ON CONVERGENCE OF A RECURSIVE SEQUENCE

$$
x_{n+1}=f\left(x_{n-1}, x_{n}\right)
$$

Sin-Ei Takahasi, Yasuhide Miura and Takeshi Miura

Abstract

C. H. Gibbons, M. R. S. Kulenovic and G. Ladas [1] have posed the following problem: Is there a solution of the difference equation:

$$
x_{n+1}=\frac{\beta x_{n-1}}{\beta+x_{n}}, \quad x_{-1}, x_{0}>0, \beta>0 \quad(n=0,1,2, \ldots)
$$

such that $\lim _{n \rightarrow \infty} x_{n}=0$? S. Stevic [2] gives an affirmative answer to this open problem and generalize this result to the equation of the form:

$$
x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)}, \quad x_{-1}, x_{0}>0 \quad(n=0,1,2, \ldots)
$$

by using his ingenious device. In this note, we generalize the result of Stevic to the equation of the form:

$$
x_{n+1}=f\left(x_{n-1}, x_{n}\right), \quad x_{-1}, x_{0}>0 \quad(n=0,1,2, \ldots) .
$$

However our proof is simple and short.

1. Introduction and Main Result

Recently S. Stevic [2] has proved the following result which gives an affirmative answer to the open problem on the convergency of a recursive sequence posed in [1]:

Theorem A. Let g be a C^{1}-function on $[0, \infty)$ such that $g(0)=1$ and $g^{\prime}(x)>0$ for all $x \in[0, \infty)$. Then for any $a>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)}$ with $x_{-1}=a$ such that $x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.

Received January 27, 2003; accepted May 6, 2004.
Communicated by Sze-Bi Hsu.
2000 Mathematics Subject Classification: Primary 39A10.
Key words and phrases: Nonlinear difference equation, Nonlinear recursive sequence.

In this note, we generalize his result. To do this we consider the convergency of the following nonlinear recursive sequence:

$$
\begin{equation*}
x_{n+1}=f\left(x_{n-1}, x_{n}\right), \quad x_{-1}, x_{0}>0 \quad(n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

where $f:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ is a continuous function which satisfies the following conditions:
(a) $f(x, y) \leq x$ for each $x, y>0$;
(b) If $f(y, f(x, y)) \leq f(x, y)$, then $x \geq y$.

Let $a=x_{-1}, b=x_{0}$ and $x_{n}=x_{n}(a, b) \quad(n=1,2, \ldots)$. Then $\left\{x_{n}(a, b)\right\}$ denotes the solution of Equation (1) with initial conditions $x_{-1}=a$ and $x_{0}=b$. Also we can regard x_{n} as a continuous function : $(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ with variable (a, b). By (a), we see that the sequences $\left\{x_{2 n}\right\}$ and $\left\{x_{2 n-1}\right\}$ are decreasing and hence there exist $p, q \geq 0$ such that $\lim _{n \rightarrow \infty} x_{2 n}=p$ and $\lim _{n \rightarrow \infty} x_{2 n-1}=q$. Therefore the sequence defined by the Equation (1) converges if and only if $p=q$ and hence the following problem is naturally posed:

$$
\begin{equation*}
\text { Is there }(a, b) \in(0, \infty) \times(0, \infty) \text { such that } p(a, b)=q(a, b) \text { ? } \tag{2}
\end{equation*}
$$

To solve the above problem, let $\varepsilon>0$ and set

$$
\begin{aligned}
A_{f}(\varepsilon) & =\{a \in[\varepsilon, \infty): b<f(a, b) \text { for some } b \geq \varepsilon\} \\
B_{f}(\varepsilon) & =\{b \in[\varepsilon, \infty): b<f(a, b) \text { for some } a \geq \varepsilon\} \\
C_{f}(b ; \varepsilon) & =\{a \in[\varepsilon, \infty): b \geq f(a, b)\} \quad(b>0)
\end{aligned}
$$

Furthermore set

$$
A_{f}=\bigcup_{\varepsilon>0} A_{f}(\varepsilon) \text { and } B_{f}=\bigcup_{\varepsilon>0} B_{f}(\varepsilon)
$$

Then our main result is the following assertion which gives an affirmative answer to the problem (2) under some condition.

Theorem 1.

(i) Suppose that A_{f} is non-empty and a is in A_{f}. Then there exists a solution $\left\{x_{n}\right\}$ of the Equation (1) such that $a=x_{-1} \geq x_{0} \geq x_{1} \geq x_{2} \geq \cdots>0$.
(ii) Suppose that B_{f} is non-empty and b is in B_{f} such that $C_{f}(b ; \varepsilon)$ is a bounded set in $[\varepsilon, \infty)$ for each $\varepsilon \in(0, b)$. Then there exists a solution $\left\{x_{n}\right\}$ of the Equation (1) such that $x_{-1} \geq b=x_{0} \geq x_{1} \geq x_{2} \geq \cdots>0$.

2. Proof of the Main Result

Let $\varepsilon>0$. Choose $a \in A_{f}(\varepsilon)$ and $b \in B_{f}(\varepsilon)$ with $b>\varepsilon$. For each $n \geq-1$, set

$$
A_{n}(b ; \varepsilon)=\left\{u \in[\varepsilon, \infty): x_{n}(u, b) \geq x_{n+1}(u, b)\right\}
$$

and

$$
B_{n}(a ; \varepsilon)=\left\{v \in[\varepsilon, \infty): x_{n}(a, v) \geq x_{n+1}(a, v)\right\} .
$$

Then both $A_{n}(b ; \varepsilon)$ and $B_{n}(a ; \varepsilon)$ are closed sets in $[\varepsilon, \infty)$. Note that

$$
\begin{equation*}
A_{n+2}(b ; \varepsilon) \subseteq A_{n}(b ; \varepsilon) \text { and } B_{n+2}(a ; \varepsilon) \subseteq B_{n}(a ; \varepsilon) \tag{3}
\end{equation*}
$$

Indeed, if $u \in A_{n+2}(b ; \varepsilon)$, then

$$
\begin{aligned}
f\left(x_{n}(u, b), x_{n+1}(u, b)\right) & =x_{n+2}(u, b) \geq x_{n+3}(u, b) \\
& =f\left(x_{n+1}(u, b), f\left(x_{n}(u, b), x_{n+1}(u, b)\right)\right) .
\end{aligned}
$$

By (b), we have $x_{n}(u, b) \geq x_{n+1}(u, b)$ and so $u \in A_{n}(b ; \varepsilon)$. Consequently, $A_{n+2}(b ; \varepsilon) \subseteq A_{n}(b ; \varepsilon)$. Similarly for $B_{n+2}(a ; \varepsilon) \subseteq B_{n}(a ; \varepsilon)$. Now set

$$
X_{n}(b ; \varepsilon)=A_{n}(b ; \varepsilon) \cap A_{n+1}(b ; \varepsilon) \text { and } Y_{n}(a ; \varepsilon)=B_{n}(a ; \varepsilon) \cap B_{n+1}(a ; \varepsilon) .
$$

Then both $X_{n}(b ; \varepsilon)$ and $Y_{n}(a ; \varepsilon)$ are closed sets in $[\varepsilon, \infty)$ such that

$$
X_{-1}(b ; \varepsilon) \supseteq X_{1}(b ; \varepsilon) \supseteq X_{3}(b ; \varepsilon) \supseteq \ldots
$$

and

$$
Y_{-1}(a ; \varepsilon) \supseteq Y_{1}(a ; \varepsilon) \supseteq Y_{3}(a ; \varepsilon) \supseteq \ldots
$$

by (3). We assert that $X_{2 n+1}(b ; \varepsilon) \neq \emptyset$ and $Y_{2 n+1}(a ; \varepsilon) \neq \emptyset$. Indeed, suppose $X_{2 n+1}(b ; \varepsilon)=\emptyset$. Then $A_{2 n+1}(b ; \varepsilon)^{\mathrm{c}} \cup A_{2 n+2}(b ; \varepsilon)^{\mathrm{c}}=[\varepsilon, \infty)$. Also $A_{2 n+1}(b ; \varepsilon)^{\mathrm{c}} \cap$ $A_{2 n+2}(b ; \varepsilon)^{\mathrm{c}}=\emptyset$. Suppose to the contrary that there is a $u \in[\varepsilon, \infty)$ such that $x_{2 n+1}(u, b)<x_{2 n+2}(u, b)<x_{2 n+3}(u, b)$. This contradicts the fact that the sequence $\left\{x_{2 k-1}\right\}$ is decreasing. Note that $A_{-1}(b ; \varepsilon)^{\mathrm{c}}=\{u \in[\varepsilon, \infty): u<b\} \neq \emptyset$ because $b>\varepsilon$ and that $A_{0}(b ; \varepsilon)^{\mathrm{c}}=\{u \in[\varepsilon, \infty): b<f(u, b)\} \neq \emptyset$ because $b \in B_{f}(\varepsilon)$. By (3), $A_{-1}(b ; \varepsilon)^{\mathrm{c}} \subseteq A_{2 n+1}(b ; \varepsilon)^{\mathrm{c}}$ and $A_{0}(b ; \varepsilon)^{\mathrm{c}} \subseteq A_{2 n+2}(b ; \varepsilon)^{\mathrm{c}}$ and so both $A_{2 n+1}(b ; \varepsilon)^{\mathrm{c}}$ and $A_{2 n+2}(b ; \varepsilon)^{\mathrm{c}}$ are non-empty disjoint open sets in $[\varepsilon, \infty)$. Then we arrive at a contradiction since $[\varepsilon, \infty)$ is connected. Consequently, we have $X_{2 n+1}(b ; \varepsilon) \neq \emptyset$. Also since $B_{-1}(a ; \varepsilon)^{\mathrm{c}}=\{v \in[\varepsilon, \infty): a<v\} \neq \emptyset$ and $B_{0}(a ; \varepsilon)^{\mathrm{c}}=\{v \in[\varepsilon, \infty): v<f(a, v)\} \neq \emptyset$ because $a \in A_{f}(\varepsilon)$, it follows from a similar argument that $Y_{2 n+1}(a ; \varepsilon) \neq \emptyset$.

Proof of (i). Let $a \in A_{f}$. Then there is an $\varepsilon_{0}>0$ such that $a \in A_{f}\left(\varepsilon_{0}\right)$. Since $Y_{-1}\left(a ; \varepsilon_{0}\right) \subseteq B_{-1}\left(a ; \varepsilon_{0}\right)=\left\{v \in\left[\varepsilon_{0}, \infty\right): a \geq v\right\}$, it follows that $Y_{-1}\left(a ; \varepsilon_{0}\right)$ is a
bounded set in $\left[\varepsilon_{0}, \infty\right)$. Therefore by the above argument, we see that $\left\{Y_{-1}\left(a ; \varepsilon_{0}\right)\right.$, $\left.Y_{1}\left(a ; \varepsilon_{0}\right), Y_{3}\left(a ; \varepsilon_{0}\right), \ldots\right\}$ is a decreasing sequence of non-empty compact sets in $\left[\varepsilon_{0}, \infty\right)$. Then there exists an element v_{0} of $\bigcap_{n=-1}^{\infty} Y_{2 n+1}\left(a ; \varepsilon_{0}\right)$ by the Heine-Borel covering theorem. Hence we have that

$$
a=x_{-1}\left(a, v_{0}\right) \geq x_{0}\left(a, v_{0}\right) \geq x_{1}\left(a, v_{0}\right) \geq x_{2}\left(a, v_{0}\right) \geq \cdots>0,
$$

and then the assertion (i) holds.
Proof of (ii). Let $b \in B_{f}$ be such that $C_{f}(b ; \varepsilon)$ is a bounded set in $[\varepsilon, \infty)$ for each $\varepsilon \in(0, b)$. Then there is an $\varepsilon_{1}>0$ such that $b \in B_{f}\left(\varepsilon_{1}\right)$. Note that $B_{f}\left(\varepsilon_{1}\right) \subseteq$ $B_{f}\left(\varepsilon_{1} / 2\right)$. Then $b \in B_{f}\left(\varepsilon_{1} / 2\right)$ and $b>\frac{\varepsilon_{1}}{2}$. Since $X_{-1}\left(b ; \varepsilon_{1} / 2\right) \subseteq A_{0}\left(b ; \varepsilon_{1} / 2\right)=$ $C_{f}\left(b ; \varepsilon_{1} / 2\right)$, it follows that $X_{-1}\left(b ; \varepsilon_{1} / 2\right)$ is a bounded set in $\left[\frac{\varepsilon_{1}}{2}, \infty\right)$. Therefore by the above argument, we see that $\left\{X_{-1}\left(b ; \varepsilon_{1} / 2\right), X_{1}\left(b ; \varepsilon_{1} / 2\right), X_{3}\left(b ; \varepsilon_{1} / 2\right), \ldots\right\}$ is a decreasing sequence of non-empty compact sets in $\left[\frac{\varepsilon_{1}}{2}, \infty\right)$. Then there exists an element u_{0} of $\bigcap_{n=-1}^{\infty} X_{2 n+1}\left(b ; \varepsilon_{1} / 2\right)$ by the Heine-Borel covering theorem. Hence we have that

$$
x_{-1}\left(u_{0}, b\right) \geq b=x_{0}\left(u_{0}, b\right) \geq x_{1}\left(u_{0}, b\right) \geq x_{2}\left(u_{0}, b\right) \geq \cdots>0,
$$

and then the assertion (ii) holds.

3. Application

Let $g:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ be a continuous function which satisfies the following conditions
(c) $g(x, \cdot)$ is an increasing function for any fixed $x>0$;
(d) $\frac{g(y, x)-g(x, y)}{x-y} \geq 0$ for each $x, y>0$ with $x \neq y$.

Set $f(x, y)=\frac{x}{1+g(x, y)}$ for each $x, y>0$. Then f is a continuous function of $(0, \infty) \times(0, \infty)$ into $(0, \infty)$ which satisfies the condition (a). Also f satisfies the condition (b). In fact, let $x, y>0$ with $x \neq y$ and suppose $f(y, f(x, y)) \leq f(x, y)$. By (c), we have

$$
\begin{aligned}
\frac{x}{1+g(x, y)} & =f(x, y) \geq f(y, f(x, y)) \\
& =\frac{y}{1+g\left(y, \frac{x}{1+g(x, y)}\right)} \geq \frac{y}{1+g(y, x)}
\end{aligned}
$$

and hence

$$
(x-y)\left(1+g(y, x)+y \frac{g(y, x)-g(x, y)}{x-y}\right) \geq 0 .
$$

It follows from (d) that $x-y \geq 0$ and so f satisfies the condition (b). Moreover since

$$
A_{f}(\varepsilon)=\{a \in[\varepsilon, \infty): b(1+g(a, b))<a \text { for some } b \geq \varepsilon\}
$$

for each $\varepsilon>0$, it follows from (c) that $A_{f}=(0, \infty)$. Therefore we have from Theorem 1 that for any $a>0$, there exists a solution $\left\{x_{n}\right\}$ of Equation (1) such that $a=x_{-1} \geq x_{0} \geq x_{1} \geq x_{2} \geq \cdots>0$. Set $\alpha=\lim _{n \rightarrow \infty} x_{n}$. If $\alpha \neq 0$, then $\alpha=\frac{\alpha}{1+g(\alpha, \alpha)}$ and so $\alpha g(\alpha, \alpha)=0$, hence we arrive at a contradiction since $g(\alpha, \alpha)>0$. Therefore we have that $\lim _{n \rightarrow \infty} x_{n}=0$. Moreover if $g(x, \cdot)$ is strictly increasing for any fixed $x>0$, then we have $a=x_{-1}>x_{0}>x_{1}>x_{2}>\cdots>0$. In fact, suppose that there exists an $N \geq-1$ such that $x_{N}=x_{N+1}$. Then we have

$$
\frac{x_{N}}{1+g\left(x_{N}, x_{N+2}\right)}=x_{N+3} \leq x_{N+2}=\frac{x_{N}}{1+g\left(x_{N}, x_{N+1}\right)}
$$

and hence $g\left(x_{N}, x_{N+1}\right) \leq g\left(x_{N}, x_{N+2}\right)$. Therefore $x_{N+1} \leq x_{N+2}$ and so $x_{N+1}=$ x_{N+2} whenever $g(x, \cdot)$ is strictly increasing for any fixed $x>0$. By repeating this argument, we have that $x_{N}=x_{N+1}=x_{N+2}=x_{N+3}=\ldots$ and so $\lim _{n \rightarrow \infty} x_{n}=$ $x_{N}>0$, a contradiction. Therefore we have the following:

Theorem 2. Let $g:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ be a continuous function which satisfies the conditions (c) and (d). Then for any $a>0$, there exists a solution $\left\{x_{n}\right\}$ of $x_{n+1}=\frac{x_{n-1}}{1+g\left(x_{n-1}, x_{n}\right)}$ such that $a=x_{-1} \geq x_{0} \geq x_{1} \geq x_{2} \geq \cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.

In particular if $g(x, \cdot)$ is a strictly increasing function for any fixed $x>0$, then the above solution $\left\{x_{n}\right\}$ is strictly decreasing.

Let $h:(0, \infty) \rightarrow(0, \infty)$ be a continuous increasing function and set

$$
f(x, y)=\frac{x}{1+h(y)} \quad(x, y>0)
$$

Note that $g(x, y)=h(y) \quad(x, y>0)$ satisfies the conditions (c) and (d). Note also that $A_{f}=B_{f}=(0, \infty)$ and $C_{f}(b ; \varepsilon)=\{u \geq \varepsilon: u \leq b(1+h(b))\}$, hence bounded, for each pair (b, ε) with $0<\varepsilon<b$. Then by Theorems 1 and 2 , we have the following

Corollary 3. Let $h:(0, \infty) \rightarrow(0, \infty)$ be a continuous increasing function. Then
(i) For any $a>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+h\left(x_{n}\right)}$ such that $a=x_{-1} \geq x_{0} \geq x_{1} \geq x_{2} \geq \cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.
In particular if h is strictly increasing, then the above solution $\left\{x_{n}\right\}$ is strictly decreasing.
(ii) For any $b>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+h\left(x_{n}\right)}$ such that $x_{-1} \geq b=x_{0} \geq x_{1} \geq x_{2} \geq \cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.

In particular if h is strictly increasing, then the above solution $\left\{x_{n}\right\}$ is strictly decreasing.

Remark. We note that Theorem A follows immediately from Corollary 3(i): In fact take h to be a C^{1}-function such that $h(0)=0$ and $h^{\prime}(x)>0$ for all $x \in[0, \infty)$.

4. Other Typical Examples

In this section, we give other typical examples of Theorem 2.

1. Let $f(x, y)=\frac{x}{1+x+y}$. Then $A_{f}=(0, \infty), B_{f}=(0,1)$ and $C_{f}=$ $\left[\varepsilon, \frac{b(1+b)}{1-b}\right]$ for each pair (b, ε) with $0<\varepsilon<b \in B_{f}$. Then it follows from Theorems 1 and 2 that
(i) For any $a>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n-1}+x_{n}}$ such that $a=x_{-1}>x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.
(ii) For any $b \in(0,1)$, there exists a solution of the equation $x_{n+1}=$ $\frac{x_{n-1}}{1+x_{n-1}+x_{n}}$ such that $x_{-1}>b=x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.
2. Let $f(x, y)=\frac{x}{1+x y}$. Then $A_{f}=(0, \infty), B_{f}=(0,1)$ and $C_{f}(b ; \varepsilon)=$ $\left[\varepsilon, \frac{b}{1-b^{2}}\right]$ for each pair (b, ε) with $0<\varepsilon<b \in B_{f}$. Then it follows from Theorems 1 and 2 that
(i) For any $a>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n-1} x_{n}}$ such that $a=x_{-1}>x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.
(ii) For any $b \in(0,1)$, there exists a solution of the equation $x_{n+1}=$ $\frac{x_{n-1}}{1+x_{n-1} x_{n}}$ such that $x_{-1}>b=x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.
3. Let $f(x, y)=\frac{x^{2}}{x+y}$. Then $A_{f}=B_{f}=(0, \infty)$ and $C_{f}(b ; \varepsilon)=\left[\varepsilon, \frac{\sqrt{5}+1}{2} b\right]$ for each pair (b, ε) with $0<\varepsilon<b \in B_{f}$. Then it follows from Theorems 1 and 2 that
(i) For any $a>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}^{2}}{x_{n-1}+x_{n}}$ such that $a=x_{-1}>x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.
(ii) For any $b>0$, there exists a solution of the equation $x_{n+1}=\frac{x_{n-1}^{2}}{x_{n-1}+x_{n}}$ such that $x_{-1}>b=x_{0}>x_{1}>x_{2}>\cdots>0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.

Acknowledgement

The first and third authors are partially supported by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

1. C. H. Gibbons, M. R. S. Kulenovic and G. Ladas, On the recursive sequence $x_{n+1}=$ $\left(\alpha+\beta x_{n-1}\right) /\left(\gamma+x_{n}\right)$, Math. Sci. Res. Hot-Line, 4 (2000), 1-11.
2. S. Stevic, On the recursive sequence $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$, Taiwanese J. Math., 6 (2002), 405-414.

Sin-Ei Takahasi
Department of Basic Technology,
Applied Mathematics and Physics,
Yamagata University,
Yonezawa 992-8510, Japan
E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp
Yasuhide Miura
Department of Mathematics,
Faculty of Humanities and Social Sciences,
Iwate University,
Morioka 020-8550, Japan
E-mail: ymiura@iwate-u.ac.jp

Takeshi Miura
Department of Basic Technology,
Applied Mathematics and Physics,
Yamagata University,
Yonezawa 992-8510, Japan
E-mail: miura@yz.yamagata-u.ac.jp

