\left(z_{1}\right), \phi\left(z_{2}\right)\right\}=\{2,6\}$, we recolor x_{4} with 6 and then color x_{5} with 1.

Next suppose that G has a cut vertex x. Let $G_{i}, 1 \leq i \leq m$, be the subgraphs induced by the components of $G-x$ together with x. Then each G_{i} satisfies the assumptions of the theorem. If $\Delta\left(G_{i}\right) \geq 3$, then $\chi\left(G_{i}^{2}\right) \leq \Delta\left(G_{i}\right)+2 \leq \Delta(G)+2$ by the induction hypothesis. If $\Delta\left(G_{i}\right) \leq 2$, then $\chi\left(G_{i}^{2}\right) \leq 5 \leq \Delta(G)+2$ as noted at the beginning of this section. Thus $\chi\left(G^{2}\right) \leq \Delta(G)+2$ by Lemma 2 .

The "moreover" part can also be proved by induction since the 2 -vertex u could have been chosen so that $\beta_{G}(u) \leq \Delta(G)$ by Theorem 1 .

It is yet to be determined if any outerplanar graph G with $\Delta(G)=5$ or 6 satisfies $\chi\left(G^{2}\right)=\Delta(G)+2$. We would conjecture that none exists. If an outerplanar graph G with $\Delta(G)=3$ contains a 5-cycle, then $\chi\left(G^{2}\right)=5=\Delta(G)+2$. This example together with the following theorem shows that the upper bound $\Delta(G)+2$ in Theorem 3 is tight for $\Delta(G)=3$ or 4 .

Theorem 4. For any $n \geq 3, \chi\left(O_{n}^{2}\right)=5$ except $\chi\left(O_{3}^{2}\right)=\chi\left(O_{4}^{2}\right)=\chi\left(O_{7}^{2}\right)=6$.
Proof. It is easy to see that $5 \leq \chi\left(O_{n}^{2}\right) \leq 6$ for every $n \geq 3$. Since O_{3}^{2} is K_{6} and O_{4}^{2} contains K_{6} as a subgraph, we have $\chi\left(O_{3}^{2}\right)=\chi\left(O_{4}^{2}\right)=6$. We observe that every color class contains at most three vertices for a square- k-coloring of O_{7}. If a color class is of size 3 , then it contains at least two vertices of degree 2. Since O_{7} has seven vertices of degree 2 , there are at most three color classes of size 3. This implies $k \geq 6$ and $\chi\left(O_{7}^{2}\right)=6$.

Now assume $n \geq 5$ and $n \neq 7$. We are going to construct a square-5-coloring of O_{n} in every possible case.

If $n \equiv 0(\bmod 5)$, we color the sequence of vertices $u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{n}, v_{n}$ with the color sequence $1,2,3,4,5$ repeatedly.

If $n \equiv 1(\bmod 5)$, we first color u_{1} and u_{4} with $1, u_{2}$ and u_{5} with $2, u_{3}$ and u_{6} with $3, v_{1}, v_{3}, v_{5}$ with 4 , and v_{2}, v_{4}, v_{6} with 5 . Then we color the sequence of vertices $u_{7}, v_{7}, u_{8}, v_{8}, \ldots, u_{n}, v_{n}$ with the color sequence $1,4,2,3,5$ repeatedly.

If $n \equiv 2(\bmod 5)$ and $n \geq 12$, we first color $u_{1}, u_{4}, u_{7}, u_{10}$ with $1, u_{2}, u_{5}, u_{8}, u_{11}$ with $2, u_{3}, u_{6}, u_{9}, u_{12}$ with $3, v_{1}, v_{3}, v_{5}, v_{7}, v_{9}, v_{11}$ with 4 , and $v_{2}, v_{4}, v_{6}, v_{8}, v_{10}, v_{12}$ with 5 . Then we color the sequence of vertices $u_{13}, v_{13}, u_{14}, v_{14}, \ldots, u_{n}, v_{n}$ with the color sequence $1,4,2,3,5$ repeatedly.

If $n \equiv 3(\bmod 5)$, we first color $v_{1}, v_{3}, v_{5}, v_{7}$ with $1, u_{1}, u_{4}, v_{6}$ with $2, u_{2}, v_{4}, u_{7}$ with $3, v_{2}, u_{5}, u_{8}$ with 4 , and u_{3}, u_{6}, v_{8} with 5 . Then we color the sequence of vertices $u_{9}, v_{9}, u_{10}, v_{10}, \ldots, u_{n}, v_{n}$ with the color sequence $2,3,1,4,5$ repeatedly.

If $n \equiv 4(\bmod 5)$, we first color u_{1}, u_{4}, u_{7} with $1, u_{2}, v_{4}, v_{6}, v_{8}$ with 2 , $v_{2}, u_{5}, v_{7}, v_{9}$ with $3, v_{1}, v_{3}, v_{5}, u_{8}$ with 4 , and u_{3}, u_{6}, u_{9} with 5 . Then color the
sequence of vertices $u_{10}, v_{10}, u_{11}, v_{11}, \ldots, u_{n}, v_{n}$ with the color sequence $1,4,2$, 5, 3 repeatedly.

References

1. G. Agnarsson and M. M. Halldorssson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003), 651-662.
2. O. V. Borodin, H. J. Broersma, A. Glebov, and J. van den Heuvel, Stars and bunches in planar graphs. part II: general planar graphs and colourings, CDAM Research Report, London School of Economics and Politics, 2002, a translated and adapted version of a paper that appeared in Diskretn. Anal. Issled. Oper. Ser. 1., 8 (2001), 9-33 (in Russian).
3. H. L. Bodlaender, T. Kloks, R. B. Tan and J. van Leeuwen, λ-coloring of graphs, STACS 2000 (Lille), Lecture Notes in Comput. Sci. 1770, Springer, Berlin, 2000, 395-406.
4. J. van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003), 110-124.
5. M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a graph, preprint, University of Toronto, 2002.
6. C. Thomassen, Applications of Tutte cycles, preprint, Technical University of Denmark, 2001.
7. Weifan Wang and Ko-Wei Lih, Labeling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math., 17 (2003), 264-275.
8. G. Wegner, Graphs with given diameter and a coloring problem, preprint, University of Dortmund, 1977.

Ko-Wei Lih
Institute of Mathematics,
Academia Sinica,
Nankang, Taipei 115, Taiwan
E-mail: makwlih@sinica.edu.tw
Wei-Fan Wang
Department of Mathematics,
Zhejiang Normal University,
Jinhua, Zhejiang 321004, P. R. China

[^0]: Received July 16, 2004, accepted July 27, 2004.
 Communicated by Xuding Zhu.
 2000 Mathematics Subject Classification: 05C15.
 Key words and phrases: Outerplanar graph, Square, Chromatic number.

