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UPPER GENERALIZED EXPONENTS OF MINISTRONG DIGRAPHS

Bo Zhou

Abstract. We obtain upper bounds for the upper generalized exponents of
digraphs in the class of ministrong digraphs and in the class of non-primitive
ministrong digraphs, characterize the corresponding extremal digraphs, and
discuss the numbers attainable as upper generalized exponents of ministrong
digraphs.

1. INTRODUCTION

A digraph G is primitive if there exists a positive integer k such that there is a
walk of length k from u to v for each ordered pair of vertices u and v (including
u = v). The smallest such k is called the exponent of G, denoted by exp(G).
Exponents for primitive digraphs have been studied extensively due to their intrinsic
importance in graph theory, combinatorics, matrix theory and their applications in
communication problems.

Brualdi and Liu [1] introduced the concept of upper generalized exponents for
primitive digraphs as a generalization of exponents in 1990. Recently, Shao, Hwang
and Wu [9, 10] extended this concept of upper generalized exponents from primitive
digraphs to general digraphs.

Definition 1. [9, 10] Let G be a digraph and X ⊆ V (G) be a subset of the
vertex set V (G). The exponent of the subset X , denoted by expG(X), is defined to
be the smallest positive integer m such that for each vertex y of G, there is a walk
of length m from at least one vertex in X to y. If no such m exists, then define
expG(X) = ∞.
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Definition 2. [9, 10] Let G be a digraph of order n with 1 ≤ k ≤ n. Define
F (G, k) = max{expG(X) : X ⊆ V (G), and |X | = k}. F (G, k) is called the k-th
upper generalized exponent of G.

Definition 3. [10] A digraph G is called k-upper primitive if F (G, k) < ∞.
Clearly 1-upper primitive digraphs are just primitive digraphs and in this case

F (G, 1) = exp(G). We mention here that the upper generalized exponents also
have an interpretation in the model of memoryless communication networks (see
[1]).

Shao and Hwang [9] have obtained sharp upper bounds for the k-th upper
generalized exponents of k-upper primitive symmetric digraphs and determined the
corresponding set of upper generalized exponents, while Shao and Wu [10] have
obtained a necessary and sufficient condition for a digraph to be k-upper primitive
(See Lemma 1 below). In [14], we have recently obtained sharp upper bounds for the
k-th upper generalized exponents of k-upper primitive digraphs and characterized
the extremal case.

A strongly connected (or strong) digraph D is called ministrong provided each
digraph obtained from D by removal of any arc is not strong. The set of all k-upper
primitive ministrong digraphs of order n is denoted by U(n, k). It is obvious that
U(n, 1) ⊆ U(n, 2) ⊆ · · · ⊆ U(n, n), and that U(n, 1) is just the set of all primitive
ministrong digraphs of order n. Let E(n, k) be the set of k-th upper generalized
exponents for the digraphs in U(n, k), i.e., E(n, k) = {F (G, k) : G ∈ U(n, k)}.

The upper generalized exponents of primitive digraphs have been studied in
[1, 4-6]. The exponents and upper generalized exponents of primitive ministrong
digraphs have been studied in [2, 3, 7, 8, 11, 14]. In this paper, we obtain upper
bounds for the k-th upper generalized exponents of digraphs in class U(n, k) with
1 ≤ k ≤ n and digraphs in the class of non-primitive digraphs of U(n, k) with
2 ≤ k ≤ n respectively, characterize completely the extremal digraphs, i.e., those
digraphs whose k-th upper generalized exponents achieve the corresponding upper
bounds, and investigate which numbers can be in E(n, k).

If A is an n× n nonnegative matrix, then the digraph of A, D(A) = (V, E), is
the digraph with vertex set V = {1, 2, . . . , n} and arc set E = {(i, j) : aij > 0}.
It is well known that (see [7]):

(a) D(A) is a primitive digraph if and only if A is a primitive matrix;

(b) D(A) is strong if and only if A is an irreducible matrix;

(c) D(A) is ministrong if and only A is a nearly reducible matrix.

Hence results in this paper can be expressed in their corresponding matrix versions.
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2. PRELIMINARY RESULTS

Let G be a k-upper primitive digraph. We say vertex u is a t-in vertex of vertex
v if there is a walk of length t from u to v, and the set of all t-in vertices of v in
G is denoted by RG(t, v). Then |RG(t, v)| ≥ n − k + 1 for all v ∈ V (G) implies
expG(X) ≤ t for any X ⊆ V (G) with |X | = k and hence F (G, k) ≤ t. Denote
the distance from vertex u to vertex v in a strong digraph G by dG(u, v), and the
set of all distinct cycle lengths of G by L(G).

Suppose G is a strong digraph with period p(G) = p, where p(G) is the gcd
(greatest common divisor) of all the cycle lengths of G. Then the vertices of G can
be partitioned into p nonempty sets V1, V2, . . ., Vp where the arcs originating in
Vi enter Vi+1 (Vp+1 is interpreted as V1). Such a partition of V (G) is called the
imprimitive partition of G.

For a digraph G and a positive integer m, let Gm be the digraph with the same
vertex set as G such that there is an arc from vertex x to vertex y in Gm if and only
if there is a walk of length m from x to y in G. It is well known that if G is a strong
digraph with period p then Gp is a disjoint union of p primitive subdigraphs with
vertex sets V1, V2, · · · , Vp respectively, where V1 ∪V2 ∪ · · · ∪Vp is the imprimitive
partition of G.

The following lemma was given in [10] for general digraphs. For completeness,
however, we include a direct proof here.

Lemma 1. Let G be a strong digraph of order n, and let V (G) = V 1 ∪ V2 ∪
· · ·∪Vp be the imprimitive partition of G. Then G is k-upper primitive if and only
if k > n − min{|Vi| : 1 ≤ i ≤ p}.

Proof. If G is k-upper primitive, then for any X ⊆ V (G) with |X | = k,
expG(X) < ∞, and hence X∩Vi �= ∅, 1 ≤ i ≤ p, which implies k > n−min{|Vi| :
1 ≤ i ≤ p}.

Conversely, suppose k > n − min{|Vi| : 1 ≤ i ≤ p}. Let X ⊆ V (G) with
|X | = k. Then X ∩ Vi �= ∅ for any i with 1 ≤ i ≤ p. Let X ′ = {x1, x2, . . . , xp}
with xi ∈ X ∩ Vi for 1 ≤ i ≤ p. Clearly, X′ ⊆ X . Note that Gp is a disjoint
union of p primitive digraphs with vertex sets V1, V2, . . . , Vp respectively. Let γ be
the largest value of the exponents of these p primitive digraphs. Then in G every
vertex of Vi can be reachable by a walk of length pγ for 1 ≤ i ≤ p. This implies
expG(X) ≤ expG(X ′) ≤ pγ < ∞.

Suppose G is strong and non-primitive with imprimitive partition V1∪V2∪· · ·∪Vp

where p = p(G) ≥ 2. It follows from Lemma 1 that if G is k-upper primitive, then
|Vi| ≥ n−k +1 for 1 ≤ i ≤ p, and so n = |V1|+ |V2|+ · · ·+ |Vp| ≥ 2(n−k +1),
i.e., k ≥ n/2 + 1. Hence if we study the k-th upper generalized exponents for
non-primitive digraphs, we only consider the case n/2 + 1 ≤ k ≤ n.
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The following lemma is a generalization of [4, Lemma 2], where it was proved
for primitive digraphs. Here we extend it to all k-upper primitive digraphs.

Lemma 2. Let G be a strong k-upper primitive digraph of order n with
1 ≤ k ≤ n − 1, and let h be the smallest cycle length of G. Then F (G, k) ≤
h(n − k − 1) + n.

Proof. Let X ⊆ V (G) with |X | = k. By Lemma 1, we have X ∩ Vi �= ∅ for
1 ≤ i ≤ p. Let X ∩ Vi = Xi and |Xi| = ki, 1 ≤ i ≤ p. For any vertex y in G,
there exists a vertex, say z ∈ Vj for some j, in a cycle of length h such that there
is a walk of length n − h from z to y.

Since p|h, Gh is a disjoint union of p primitive digraphs with vertex sets
V1, . . . , Vp respectively. Let Pj be the strong component of Gh with vertex set
Vj . Then there is a loop on z in Pj . So there is a vertex x ∈ Xj ⊆ X such that
there is a walk of length |Vj|−kj , and hence of length n−k from x to z in Pj since
n−k ≥ |Vi|−ki, which implies that there is a walk of length h(n−k) from x to z in
G. Hence there is a walk of length n−h+h(n−k) = h(n−k−1)+n from x to y in
G, and F (G, k) = max{expG(X): X ⊆ V (G), and |X | = k} ≤ s(n−k−1)+n.

Let Gn,s be the digraph with vertex set {1, 2, . . . , n} and arc set {(i, i + 1) :
1 ≤ i ≤ n− 2} ∪{(n− 1, 1), (n, 2), (s, n)} where 2 ≤ s ≤ n− 2. Clearly Gn,n−3

is primitive if n is even. We have by Lemma 1 that Gn,n−3 is k-upper primitive if
and only if k ≥ (n + 3)/2 when n is odd. If n ≡ 1 (mod 3), then by Lemma 1
again Gn,n−4 is k-upper primitive if and only if k ≥ (2n + 1)/3 + 1. Let

F (n, k) =

{
n2 − 4n + 6 if k = 1,

(n − 1)2 − k(n − 2) if 2 ≤ k ≤ n.

Lemma 3. [14] For 1 ≤ k ≤ n, we have F (Gn,n−2, k) = F (n, k).

Lemma 4. For (n + 2)/2 ≤ k ≤ n − 2, we have F (Gn,n−3, k) = F (n, k) −
(n − k − 1).

Proof. Let G = Gn,n−3, t = F (n, k)−(n−k−1) = (n−1)(n−2)−k(n−3)
and k = n − r. Then r ≤ (n − 2)/2. As may be verified, we have

RG(t, 1) = {n, 1, 3, . . . , 2r − 1},
RG(t, 2) = {n − 3, n − 1, 2, 4, . . . , 2r},
RG(t, 3) = {n, 1, 3, 5, . . . , 2r + 1},
RG(t, i) = {i− 2, i, i+ 2, . . . , i + 2r − 2}, 4 ≤ i ≤ n − 2r + 1,

RG(t, n − 2r + j)
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=




{n − 2r + j − 2, n− 2r + j, . . . , n − 2, 1, 3, . . . , j − 1}
if n + j is odd and 2 ≤ j ≤ 2r − 2,

{n − 2r + j − 2, n− 2r + j, . . . , n − 1, 2, 4, . . . , j − 1}
if n + j is even and 3 ≤ j ≤ 2r − 1,

RG(t, n) = {n − 4, n − 2, n, 1, . . . , 2r − 3}.

Hence |RG(t, i)| ≥ r + 1 = n− k + 1 for all i ∈ V (G). This implies F (G, k) ≤ t.
On the other hand, let X0 = V (G)\{2, 4, . . . , 2r}. Clearly |X0| = k. Since

RG(t − 1, 1) = {2, 4, . . . , 2r}, there is no walk of length t − 1 from any vertex in
X0 to vertex 1 and hence F (G, k) ≥ expG(X0) ≥ t. It follows that F (G, k) = t =
F (n, k) − (n − k − 1).

Lemma 5. For (2n + 1)/3 + 1 ≤ k ≤ n − 2, we have F (Gn,n−4, k) =
F (n, k) − 2(n − k − 1).

Proof. Let G = Gn,n−4, t = (n− 1)(n− 3)− k(n− 4). By similar arguments
as in Lemma 4, we have |RG(t, i)| ≥ n − k + 1 for all i ∈ V (G), expG(X0) ≥ t
where X0 = V (G)\{2, 5, . . . , 3(n− k) − 1} and hence F (G, k) = t = F (n, k) −
2(n − k − 1), as desired.

Lemma 6. Let G be a strong (n − 1)-upper primitive digraph of order n

with |L(G)| ≥ 2, and let h and t be respectively the smallest and the largest cycle
lengths of G. Then F (G, n− 1) ≤ max{n − h, t}.

Proof. Let X ⊆ V (G) with |X | = n − 1.

Case 1. X contains a cycle C. Suppose the length of C is r, where h ≤ r ≤ t.
Then every vertex of G is reachable from some vertex of C, and hence from some
vertex in X by a walk of length n − h since n − h ≥ n − r.

Case 2. X contains no cycle. Let V (G)\X = {u}. Then u lies on every
cycle of G. Take a cycle Ct of length t. Then all vertices except u are reachable
from some vertex in V (Ct)\{u}, and hence from some vertex in X , by a walk of
length t. By Lemma 1, G must contain a cycle with length less than t. Suppose G
contains a cycle C′ with length q where h ≤ q < t. Write t = mq + r, where r

is an integer with 1 ≤ r ≤ q. Clearly, there is a vertex x ∈ V (Ct)\{u} such that
there is a path of length r from x to u in Ct. By attaching the cycle C′ m times to
this path, we get a walk of length t from x ∈ X to u.

It follows that every vertex of G is reachable by a walk of length max{n−s, t}
from some vertex in X , which implies that expG(X) ≤ max{n − s, t}, and hence
F (G, n − 1) ≤ max{n − s, t}.
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Let Hn,s where 3 ≤ s ≤ n− 1 be the digraph with vertex set {1, 2, . . . , n} and
arc set {(i, i + 1) : 1 ≤ i ≤ n − 1} ∪{(2, 1), (s, 2), (n, 3)}. Clearly L(Hn,s) =
{2, s−1, n−2}. If Hn,s is non-primitive, then n is even, s is odd, and p(Hn,s) = 2.
By Lemma 1, Hn,s is k-upper primitive if and only if k ≥ n/2 + 1. Let H1

n where
n ≥ 5 be the digraph with vertex set {1, 2, . . . , n} and arc set {(i, i + 1) : 2 ≤ i ≤
n− 1}∪ {(1, 3), (3, 1), (3, 2), (n, 3)}, and let H2

n where n ≥ 6 be the digraph with
vertex set {1, 2, . . . , n} and arc set {(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(3, 1), (n, 3)}.

Lemma 7. If G is one of the digraph Hn,s (n ≥ 4), H1
n (n ≥ 5) or H2

n

(n ≥ 6), then F (G, n− 1) = n − 2.

Proof. It follows from Lemma 6 that F (G, n− 1) ≤ n− 2. Conversely, Since
there is no walk of length n − 3 from any vertex in X0 = V (G)\{3} to vertex n,
we have F (G, n − 1) ≥ expG(X0) ≥ n − 2.

Lemma 8. For any G ∈ U(n, k) with 1 ≤ k ≤ n − 1, F (G, k) ≥ 2.

Proof. Let G ∈ U(n, k). Then there exists a vertex v ∈ V (G) such that its
indegree (also outdegree) is 1. Let (u, v) be the unique arc incident to v. Take
X0 ⊆ V (G)\{u} with |X0| = k, we have F (G, k) ≥ expG(X0) ≥ 2.

Lemma 9 is a generalization of [8, Lemma 2.3].

Lemma 9. E(n, k) ⊆ E(n + 1, k + 1).

Proof. Let m ∈ E(n, k). Then there exists a digraph G ∈ U(n, k) with
F (G, k) = m. Hence for any subset X ⊆ V (G) with |X | = k we have expG(X) ≤
m, and there exists a subset X0 ⊆ V (G) with |X0| = k such that expG(X0) = m.
Adding a new vertex u to G such that u has the same adjacency relations as some
vertex in X0, we get a digraph G1. Clearly G1 is ministrong. Since G ∈ U(n, k),
we know that G1 ∈ U(n + 1, k + 1).

Let X1 ⊆ V (G1) be any subset of V (G1) with |X1| = k + 1. Then we have
expG1

(X1) ≤ expG(X1\{u}) ≤ m and expG1
(X0 ∪ {u}) = expG(X0) = m. It

follows that m = F (G1, k + 1) ∈ E(n + 1, k + 1).

3. UPPER BOUNDS AND EXTREMAL DIGRAPHS

In this section, we give upper bounds and corresponding extremal digraphs
for the k-th upper generalized exponents of digraphs in U(n, k) and digraphs in
U(n, k)\U(n, 1) respectively.

Theorem 1. For 1 ≤ k ≤ n, max{F (G, k) : G ∈ U(n, k)} = F (n, k).
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Proof. Let h and t be respectively the smallest and the largest cycle lengths of
G and p(G) = p. Suppose that V1 ∪V2 ∪ · · ·∪Vp is the imprimitive partition of G.

Case 1. k ≥ n − 1 or k = 1. It is obvious that F (G, n) = 1 = F (n, n). If
k = n−1, we have t ≤ n−1 by Lemma 1 and hence F (G, n−1) ≤ max{n−h, t} ≤
n−1 = F (n, n−1) by Lemma 6. If k = 1 (i.e., G is a primitive ministrong digraph),
it has been proved in [2] that F (G, 1) = exp(G) ≤ n2 − 4n + 6 = F (n, 1).

Case 2. 2 ≤ k ≤ n − 2.
First suppose that G is non-primitive. By Lemma 1, h ≤ n − 2. If h = n − 2,

then n− 1, n �∈ L(G) since G is non-primitive and ministrong. Hence p = p(G) =
n − 2 and min{|Vi| : 1 ≤ i ≤ p} ≤ 2. By Lemma 1, k > n − min{|Vi| :
1 ≤ i ≤ n − 2} ≥ n − 2, a contradiction. Hence we have h ≤ n − 3 if G is
non-primitive.

Suppose that G is primitive. Then h ≤ n − 2. If h = n − 2, then it can be
easily checked that G must be isomorphic to Gn,n−2.

It follows that h ≤ n − 3 or G is isomorphic to Gn,n−2 for 2 ≤ k ≤ n − 2.
Case 2.1. h ≤ n − 3. By Lemma 2,

F (G, k) ≤ n + h(n − k − 1) ≤ n + (n − 3)(n− k − 1)

≤ (n − 1)2 − k(n − 2) = F (n, k).

Case 2.2. G is isomorphic to Gn,n−2. By Lemma 3, we have F (G, k) =
F (Gn,n−2, k) = F (n, k).

Combining Cases 1 and 2, we have F (G, k) ≤ F (n, k) for 1 ≤ k ≤ n. From
Case 2.2, the upper bound F (n, k) can be attained for all n, k with 1 ≤ k ≤ n.

Since F (G, n) = 1 for any ministrong digraph G of order n, we only consider
the case 1 ≤ k ≤ n − 1. Recall that if a non-primitive G of order n is k-upper
primitive, then we have k ≥ n/2 + 1.

Theorem 2. Let G ∈ U(n, k)\U(n, 1) for n/2 + 1 ≤ k ≤ n − 2. Then

F (G, k) ≤
{

F (n, k) − (n − k − 1) if n is odd,

F (n, k) − 2(n − k − 1) if n is even.

Furthermore, equality holds in the above two cases if and only if G is isomorphic
to Gn,n−3 or Gn,n−4 respectively.

Proof. Let h be the smallest cycle length of G. Note that G is non-primitive.
From the proof of Theorem 1, we have h ≤ n − 3.
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Case 1. h ≤ n − 5. By Lemma 2,

F (G, k) ≤ n + h(n − k − 1) ≤ n + (n − 5)(n − k − 1)
= F (n, k)− 2(n − k − 1)− (n − k − 2) ≤ F (n, k)− 2(n − k − 1).

Case 2. h = n − 3. Then h ≥ 2 and n ≥ 5. Since G is non-primitive and
ministrong, we have n − 2, n �∈ L(G). By Lemma 1, we have L(G) �= {n − 3}
and hence L(G) = {n− 3, n− 1} where n is odd. It can be easily checked that G
must be isomorphic to Gn,n−3.

Case 3. h = n−4. First suppose n = 6. We have k ≥ 6/2+1 = 4, and so k =
4. Since h = 2, it follows that G is symmetric and hence F (G, 4) ≤ 2(6−4) = 4 <

7 = F (6, 4)−2(6−4−1) by [9, Lemma 4.1], or G is isomorphic to D(1) or D(2),
where V (D(1)) = V (D(2)) = {i : 1 ≤ i ≤ 6}, E(D(1)) = E ∪ {(3, 6), (6, 3)} and
E(D(2)) = E ∪{(5, 6), (6, 5)} with E = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 5), (5, 2)},
and it can be easily checked that F (D(1), 4) = 4, F (D(2), 4) = 5. In the following
we suppose n ≥ 7. By Lemma 1, we have |L(G)| ≥ 2. Note that G ∈ U(n, n −
2)\U(n, 1).

Case 3.1. n − 1 ∈ L(G). We can readily show that L(G) = {n − 4, n − 1},
n ≡ 1 (mod 3) and G is isomorphic to the digraph Gn,n−4.

Case 3.2. Case 3.2. n − 1 �∈ L(G). Then L(G) = {n − 4, n − 2} and n is
even. Take a cycle C of length n − 2. Then there are exactly two vertices, say x
and y, lying outside C.

Case 3.2.1. G contains one of the arcs (x, y) or (y, x), say (x, y). Since n > 6,
(y, x) is not an arc of G. Since G is strong, there exist vertices u and v such that
(u, x) and (y, v) are both arcs of G. Note that G is ministrong and L(G) = {n −
4, n−2}. It follows that G is isomorphic the digraph D with V (D) = {1, 2, . . . , n}
and E(D) = {(i, i+1) : 1 ≤ i ≤ n−3}∪{(n−2, 1), (n−5, n−1), (n−1, n), (n, 2)}.
Suppose G = D. It can be easily seen that |RD(F (n, k)− 2(n− k − 1)− 1, i)| ≥
n−k−1 for all i ∈ V (D), which implies that F (G, k) ≤ F (n, k)−2(n−k−1)−1.

Case 3.2.2. Neither (x, y) nor (y, x) is an arc of G. Then here exist vertices
u, v, u′, v′ in C such that (u, x), (x, v), (u′, y), (y, v′) are all arcs of G. Let r1

and r2 be the distances in C from u to v and from u′ to v′ respectively. Note
that L(G) = {n − 4, n − 2} and G is ministrong. It is easy to see that r1 = 4 or
r2 = 4. Suppose r2 = 4. Then the subdigraph induced by vertices in V (G)\{x}
is isomorphic to G1 = G(n−1),(n−1)−3. Suppose G1 is a subdigraph of G with
V (G) = V (G1)∪{n}, x = n, where (u, n), (n, v) are arcs of G with u, v ∈ V (C).
Let X ⊆ V (G) with |X | = k and t = F (n, k) − 2(n − k − 1) − 1. Every
vertex i ∈ V (G)\{n} can be reachable from some vertex in X\{n} by a walk of
length expG1

(X\{n}) and hence of length t. This is because expG1
(X\{n}) ≤

F (G1, k−1) = (n−2)2−(k−1)(n−3)−(n−2−(k−1)) = t. Let (u, u1) be the
unique arc in C incident from vertex u. If u �= 1, then vertex n can be reachable
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from some vertex in X\{n}) by a walk of length t. This is because any walk to u1

must pass the arc (u, u1). Suppose u = 1. Then we must have v = 3 or v = 5. If
v = 3, then it is easy to see that RG(t, n) = {n, 2, 4, . . . , 2(n− k)}; if v = 5, then
RG(t, n) = {n, n − 2, 4, 6, . . . , 2(n − k)}. In either case, we have |RG(t, n)| =
n − k + 1, implying that vertex n can be reachable from some vertex in X by a
walk of length t. Hence F (G, k) = expG(X) ≤ t = F (n, k)− 2(n− k − 1) − 1.

Combining Cases 1, 2 and 3, we have F (G, k) ≤ F (n, k)−2(n−k−1)−1 <

F (n, k) − 2(n − k − 1) or G is isomorphic to Gn,n−3 or Gn,n−4 for n/2 + 1 ≤
k ≤ n − 3.

Suppose k = n − 2. If h ≤ n − 6, then F (G, n − 2) ≤ n + h ≤ 2n − 6 <
F (n, k) − 2(n − k − 1). If h = n − 3 or n − 4, we have proved in Cases 2 and
3 that G is isomorphic to Gn,n−3 or Gn,n−4. We only need to consider the case
h = n − 5. By similar arguments as in Case 3, we have F (G, n− 2) ≤ 2n − 6 <
F (n, k) − 2(n − k − 1).

By Lemmas 4 and 5, the theorem is proved.

Theorem 3. Let G ∈ U(n, k), 1 ≤ k ≤ n − 2. Then F (G, k) = F (n, k) if
and only if G is isomorphic to Gn,n−2.

Proof. The case k = 1 is proved in [2]. Suppose k > 1. If G is isomorphic to
Gn,n−2, then F (G, k) = F (Gn,n−2, k) = F (n, k) by Lemma 3.

Suppose F (G, k) = F (n, k). Then G is primitive; otherwise F (G, k) ≤
F (n, k) − (n − k − 1) < F (n, k) by Theorem 2, which is a contradiction. Now it
follows from [14, Theorem 2] that G is isomorphic to Gn,n−2.

Theorem 4. Let G ∈ U(n, n− 1). Then F (G, n− 1) = F (n, n− 1) = n − 1
if and only if G is isomorphic to some digraph G n,s with 2 ≤ s ≤ n − 2.

Proof. Suppose G is isomorphic to some digraph Gn,s with 2 ≤ s ≤ n − 2.
Take X0 = V (G)\{2}. It can be verified as in [14] that there exists no walk of
length n− 2 from any vertex in X0 to vertex 1, which implies that F (G, n− 1) ≥
expG(X0) ≥ n − 1. By Theorem 1, we have F (G, n− 1) = n − 1.

Now suppose F (G, n− 1) = expG(X) = n− 1 with V (G)\X = {u}. If there
is a cycle C of length r not containing u, then for any v ∈ V (G), there is a walk of
length n−r from a vertex in X to v. Note that r > 1. We have F (G, n−1) < n−1,
a contradiction. Hence u is contained in all cycles of G. It follows from Lemma 1
that |L(G)| ≥ 2. Let h and t be respectively the smallest and the largest cycle
lengths of G. By Lemma 6, we have n − 1 = F (G, n − 1) ≤ max{n − h, t}. So
t = n − 1. Assume (1, 2, . . . , n− 1, 1) is a cycle of length n− 1 of G. Since G is
strong, there exist v and w (v and w may be equal) in {1, 2, . . . , n − 1} such that
(v, n) and (n, w) are arcs of G. Suppose w = 2 and v = s. Then G contains a
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subdigraph Gn,s. Since G is ministrong, it is clear that G has no arcs other than
those in Gn,s and s �= 1. Note that |L(G)| ≥ 2. We have s �= n − 1. Hence G is
isomorphic to some Gn,s with 2 ≤ s ≤ n − 2.

Corollary 1. The numbers of non-isomorphic digraphs and primitive digraphs
of order n with the (n−1)-th upper generalized exponents equal to n−1 are n−3
and ϕ(n − 1)− 1 respectively, where ϕ is the Euler’s totient function.

Theorem 5. Let G ∈ U(n, n−1), n ≥ 4. Then F (G, n−1) = F (n, n−1)−1 =
n−2 if and only if G is isomorphic to some digraph H n,s with 3 ≤ s ≤ n−1, H1

n

or H2
n.

Proof. Suppose G is isomorphic to some digraph Hn,s with 3 ≤ s ≤ n − 1,
H1

n or H2
n, we have F (G, n− 1) = n − 2 by Lemma 7.

Conversely, suppose F (G, n − 1) = expG(X) = n − 2 with X = V (G)\{u}.
By Lemma 1, we have L(G) �= {n − 1} and L(G) �= {n}. If |L(G)| ≥ 2, then G
has no cycles of length n, and G has no cycles of length n − 1 by Theorem 4 and
the fact F (G, n− 1) = n− 2 < n− 1. Hence for any cycle of G with length r, we
have 2 ≤ r ≤ n − 2.

Case 1. X contains a cycle C of length r with 2 ≤ r ≤ n − 2. Then
n − 2 = F (G, n − 1) = expG(X) ≤ n − r. We have r ≤ 2, and hence r = 2.
Suppose V (C) = {x1, x2}. Let di = max{dG(xi, y) : y ∈ V (G)\V (C)} for i = 1,
2. Then d = min{d1, d2} ≤ n−2. We have d = n−2; otherwise we have d ≤ n−3,
and hence F (G, n − 1) = expG(X) ≤ expG{x1, x2} ≤ n − 3, a contradiction. It
follows that G contains a subdigraph which is isomorphic to the digraph D with
vertex set {1, 2, . . . , n} and arc set {(i, i+ 1) : 1 ≤ i ≤ n− 1}∪ {(2, 1)}. Suppose
D is a subdigraph of G with x1 = 1, x2 = 2, d2 = dG(2, n) = n−2. Clearly there
is no arc from i to j in G with j − i > 1.

We have 3 �∈ X ; otherwise F (G, n−1) = expG(X) ≤ expG({1, 2, 3}) ≤ n−3,
a contradiction. Also vertex n is on some cycle with length n − 2; otherwise
F (G, n− 1) = expG(X) ≤ expG({1, 2, n})≤ n − 3, a contradiction. Hence there
is an arc from vertex n to vertex 3. To ensure that G is ministrong, there is also
an arc from some vertex s to vertex 2 with 3 ≤ s ≤ n − 1 and no other arcs in G.
Hence G is isomorphic to some digraph Hn,s with 3 ≤ s ≤ n − 1.

Case 2. X does not contain any cycle. Then u is on every cycle of G. Let t be
the length of a longest cycle C of G. As the proof in Theorem 4, we have |L(G)| ≥
2. Suppose G contains a cycle C1 of length q < t. Write t = mq + r where m
and r are both integers with 1 ≤ r ≤ q. There exists a vertex x ∈ V (C)\{u} ⊆ X
such that there is a path of length r from x to u in the cycle C. Attaching the
cycle C1 to this path m times, we obtain a walk of length t from x to u. Clearly
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any vertex except u of G is reachable from itself by a walk of length t. Hence
n − 2 = F (G, n − 1) ≤ t. Note that t ≤ n − 2. We have t = n − 2. It follows
that G contains a subdigraph which is isomorphic to the digraph D ′ with vertex set
{1, 2, . . . , n} and arc set {(i, i + 1) : 3 ≤ i ≤ n − 1} ∪ {(n, 3)}. Suppose D′ is a
subdigraph of G with u = 3.

If vertices 1 and 2 are on a cycle, then vertices 1, 2 and 3 form a cycle of length
3, G is isomorphic to H2

n; otherwise vertices 1 and 3, 2 and 3 form two cycles of
length 2, G is isomorphic to H1

n.

Let Ωn be the family of digraphs Hn,s (n ≥ 4), H1
n (n ≥ 5) and H2

n (n ≥ 6).
Let f(n) = |Ωn| and g(n) = |Ωn ∩ U(n, 1)|. It can be easily seen that f(4) = 1,
f(5) = 3, f(n) = n − 3 + 2 = n− 1 for n ≥ 6, g(4) = 0, g(5) = 3 and for n ≥ 6

g(n) =




n − 1 if n is odd and n �≡ 2 (mod 3),
n − 2 if n is odd and n ≡ 2 (mod 3),
(n − 2)/2 if n is even and n �≡ 2 (mod 3),
(n − 4)/2 if n is even and n ≡ 2 (mod 3).

Corollary 2. The numbers of non-isomorphic digraphs and primitive digraphs
of order n with the (n−1)-th upper generalized exponents equal to n−2 are f(n)
and g(n) respectively.

It follows from Corollary 2 that there are n − 2 − ϕ(n − 1) non-isomorphic,
non-primitive digraphs in U(n, n−1) whose (n−1)-th upper generalized exponents
achieve n− 1 if n− 1 (n ≥ 5) is not prime, there are f(n)− g(n) non-isomorphic,
non-primitive digraphs in U(n, n−1) whose (n−1)-th upper generalized exponents
achieve n − 2 if n − 1 (n ≥ 4) is prime.

By Theorems 4 and 5, we have the following.

Theorem 6. If G ∈ U(n, n− 1)\U(n, 1) for n ≥ 4, then

F (G, n − 1) ≤
{

n − 1 if n − 1 is not prime,
n − 2 otherwise.

Equality in the above two cases holds if and only if G is respectively isomorphic to
(1) some Gn,s with 2 ≤ s ≤ n − 2 and gcd(s, n − 1) > 1;

(2) some Hn,s (n ≥ 4) with 3 ≤ s ≤ n − 1 where s is odd, H 1
n (n ≥ 5) or H2

n

(n ≡ 2 (mod 3) and n ≥ 8).

The numbers of such digraphs in (1) and (2) are n−2−ϕ(n−1) and f(n)−g(n)
respectively.
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4. SET OF UPPER GENERALIZED EXPONENTS

In this section we study the set of k-th upper generalized exponents of digraphs
in U(n, k). Clearly E(n, n) = {1}. We consider the case 1 ≤ k ≤ n − 1.

Theorem 7. For 1 ≤ k ≤ n− 4, and any integer m with F (n, k)− (n − k −
2) + 1 ≤ m ≤ F (n, k)− 1, we have m �∈ E(n, k).

Proof. Let G ∈ U(n, k) and let h be the length of a shortest cycle of G. By
the proof of Theorem 1, either F (G, k) = F (n, k) (G is isomorphic to Gn,n−2)
or h ≤ n − 3. Suppose h ≤ n − 3. If k = 1, by a result of [7], we have
F (G, 1) ≤ n+h(n−3) ≤ n2−5n+9 = F (n, 1)− (n−1−2). If 2 ≤ k ≤ n−4,
then by Lemma 2, F (G, k) ≤ n + h(n − k − 1) ≤ F (n, k) − (n − k − 2).

Hence for any G ∈ U(n, k), we have either F (G, k) = F (n, k) or F (G, k) ≤
F (n, k) − (n − k − 2).

Theorem 8. E(4, 1) = {6}, E(5, 2) = {4, 5, 6, 10}. For n ≥ 5, 3n − 5 ∈
E(n, n− 3), 3n − 6 �∈ E(n, n− 3).

Proof. If G ∈ U(4, 1), then it can be easily checked that G is isomorphic to
G4,2. Hence E(4, 1) = {F (G4,2, 1)} = {6}.

Suppose G ∈ U(5, 2). Since 2 < 5/2 + 1, G is primitive. As is proved
in [14], G is isomorphic to G5,3, D1, D2 or D3, where V (D1) = V (D2) =
V (D3) = {1, 2, 3, 4, 5}, E(D1) = E(G4,2) ∪ {(2, 5), (5, 2)}, E(D2) = E(G4,2) ∪
{(1, 5), (5, 1)} and E(D3) = E(G4,2)∪{(4, 5), (5, 4)}. It can checked readily that
F (D1, 2) = 4, F (D2, 2) = 5 and F (D3, 2) = 6. Note that F (G5,3, 2) = 10. We
have E(5, 2) = {4, 5, 6, 10}.

Now suppose n ≥ 6. Let G ∈ U(n, k) and let h be the smallest cycle length
of G. Then h ≤ n − 2. If h = n − 2, then G is isomorphic to Gn,n−2 and
F (G, n − 3) = F (n, n − 3) = 3n − 5 ∈ E(n, n− 3). If h ≤ n − 4, by Lemma 2,
F (G, k) ≤ n + 2h ≤ n + 2(n− 4) = 3n− 8. We are left with the case h = n− 3.
By Lemma 1, L(G) �= {n − 3}. Hence |L(G)| ≥ 2.

Case 1. n − 1 ∈ L(G). As is proved in [14], G is isomorphic to Gn,n−3. By
Lemma 4, we have F (G, n− 3) = 3n − 7.

Case 2. n − 1 �∈ L(G). As is proved in [14], G is isomorphic the digraph
D1

n−3 with vertex set {1, 2, . . . , n} and arc set {(i, i+ 1) : 1 ≤ i ≤ n− 3} ∪ {(n−
2, 1), (n−4, n−1), (n−1, n), (n, 2)}where n ≥ 6 or G contains a subdigraph which



Upper Generalized Exponents of Ministrong Digraphs 903

is isomorphic G1 = G(n−1),(n−1)−2. In the former case, suppose G = D1
n−3. It can

be checked as in [14] that |RG(3n− 7, i)| ≥ 4 for all i. Hence F (G, n−3) ≤ 3n−7.
Now suppose G1 is a subdigraph of G and V (G) = V (G1)∪{n}. Let X ⊆ V (G)
with |X | = n− 3. Every vertex i ∈ V (G)\{n} can be reachable from some vertex
in X\{n} by a walk of length expG1

(X\{n}) and hence of length 3n− 8. This is
because expG1

(X\{n}) ≤ F (G1, n − 4) = (n − 2)2 − (n − 4)(n − 3) = 3n − 8.
It follows that every vertex of G can be reachable from some vertex in X\{n} by
a walk of length 3n − 8 + 1 = 3n − 7, which implies F (G, n − 3) ≤ expG1

(X)
≤ expG1

(X\{n}) ≤ 3n − 7.
Now it follows that for any G ∈ U(n, n − 3) with F (G, n − 3) �= 3n − 5, we

have F (G, n − 3) ≤ 3n − 7.

By Theorems 7 and 8, there are gaps in the set E(n, k) for 1 ≤ k ≤ n − 3.

Theorem 9. For n ≥ 4, E(n, n− 1) = {2, 3, . . . , n − 1}.

Proof. By Lemma 8 and Theorem 1, we have E(n, n−1) ⊆ {2, 3, . . . , n−1}.
By Theorems 4 and 5, we have i − 2, i − 1 ∈ E(i, i− 1) for i = 4, 5, . . . , n.

Using Lemma 9, we have {2, 3, . . . , n − 1} ⊆ E(n, n− 1).

Theorem 10. For n ≥ 4, we have E(4, 2) = {5}, E(5, 3) = {4, 5, 7} and for
n ≥ 6, E(n, n− 2) = {2, 3, . . . , 2n− 3}.

Proof. If G ∈ U(4, 2), then G is primitive by Lemma 1. Hence E(4, 2) =
{F (G4,2, 2)} = {5}. By similar arguments as in Theorem 8, we have E(5, 3) =
{4, 5, 7} since F (D1, 3) = 4, F (D2, 3) = 5, F (D3, 3) = 4 and F (G5,3, 3) = 7.

Now suppose n ≥ 6. By Lemma 8 and Theorem 1, we have E(n, n − 2) ⊆
{2, 3, . . . , 2n− 3}. We only need to prove the reverse inclusion.

By [9, Theorem 4.1], we have {2, 3, 4} ⊆ E(n, n− 2).
Let G be the digraph with vertex set {i : 1 ≤ i ≤ 6} and arc set {(i, i+1) : 2 ≤

i ≤ 5} ∪ {(1, 3), (3, 2), (4, 1), (6, 4)}. Clearly G ∈ U(6, 1) ⊆ U(6, 4). It can be
easily seen that |RG(6, i)| ≥ 4 for all i ∈ V (G), which implies that F (G, 4) ≤ 6.
Note that there is no walk of length 5 from any vertex in {1, 2, 5, 6} to vertex 6.
Hence F (G, 4) ≥ expG({1, 2, 5, 6}) ≥ 6. We have 6 = F (G, 4) ∈ E(6, 4). Note
also that 5 ∈ E(4, 2) and by Lemmas 3 and 4, we have 2i − 4 ∈ E(i, i− 2) for
i ≥ 6 and 2i − 3 ∈ E(i, i − 2) for i ≥ 5. Hence we have by Lemma 9 that
{5, 6 . . . , 2n− 3} ⊆ E(n, n− 2).

It follows that {2, 3, . . . , 2n− 3} ⊆ E(n, n− 2).

The author thanks a referee for helpful comments on the manuscript.
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