
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 4, pp. 905-915, June 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

THE DUAL BRUNN-MINKOWSKI INEQUALITIES
FOR INTERSECTION BODIES AND TWO ADDITIONS

Shufeng Yuan, Jun Yuan and Gangsong Leng

Abstract. In this paper, some dual Brunn-Minkowski inequalities are estab-
lished for intersection bodies for the harmonic Blaschke additions and p-radial
additions.

1. INTRODUCTION

Intersection body is a basic concept in geometric tomography. The history of in-
tersection bodies began with Busemann’s theorem which has important implications
for Busemann’s theory of area in Finsler spaces [1]. Intersection bodies were first
explicitly defined and named by Lutwak in the important paper [10], and played
a key role in the ultimate solution of Busemann-Petty problem [2, 4-7, 12]. The
duality between intersection bodies and projection bodies was first made clear in
[4, 10], and the notion of mixed intersection bodies has been raised in [8, 11]. The
idea of an intersection body is a relatively new one, and rather less is known about
them than about projection bodies. The object of this paper is to establish the dual
Brunn-Minkowski inequalities for intersection bodies for the harmonic Blaschke
additions and p-radial additions.

Let ϕn
o be the set of star bodies in R

n containing the origin in their interiors. For
K, L ∈ ϕn

o , let K+̂L denote the harmonic Blaschke addition of K and L, K+̃pL

the p-radial addition of K and L. IK denotes the intersection body of K, Ṽ1(K)
the dual volume of K and V(K) the volume of K .

Our main results are the following two theorems.

Theorem 1.1. Let K, L ∈ ϕn
o , n ≥ 2, then

Ṽ1(I(K+̂L))
n+1
n−1

V (K+̂L)
≥ Ṽ1(IK)

n+1
n−1

V (K)
+

Ṽ1(IL)
n+1
n−1

V (L)
,
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with equality if and only if L is a dilatate of K.

Theorem 1.2. Let K, L ∈ ϕn
o , n ≥ 2.

(i) If 1 ≤ p ≤ n − 1, then

V (I(K+̃pL))
p

(n−1)n ≤ V (IK)
p

(n−1)n + V (IL)
p

(n−1)n .

(ii) If p ≥ (n − 1)n, then

V (I(K+̃pL))
p

(n−1)n ≥ V (IK)
p

(n−1)n + V (IL)
p

(n−1)n .

The equalities of the above inequalities hold if and only if L is a dilatate of K.

This paper, except for the introduction, is divided into three sections. In Section
2, we provide some basic definitions and notations. We will give the proofs of the
sharping of Theorem 1.1 and Theorem 1.2 in Sections 3 and 4 respectively.

2. BASIC DEFINITIONS AND NOTATIONS

As usual , Sn−1 denotes the unit sphere, B the unit ball, and o the origin in
Euclidean n-space R

n. If u is a unit vector , that is , an element of Sn−1 , we
denote by u⊥ the (n−1)-dimensional subspace orthogonal to u and R

+ the positive
real number set.

Associated with a compact subset K of R
n, which is star-shaped with respect

to the origin, is its radial function ρ(K, ·) : Sn−1 −→ R, defined for u ∈ Sn−1, by

ρ(K, u) = ρK(u) = Max{λ ≥ 0 : λu ∈ K}.
If ρ(K, ·) is continuous and positive , K will be called a star body.

Let ϕn
o denote the set of star bodies in R

n containing the origin in their in-
teriors. Two star bodies K, L ∈ ϕn

o are said to be dilatate (of one another ) if
ρ(K, u)/ρ(L, u) is independent of u ∈ Sn−1 .

Let Lj ∈ ϕn
o (1 ≤ j ≤ n). The dual mixed volume Ṽ (L1, . . . , Ln)is defined by

(2.1) Ṽ (L1, . . . , Ln) =
1
n

∫
Sn−1

ρL1(u) . . .ρLn(u)du.

As with mixed volumes, we use the notation Ṽ (L1, i1; . . . ; Ln, in) to denote the
dual mixed volume in which the set Lj appears ij times.

For a special case, it will be convenient to relax the restriction on the numbers
ij ([3], p. 363). Define, for i ∈ R,

(2.2) Ṽi(L1, L2) = Ṽ (L1, n− i, L2, i) =
1
n

∫
Sn−1

ρL1(u)n−iρL2(u)idu.
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Let L ∈ ϕn
o , i ∈ R. The i-dual volume Ṽi(L) and i-dual quermassintegral

W̃n−i(L) of L are defined by

(2.3) Ṽi(L) = W̃n−i(L) = Ṽ (L, i; B, n− i) =
1
n

∫
Sn−1

ρL(u)idu.

In particular, we call Ṽ1(L) the dual volume of L.
When i = n, we have

(2.4) Ṽn(L) =
1
n

∫
Sn−1

ρL(u)ndu = λn(L),

where λn(L) denote the n-dimensional Lebesgue measure of L according to the
formula for volume in polar coordinates.

Let K ∈ ϕn
o , n ≥ 2. The intersection body IK of K is a star body such that

(2.5) ρIK(u) = v(K ∩ u⊥) =
1

n − 1

∫
Sn−1∩u⊥

ρK(v)n−1dλn−2(v),

where v is (n-1)-dimensional volume .
If K1, . . . , Kn−1 ∈ ϕn

o , n ≥ 2, then the mixed intersection body I(K1, . . . ,

Kn−1) of star bodies K1, . . . , Kn−1 is defined by

(2.6)
ρI(K1,...,Kn−1)(u) = ṽ(K1 ∩ u⊥, . . . , Kn−1 ∩ u⊥)

=
1

n − 1

∫
Sn−1∩u⊥

ρK1(v) . . .ρKn−1(v)dλn−2(v),

where ṽ is (n-1)-dimensional dual mixed volume .
If K1 = . . . = Kn−i−1 = K, Kn−i = . . . = Kn−1 = L, then I(K1, . . . , Kn−1)

will be denoted as Ii(K, L). When K = B, Ii(B, L) is called as the intersection
body of order i of L which will often be written as IiK . Specially, In−1L=IL.

Corresponding to the relaxation of restriction on number i of the dual mixed
volume Ṽi(L1, L2), we can expand number i of Ii(K, L) to the real set R. Let
K, L∈ϕn

o , n≥2, i∈R. The mixed intersection body Ii(K, L) of K, L is defined by

(2.7)
ρIi(K,L)(u) = ṽ(K ∩ u⊥, n− i− 1; L∩ u⊥, i)

=
1

n − 1

∫
Sn−1∩u⊥

ρK(v)n−i−1ρL(v)idλn−2(v).

3. INEQUALITIES FOR THE HARMONIC BLASCHKE LINEAR COMBINATIONS

Suppose K, L ∈ ϕn
o , and in this paper, we use λ, µ ≥ 0 denote that λ and µ

are nonnegative real numbers and not both zero. To define the harmonic Blaschke
linear combination, λK+̂µL, first define ξ > 0 by ([9])
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(3.1)
ξ1/(n+1) =

1
n

∫
Sn−1

[λV (K)−1ρ(K, u)n+1

+µV (L)−1ρ(L, u)n+1]n/(n+1)dS(u).

The body λK+̂µL ∈ ϕn
o is defined as the body whose radial function is given by

(3.2) ξ−1ρ(λK+̂µL, ·)n+1 = λV (K)−1ρ(K, ·)n+1 + µV (L)−1ρ(L, ·)n+1.

In fact, we will establish two inequalities more general than Theorem 1.1 as
follows.

Theorem 3.1. Let K, L, K1, . . . , Kn−1 ∈ ϕn
o , n ≥ 2, C = (K1, . . . , Kn−1),

λ, µ ≥ 0, then

(3.3)
Ṽ1(C, I(λK+̂µL))

n+1
n−1

V (λK+̂µL)
≥ λ

V (K)
· Ṽ1(C, IK)

n+1
n−1 +

µ

V (L)
· Ṽ1(C, IL)

n+1
n−1 ,

with equality if and only if L is a dilatate of K .

Theorem 3.2. Let L, K1, K2 ∈ ϕn
o , n ≥ 2, λ, µ ≥ 0, 0 < i < n + 1, i ∈ R,

then

(3.4)

Ṽ1(Ii(L, λK1+̂µK2))
n+1

i

V (λK1+̂µK2)
≥ λ

V (K1)
· Ṽ1(Ii(L, K1))

n+1
i

+
µ

V (K2)
· Ṽ1(Ii(L, K2))

n+1
i ,

equality holds if and only if K 1 is a dilatate of K2.

Remark. According to the definition of Ii(K, L), we can expand number i to
the real set R. If i ≥ n + 1, then the reverse inequality of (3.4) holds.

To prove Theorem 3.1 and Theorem 3.2, we establish the following two lemmas.

Lemma 3.3. If L, K1, K2 ∈ ϕn
o , n ≥ 2, λ, µ ≥ 0 , and 0 < i < n + 1, i ∈ R,

then

(3.5)

ρ(Ii(L, λK1+̂µK2), ·)n+1
i

V (λK1+̂µK2)
≥ λ

V (K1)
· ρ(Ii(L, K1), ·)n+1

i

+
µ

V (K2)
· ρ(Ii(L, K2), ·)n+1

i ,

equality holds if and only if K 1 is a dilatate of K2.
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Proof. By (3.1), (3.2) and the polar coordinate formula for volume (2.4), we
can get ξ = V (λK+̂µL). Hence from (3.2), we obtain

(3.6)
V (λK+̂µL)−1ρ(λK+̂µL, ·)n+1 = λV (K)−1ρ(K, ·)n+1

+µV (L)−1ρ(L, ·)n+1.

For u ∈ Sn−1. By(2.7), (3.6), we have

ρ(Ii(L, λK1+̂µK2), u) =
1

n − 1

∫
Sn−1∩u⊥

ρ(λK1+̂µK2, v)iρ(L, v)n−i−1dv

=
1

n − 1
· V (λK1+̂µK2)

i
n+1

∫
Sn−1∩u⊥(

λ

V (K1)
· ρ(K1, v)n+1 +

µ

V (K2)
· ρ(K2, v)n+1

) i
n+1

ρ(L, v)n−i−1dv

Since 0 < i < n+1, applying Minkowski integral inequality(0 < p = i
n+1 < 1)

and (2.7), we have

ρ(Ii(L, λK1+̂µK2), u)

≥ V (λK1+̂µK2)
i

n+1

·
[

λ

V (K1)

(
1

n − 1

∫
Sn−1∩u⊥

ρ(K1, v)iρ(L, v)n−i−1dv

)n+1
i

+
µ

V (K2)

(
1

n − 1

∫
Sn−1∩u⊥

ρ(K2, v)iρ(L, v)n−i−1dv

)n+1
i

] i
n+1

= V (λK1+̂µK2)
i

n+1 ·
(

λ

V (K1)
· ρ(Ii(L, K1), u)

n+1
i

+
µ

V (K2)
· ρ(Ii(L, K2), u)

n+1
i

) i
n+1

.

Then,

ρ(Ii(L, λK1+̂µK2), ·)n+1
i

V (λK1+̂µK2)
≥ λ

V (K1)
· ρ(Ii(L, K1), ·)

n+1
i

+
µ

V (K2)
· ρ(Ii(L, K2), ·)

n+1
i
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By the equality conditions of Minkowski integral inequality, the equality of (3.5)
holds if and only if λ

V (K1)
· ρ(K1, ·)n+1 and µ

V (K2)
· ρ(K2, ·)n+1 are proportional,

that is, K1 is a dilatate of K2.

Taking for i = n − 1 in Lemma 3.3, we have

Lemma 3.4 Let K, L ∈ ϕn
o , n ≥ 2, λ, µ ≥ 0, then

(3.7)
ρ(I(λK+̂µL), ·)n+1

n−1

V (λK+̂µL)
≥ λρ(IK, ·)n+1

n−1

V (K)
+

µρ(IL, ·)n+1
n−1

V (L)
,

with equality if and only if L is a dilatate of K .

Proof of Theorem 3.1. Let ρ(C, ·)=ρ(K1, ·). . .ρ(Kn−1,·),a=
λ · V (λK+̂µL)

V (K)
,

b =
µ · V (λK+̂µL)

V (L)
.

By (2.1), Lemma 3.4 ,and Minkowski integral inequality (0 < n−1
n+1 < 1), we

have

Ṽ1(C, I(λK+̂µL)) =
1
n

∫
Sn−1

ρ(I(λK+̂µL), u)ρ(C, u)du

≥ 1
n

∫
Sn−1

(
a · ρ(IK, u)

n+1
n−1 +b · ρ(IL, u)

n+1
n−1

)n−1
n+1

ρ(C, u)du

≥
[(

1
n

∫
Sn−1

a
n−1
n+1 ρ(IK, u)ρ(C, u)du

)n+1
n−1

+
(

1
n

∫
Sn−1

b
n−1
n+1 ρ(IL, u)ρ(C, u)du

)n+1
n−1

]n−1
n+1

=
(
a · Ṽ1(C, IK)

n+1
n−1 + b · Ṽ1(C, IL)

n+1
n−1

)n−1
n+1

.

By the equality conditions of Minkowski integral inequality and Lemma 3.4, the
equality (3.3) holds if and only if L is a dilatate of K.

Proof of Theorem 3.2. By (2.3), we get

Ṽ1(Ii(L, λK1+̂µK2)) =
1
n

∫
Sn−1

ρ(Ii(L, λK1+̂µK2), u)du.

Since 0 < i < n + 1, using Lemma 3.3, Minkowski integral inequalities(0 <
i

n+1 < 1) and (2.3), we have



On the Dual Brunn-Minkowski Inequalities 911

Ṽ1(Ii(L, λK1+̂µK2))

≥ V (λK1+̂µK2)
i

n+1
1
n

∫
Sn−1

(
λ

V (K1)
· ρ(Ii(L, K1), u)

n+1
i

+
µ

V (K2)
· ρ(Ii(L, K2), u)

n+1
i

) i
n+1

du

≥ V (λK1+̂µK2)
i

n+1 [
(

1
n

∫
Sn−1

(
λ

V (K1)
)

i
n+1 ρ(Ii(L, K1), u)du

)n+1
i

+
(

1
n

∫
Sn−1

(
λ

V (K2)
)

i
n+1 ρ(Ii(L, K2), u)du

)n+1
i

]
i

n+1

=V (λK1+̂µK2)
i

n+1

(
λ

V (K1)
·Ṽ1(Ii(L, K1))

n+1
i + µ

V (K2)
·Ṽ1(Ii(L, K2))

n+1
i

) i
n+1

.

So the inequality (3.4) is proved.

Remark. Taking for K1 = . . . = Kn−1 = B and λ = µ = 1 in Theorem
3.1, or taking for i = n − 1, λ = µ = 1 in Theorem 3.2, we can get Theorem 1.1
immediately.

4. INEQUALITIES FOR THE p-RADIAL LINEAR COMBINATIONS

Let K and L be star bodies in R
n, p ≥ 1, λ, µ ≥ 0. p-radial linear combination

λ · K+̃pµ · L is a star body whose radial function is given by

(4.1) ρ(λ · K+̃pµ · L, u)p = λρ(K, u)p + µρ(L, u)p.

Note that ” ·” rather than ” ·p ” is written for radial scalar multiplication. Obviously,
radial and Minkowski scalar multiplications are related by λ ·K = λ1/pK.

For p-radial linear combination, we still will prove two results more general
than Theorem 1.2.

Theorem 4.1. Let C, K, L ∈ ϕn
o , n ≥ 2, λ, µ ≥ 0, i ∈ R

+.

(i) If 1 ≤ p ≤ i, then

(4.2) V (Ii(C, λ ·K+̃pµ · L))
p
in ≤ λV (Ii(C, K))

p
in + µV (Ii(C, L))

p
in .
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(ii) If p ≥ max{ni, 1}, then

(4.3) V (Ii(C, λ · K+̃pµ · L))
p
in ≥ λV (Ii(C, K))

p
in + µV (Ii(C, L))

p
in .

Equalities of the above two inequalities hold if and only if L is a dilatate of K.

Theorem 4.2. Let K, L, C ∈ ϕn
o , n ≥ 2, i ∈ R

+.

(i) If 1 ≤ p ≤ min{n − 1, (n− 1)i}, then

(4.4) Ṽi(C, I(K+̃pL))
p

(n−1)i ≤ Ṽi(C, IK)
p

(n−1)i + Ṽi(C, IL)
p

(n−1)i .

(ii) If p ≥ max{n − 1, (n− 1)i}, where i > 0, then

(4.5) Ṽi(C, I(K+̃pL))
p

(n−1)i ≥ Ṽi(C, IK)
p

(n−1)i + Ṽi(C, IL)
p

(n−1)i .

Equalities of the above two inequalities hold if and only if L is a dilatate of K.

To prove Theorem 4.1 and Theorem 4.2, we establish the following two lemmas.

Lemma 4.3. Let K, L, C ∈ ϕn
o , n ≥ 2, and i ∈ R

+, λ, µ ≥ 0. If 1 ≤ p ≤ i,
then

(4.6) ρ(Ii(C, λ · K+̃pµ · L), ·) p
i ≤ λρ(Ii(C, K), ·) p

i + µρ(Ii(C, L), ·) p
i .

If p ≥ max{i, 1}, then the reverse inequality of the inequality (4.6)holds. Equality
holds when p �= i if and only if L is a dilatate of K.

Proof. For u ∈ Sn−1, since 1 ≤ p ≤ i, by (2.7), (4.1), Minkowski integral
inequality ( i

p ≥ 1) and (2.7) again, we have

ρ(Ii(C, λ · K+̃pµ · L), u) =
1

n − 1

∫
Sn−1∩u⊥

ρ(λ · K+̃pµ · L, v)iρ(C, v)n−i−1dv

≤ [λ
(

1
n − 1

∫
Sn−1∩u⊥

ρ(K, v)iρ(C, v)n−i−1dv

)p
i

+µ

(
1

n − 1

∫
Sn−1∩u⊥

ρ(L, v)iρ(C, v)n−i−1dv

)p
i

]
i
p

=
(
λρ(Ii(C, K), u)

p
i + µρ(Ii(C, L), u)

p
i

) i
p
.

So, when 1 ≤ p ≤ i, the inequality of Lemma 4.2 is proved. By the same way,
we can prove the reverse inequality of (4.4) holds for p ≥ max{i, 1} .
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Taking for i = n − 1, λ = µ = 1 in Lemma 4.3, we have

Lemma 4.4. Let K, L ∈ ϕn
o , n ≥ 2, and 1 ≤ p ≤ n − 1, then

(4.7) ρ(I(K+̃pL), ·) p
n−1 ≤ ρ(IK, ·) p

n−1 + ρ(IL, ·) p
n−1 .

If p ≥ n−1, then the reverse inequality of the inequality (4.7)holds. Equality holds
when p �= n − 1 if and only if L is a dilatate of K.

Proof of Theorem 4.1. By (2.4), we have

V (Ii(C, λ · K+̃pµ · L)) =
1
n

∫
Sn−1

(
ρ(Ii(C, λ · K+̃pµ · L), u)

p
i

) in
p

du.

For 1 ≤ p ≤ i, applying (4.6), Minkowski integral inequality (in
p > 1) and

(2.4), we infer that

V (Ii(C, λ ·K+̃pµ · L))

≤ 1
n

∫
Sn−1

[
λρ(Ii(C, K), u)

p
i + µρ(Ii(C, L), u)

p
i

] in
p

du

≤
[
λV (Ii(C, K))

p
in + µV (Ii(C, L))

p
in

] in
p

.

Then, the inequality (4.2) is proved.
In the same way, we can get the reverse inequality for p ≥ max{ni, 1}.
From the equality conditions of Minkowski integral inequality, Theorem 4.1

holds with equality if and only if ρ(Ii(C, K), ·) and ρ(Ii(C, L), ·) are proportional.
And by the equality condition of Lemma 4.3, the equality condition of Theorem 4.1
is that L is a dilatate of K .

Proof of Theorem 4.2. When 1 ≤ p ≤ min{n − 1, (n− 1)i}, we have(
Ṽi(C, I(K+̃pL))

) p
(n−1)i

=
(

1
n

∫
Sn−1

ρI(K+̃pL)(u)iρC(u)n−idS(u)
) p

(n−1)i

≤
(

1
n

∫
Sn−1

(ρIK(u)
p

n−1 + ρIL(u)
p

n−1 )
(n−1)i

p ρC(u)n−idS(u)
) p

(n−1)i

≤ Ṽi(C, IK)
p

(n−1)i + Ṽi(C, IL)
p

(n−1)i .

In the same way, we can get the reverse inequality for p ≥ max{n−1, (n−1)i}.



914 Shufeng Yuan, Jun Yuan and Gangsong Leng

From the equality conditions of Minkowski integral inequality and Lemma 4.4,
the equality condition of Theorem 4.2 is that L is a dilatate of K .

Remark. Taking for λ = µ = 1, i = n−1 in Theorem 4.1, or taking for i = n

in Theorem 4.2, we can get Theorem 1.2 immediately.

Taking for C = B, λ = µ = 1 in Theorem 4.1 and in Theorem 4.2 , we have
two corollaries as follows.

Corollary 4.3. Let K, L ∈ ϕn
o , i ∈ R

+. If 1 ≤ p ≤ i, then

(4.8). V (Ii(K+̃pL))
p
in ≤ V (IiK)

p
in + V (IiL)

p
in

The reverse inequality holds when p ≥ max{in, 1}. Equality holds if and only if
L is a dilatate of K.

Corollary 4.4. Let K, L ∈ ϕn
o , i ∈ R

+. If 1 ≤ p ≤ min{n−1, (n−1)i}, then

(4.9) W̃n−i(I(K+̃pL))
p

(n−1)i ≤ W̃n−i(IK)
p

(n−1)i + W̃n−i(IL)
p

(n−1)i .

If p ≥ max{n − 1, (n − 1)i}, then the reverse inequality of (4.9) holds. Equality
holds if and only if L is a dilatate of K.
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