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ON GEOMETRIC AND TOPOLOGICAL PROPERTIES OF THE
CLASSES OF HEREDITARILY �p BANACH SPACES

Parviz Azimi

Abstract. A class of hereditarily �p (1 ≤ p < ∞) Banach sequence spaces
is constructed and denoted by Xα,p. Any constructed space is a dual space.
We show that (i) the predual of any member X of the class of Xα,1 contains
asymptotically isometric copies of c0.(ii) Every infinite dimensional subspace
of X contains asymptotically isometric complemented copies of �1, and con-
sequently, the dual X∗ of X contains subspaces isometrically isomorphic to
C[0, 1]∗. (iii) Every member of the class of Xα,p (1 ≤ p < ∞) fails the
Dunford-Pettis property. (iv) We observe that all Xα,p spaces are Banach
spaces without unconditional basis but all constructed spaces contain a sub-
space which is weakly sequentially complete with an unconditional basis which
is weakly null sequence but not in norm. (v) All spaces have asymptotic-
norming and Kadec-Klee property. The predual of any Xα,p is an Asplund
space.

1. INTRODUCTION

S. Chen and B.-L. Lin [4] proved that a Banach space contains an asymptotically
isometric copy of �1 if its dual space contains an isometric copy of �∞, and if a
Banach space contains an asymptotically isometric copy of c0, then its dual space
contains an asymptotically isometric copy of �1.

J. Dilworth, M. Girardi and J. Hagler [7] have shown that a Banach space
contains asymptotically isometric copies of �1 if and only if its dual space contains an
isometric copy of L1. In [3] a class of hereditarily �1 Banach space failing the Schur
property was studied. Hagler in an unpublished result showed that all of the spaces
contain �1 hereditarily complemented, and their predual contains many subspaces
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isomorphic to c0 [8]. In this paper we study further properties of the spaces.
In particular, we prove that the predual of any member X of this class contains
asymptotically isometric copies of c0 and consequently X contains asymptotically
isometric copies of �1.

The Banach spaces of this class was extended to the Xα,p spaces. Let X denote
a specific Xα,p space, then X contains �p hereditarily complemented (1 ≤ p < ∞)
[2]. Every member X fails the Dunford-Pettis property. We also observe that all
constructed spaces have asymptotic-norming and Kadec-Klee property. Since any
Xα,p is a dual space, it follows that the Banach space Y the predual of any Xα,p

is an Asplund space. The Xα,p spaces for p > 1 contain reflexive subspaces which
are weakly sequentially complete with unconditional basis. Excellent sources of
information on the asymptotic-norming property of Banach spaces are [9, 10, 12].

A Banach space X is said to be an Asplund space if every convex subset of X
is Frechet differentiable at all points of a dense Gδ subset of its domain.

It is known that a Banach space X is an Asplund space if and only if X ∗ has
the Radon-Nikodym property if and only if every separable subspace of X has a
separable dual [1, 14, 15]. We observe that the predual of any Xα,p is an Asplund
space.

The author would like to thank the referee for clarification of some arguments,
and valuable remarks. Especially for helpful comments, and a number of corrections.
Now we go through the construction of the spaces.

A block F is an interval (finite or infinite) of integers. For any block F , and
x = (t1, t2, . . .) a finitely non-zero sequence of scalars, we let 〈x, F 〉 =

∑
j∈F tj .

A sequence of blocks F1, F2, . . . is admissible if maxFi < minFi+1 for each
i. Finally, let 1 = α1 ≥ a2 ≥ α3 ≥ . . . be a sequence of real numbers with
limi→∞ αi = 0 and

∑∞
i=1 αi = ∞.

We now define a norm which uses the αi’s and admissible sequence of blocks
in its definition. Let 1 ≤ p < ∞ and x = (t1, t2, . . .) be finitely non-zero sequence
of reals. Define

‖x‖ = max

[
n∑

i=1

αi|〈x, Fi〉|p
] 1

p

where the max is taken over all n, and admissible sequences F1, F2, . . .. The Banach
space Xα,p is the completion of the finitely non-zero sequences of scalars in this
norm.

2. DEFINITIONS AND NOTATION

Definitions and notation are standard, but we give some of these here.
The dual space of X is denoted by X∗. A subspace Y of X is complemented

in X if there is a projection P : X → X such that P (X) = Y and ‖P‖ < ∞.
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Let �1 be the space of absolutely summable sequences and L1 the space of
Lebesgue-integrable functions on [0, 1]. c0 is the space of all null sequences x =
(t1, t2, . . .) with ‖x‖ = maxn |tn|.

A Banach space X is called hereditarily �1 if every infinite dimensional subspace
of X contains a subspace isomorphic to �1.

Definition 2.1. Let X be a Banach space. We say that X contains asymptoti-
cally isometric copies of �1 if for some sequence λ0 < λ1 < . . . with limn λn = 1,
there is sequence (xn) in X such that for all m and scalars (tn : 0 ≤ n ≤ m)

m∑
n=0

λn|tn| ≤ ‖
m∑

n=0

tnxn‖ ≤
m∑

n=0

|tn|

X contains asymptotically isometric copy of c0 if

max
i

λi|ti| ≤ ‖
m∑

n=0

tnxn‖ ≤ max
i

|ti|

Definition 2.2. A Banach space X is said to have the Dunford-Pettis prop-
erty (DPP) if for every weakly null sequences (xn) in X and (x∗

n) in X∗, then
limn x∗

n (xn) = 0.

Definition 2.3. An infinite-dimensional Banach space X is said to be prime if
every infinite-dimensional complemented subspace of X is isomorphic to X .

It is known that c0, �p, 1 ≤ p < ∞ and �∞ are prime.

3. THE RESULTS

The key to the analysis of the space X is via the following result(lemma 4 of
[3]).

Lemma 3.1. Let the sequence (αi) be as above, let N > 0 be an integer and
let ε > 0. Then there exist a δ > 0 such that, if b1, b2, . . . , bn are ≥ 0, bi < δ for
all i, and

∑n
i=1 αibi = 1, then

∑n
i=1 αi+N bi ≥ 1 − ε.

The following summarize the main result of [2]. Let (ei) denote the sequence
of usual unit vectors in Xα,p, ei (j) = δij .

Theorem 3.2. Let Xα,p denote a specific space of the class, we have the
following:

(1) Xα,p is hereditarily complementably �p.
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(2) The sequence (ei) is a normalized boundedly complete bases for X α,p. Thus,
Xα,p is a dual space.

(3) The predual of Xα,p contains complemented subspaces isomorphic to � q

where 1
p + 1

q = 1.
(4) Xα,p spaces have some other properties similar to [3], which we state some

of them here.

(a) Each complemented non weakly sequentially complete subspace of X α,p

contains a complemented isomorph of X α,p.
(b) Xα,p and Xβ,p are isomorphic if and only if they are equal as sets.
(c) The sequence (xn) with xn = e2n−1 − e2n is weakly null sequence in

Xα,p but not in norm.
Since Xα,p contains �p hereditarily complementably, thus,

(d) Xα,p spaces are not prime.
Since for p > 1, Xα,p does not contain �1 and is not reflexive,

(e) Xα,p is a Banach space without unconditional basis.

Remark 3.3. Let (fi) in X∗ be the biorthogonal sequence to the usual basis
(ei) in X , and let Y be the subspace of X ∗ generated by the sequence (fi). Theorem
3.2(2) and well known result [13](proposition 1.b.4 page 9) show that X = Y ∗.
For p = 1, Hagler proved that Y contains many subspaces isomorphic to c0. For
p > 1, Theorem 3.2(3) shows that Y contains complemented subspaces isomorphic
to �q where 1

p + 1
q = 1.

There are a number of possible future directions that one might take in studying
further the structure of the space Y. We list two of them:

(1) For p = 1, is Y hereditarily c0 ?
(2) For p > 1, is Y hereditarily complementably �q ?

Theorem 3.4. The predual of Xα,1 contains asymptotically isometric copies
of c0.

Proof. Let V be an infinite dimensional subspace of Xα,1. The proof of
Theorem 1.(1) in [3] shows that we may assume the following:

There exist sequences (vi) in V , (ni) of integers, and δi > 0 satisfying

1. ‖vi‖ = 1 for all i.
2. Put Ni = n1 + n2 + . . . + ni−1 for i > 1 and N1 = 0. Then δi satisfies

Lemma 3.1 for εi < εi−1 < . . . < 1 and N = Ni.
3. For each block F and i, |〈vi, F 〉| ≤ δi.
4. For each i, there is a sequence of admissible blocks F i

1, F
i
2, . . . , F

i
ni

with
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(a) maxF i
ni

< minF i+1
1 for each i

(b)
∑ni

j=1 αj|〈vi, F
i
j 〉| = 1.

(c) 〈vk, F
i
j 〉 = 0 if k �= i.

A trivial modification (1 − εi, i = 1, 2, ... instead of 1/2) in proof of theorem
1.(1) in [3] shows that

‖
n∑

i=1

tivi‖ ≥
n∑

i=1

ni∑
j=1

αj+Ni |〈
n∑

k=1

tkvk, F i
j〉|

=
n∑

i=1

|ti|
ni∑

j=1

αj+Ni |〈vi, F
i
j 〉|

≥
n∑

i=1

(1 − εi) |ti|

for any n, and scalars t1, t2, . . . tn.
Let φi ∈ X∗

α,1 be defined by

φi (x) =
ni∑

j=1

εi
jαj+Ni〈x, F i

j 〉

where εi
j = sgn

(
〈vi, F

i
j 〉
)

for each j and i.
Properties (1-4) for the vis imply that

φi (vi) =
ni∑

j=1

εi
jαj+Ni〈vi, F

i
j 〉

=
ni∑

j=1

αj+Ni |〈vi, F
i
j〉|

≥ (1− εi)
ni∑

j=1

αj|〈vi, F
i
j 〉|

= 1 − εi

for each i and φi (vj) = 0 for i �= j.
Let n, and scalars t1, . . . , tn be given. Since ‖vi‖ = 1 for all i and

|
n∑

i=1

tiφi (vj) | ≥ (1 − εj) |tj|.
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This implies that

‖
n∑

i=1

tiφi‖ ≥ max
j

(1 − εj) |tj |.

Now by definition of φi, for each x ∈ X ,
∑

i |φi (x) | ≤ ‖x‖. So if ‖x‖ = 1,

|
n∑

i=1

tiφi (x) | ≤
n∑

i=1

|ti||φi (x) |

≤ (max
i

|ti|)
(

n∑
i=1

|φi (x) |
)

≤ max
i

|ti|.

Taking sup over all ‖x‖ = 1 shows that

‖
n∑

i=1

tiφi‖ ≤ max
i

|ti|.

Let X = Y ∗ then clearly each φi ∈ Y (remark 3.3) and therefore X contains
asymptotically isometric copies of c0.

Theorem 3.4 and theorem 5 of [4] have the following consequence.

Theorem 3.5. The Banach space Xα,1 contains asymptotically isometric copies
of �1.

The following Theorem is an immediate consequence of theorem 2 of [7] and
corollary 3.5.

Theorem 3.6.

(i) The dual X ∗
α,1 of Xα,1 contains subspaces isometrically isomorphic to C [0, 1] ∗,

(ii) C (∆) is isometric to a quotient space of X α,1 where ∆ is the Cantor set
and

(iii) L1 is linearly isometric to a subspace of X ∗
α,1.

Definition 3.7. A norming set for a Banach space X is defined to be a subset
φ of the unit ball of X∗ such that, for each x ∈ X ,

‖x‖ = sup {ϕ (x) : ϕ ∈ φ} .

The next definition make use of a convergence criteria for a bounded sequence
(xi) in a Banach space.
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Definition 3.8. A Banach space X have the asymptotic-norming property
(ANP) if it has an equivalent norm for which there is a norming set φ which has
the property that the sequence (xn) converges strongly if ‖xn‖ = 1 for each n and
(xn) is asymptotically normed by φ, meaning that, for each positive ε, there exist
ϕ ∈ φ and N such that

ϕ (xn) > 1 − ε if n > N

The following theorem which is from [12] is essential in this study.

Theorem 3.9.

(i) If X∗ is separable and also is a dual of a Banach space X , then X ∗ has
ANP.

(ii) There is a separable Banach space that has ANP and is not isomorphic to
any subspace of a separable dual.

(iii) If a Banach space X has ANP, then X has RNP.

It is not known whether RNP implies ANP, even for Banach spaces that are
dual.

Definition 3.10. A Banach space is said to have Kadec-Klee property if (xn)
converges strongly to x whenever (xn) converges weakly to x and ‖x‖ = ‖xn‖ for
each n.

The following result of Stegall shows that Y the predual of any Xα,p is an
Asplund space [15].

Theorem 3.11. If X∗ has the Radon-Nikodym property then X is an Asplund
space.

Theorems 3.9, 3.11 and theorem 3.1 of [12] imply that,

Theorem 3.12. Let X be a member of the class of Xα,p spaces then X has
the following properties.

1. X has asymptotic-norming property.
2. X has Kadec-Klee property.
3. Banach space Y the predual of X is an Asplund space.

Remark 3.13. A subspace W of the dual of a Banach space has the w∗−Kadec-
Klee property (w∗-KK property) if (wi) in W converges strongly to w whenever
w ∈ W , ‖w‖ = ‖wi‖ for each i, and w is the w∗-limit of (wi). Since X is the
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separable dual of a Banach space Y it follows from results of Davis and Johnson
[5] that Y can be given an equivalent norm for which X then has w∗-KK property.

Before we go through the proof of theorem 3.15 we prove the following lemma.

Lemma 3.14. Let (xn) be a sequence of vectors in a Banach space X , such
that for every increasing sequence, (nk) of integers,

lim
k→∞

‖xn1 + xn2 + . . . + xk‖
k

= 0

then xn → 0 weakly.

Proof. If this is not true, then there exit f ∈ X ∗ with ‖f‖ = 1, δ > 0 and a
sequence (ni) of integers such that f(xni) ≥ δ. This implies that

∑k
i=1 f(xni) ≥

kδ. Therefore,

‖
k∑

i=1

xni‖

k
≥

n∑
i=1

f(xni)

k
≥ δ

which is a contradiction.

Lemma 3.15. The Banach spaces Xα,p (1 ≤ p < ∞) fail the DPP.

Proof. Let ui = e2i − e2i−1 and fi : Xα,p → R such that for any x =
(t1, t2, . . .) ∈ Xα,p, we have fi (x) = ti for integers i. Then for gn = f2n − f2n−1,
we have gn (un) = 2. To complete the proof we need to show that un → 0
weakly, and gn → 0 weakly. The first one follows from Lemma 3.14. We claim
that gn → 0 weakly. If not there are F ∈ X∗∗

α,p with ‖F‖ = 1, δ > 0 and a
subsequence (gnk

) such that F (gnk
) > δ for all integers k. So for integer N , we

have
∑N

k=1 F (gnk
) > Nδ and hence

‖
N∑

k=1

gnk
‖

N
> δ.

This implies that for any integer N , there exist x = (t1, t2, . . .) ∈ Xα,p such
that

1
N

N∑
k=1

gnk
(x) > δ.



On Geometric and Topological Properties of the Classes of Hereditarily �p Banach Spaces 721

Then limn→∞ tn = 0 for integers N and corresponding x = (t1, t2, . . .), since∑∞
i=1 αi = ∞. Therefore,

| 1
N

N∑
k=1

gnk
(x) | =

1
N

|
N∑

k=1

(t2nk
− t2nk−1) |

≤ 1
N

N∑
k=1

|t2nk
| + 1

N

N∑
k=1

|t2nk−1| → 0

as N → ∞ which is a contradiction.

Remark 3.16. It is known that if X ∗ has the DPP, then so does X . This
implies that X ∗

α,p also fails the DPP.
It is known that if an infinite-dimensional Banach space has no normalized

weakly null sequence then it contains infinite unconditional basic sequence, in fact
it contains a subspace isomorphic to �1. In [2], we proved that Xα,p is a class of
hereditarily complementably �p Banach spaces. Here is some other properties of
these spaces.

Theorem 3.17.

(i) Let ui = e2i−e2i−1 (i ∈ N ) and Y be the closed subspace of an specific Xα,p

generated by ui, i.e., Y = [ui]. Then the sequence (ui) is an unconditional
basis of Y .

(ii) Y is weakly sequentially complete and u i → 0 weakly, but in norm.

Proof. Part(i) is a consequence of the fact that for any sequence (ti), and any
j, we have ‖∑i�=j tiui‖ ≤ ‖∑i tiui‖, See [13] (Proposition 1.c.6 page 18).

For part(ii), since (ui) is unconditional basis for [ui] and since [ui] does not
contain a copy of c0, it follows from [6] (Theorem 2, page 74) that [ui] is weakly
sequentially complete.

Theorem 3.2 shows that ui → 0 weakly but not in norm. In fact ‖ui‖ =
(1 + α2)

1
p .

Remark 3.18. A result of James [11] asserts that a Banach space with an
unconditional basis is either reflexive or has a subspace isomorphic to c0 or �1.
This implies that the Banach spaces Y = [u i] for p > 1 is reflexive.
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