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ON CONVERGENCE OF A RECURSIVE SEQUENCE
xn+1 = f(xn−1, xn)

Sin-Ei Takahasi, Yasuhide Miura and Takeshi Miura

Abstract. C. H. Gibbons, M. R. S. Kulenovic and G. Ladas [1] have posed
the following problem: Is there a solution of the difference equation:

xn+1 =
βxn−1

β + xn
, x−1, x0 > 0, β > 0 (n = 0, 1, 2, . . .)

such that lim
n→∞xn = 0? S. Stevic [2] gives an affirmative answer to this open

problem and generalize this result to the equation of the form:

xn+1 =
xn−1

g(xn)
, x−1, x0 > 0 (n = 0, 1, 2, . . .)

by using his ingenious device. In this note, we generalize the result of Stevic
to the equation of the form:

xn+1 = f(xn−1, xn), x−1, x0 > 0 (n = 0, 1, 2, . . .).

However our proof is simple and short.

1. INTRODUCTION AND MAIN RESULT

Recently S. Stevic [2] has proved the following result which gives an affirmative
answer to the open problem on the convergency of a recursive sequence posed in
[1]:

Theorem A. Let g be a C1-function on [0,∞) such that g(0) = 1 and g ′(x) > 0
for all x ∈ [0,∞). Then for any a > 0, there exists a solution of the equation
xn+1 =

xn−1

g(xn)
with x−1 = a such that x0 > x1 > x2 > · · · > 0 and lim

n→∞xn = 0.
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In this note, we generalize his result. To do this we consider the convergency
of the following nonlinear recursive sequence:

(1) xn+1 = f(xn−1, xn), x−1, x0 > 0 (n = 0, 1, 2, . . .),

where f : (0,∞) × (0,∞) → (0,∞) is a continuous function which satisfies the
following conditions:

(a) f(x, y) ≤ x for each x, y > 0;

(b) If f(y, f(x, y))≤ f(x, y), then x ≥ y.

Let a = x−1, b = x0 and xn = xn(a, b) (n = 1, 2, . . .). Then {xn(a, b)}
denotes the solution of Equation (1) with initial conditions x−1 = a and x0 = b.
Also we can regard xn as a continuous function : (0,∞)× (0,∞) → (0,∞) with
variable (a, b). By (a), we see that the sequences {x2n} and {x2n−1} are decreasing
and hence there exist p, q ≥ 0 such that lim

n→∞ x2n = p and lim
n→∞ x2n−1 = q.

Therefore the sequence defined by the Equation (1) converges if and only if p = q
and hence the following problem is naturally posed:

(2) Is there (a, b) ∈ (0,∞)× (0,∞) such that p(a, b) = q(a, b)?

To solve the above problem, let ε > 0 and set

Af (ε) = {a ∈ [ε,∞) : b < f(a, b) for some b ≥ ε},
Bf (ε) = {b ∈ [ε,∞) : b < f(a, b) for some a ≥ ε},

Cf (b; ε) = {a ∈ [ε,∞) : b ≥ f(a, b)} (b > 0).

Furthermore set
Af =

⋃
ε>0

Af (ε) and Bf =
⋃
ε>0

Bf (ε).

Then our main result is the following assertion which gives an affirmative answer
to the problem (2) under some condition.

Theorem 1.

(i) Suppose that Af is non-empty and a is in Af . Then there exists a solution
{xn} of the Equation (1) such that a = x−1 ≥ x0 ≥ x1 ≥ x2 ≥ · · · > 0.

(ii) Suppose that Bf is non-empty and b is in Bf such that Cf (b; ε) is a bounded
set in [ε,∞) for each ε ∈ (0, b). Then there exists a solution {x n} of the
Equation (1) such that x−1 ≥ b = x0 ≥ x1 ≥ x2 ≥ · · · > 0.
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2. PROOF OF THE MAIN RESULT

Let ε > 0. Choose a ∈ Af(ε) and b ∈ Bf (ε) with b > ε. For each n ≥ −1, set

An(b; ε) = {u ∈ [ε,∞) : xn(u, b) ≥ xn+1(u, b)}
and

Bn(a; ε) = {v ∈ [ε,∞) : xn(a, v) ≥ xn+1(a, v)}.
Then both An(b; ε) and Bn(a; ε) are closed sets in [ε,∞). Note that

(3) An+2(b; ε) ⊆ An(b; ε) and Bn+2(a; ε) ⊆ Bn(a; ε).

Indeed, if u ∈ An+2(b; ε), then

f(xn(u, b), xn+1(u, b)) = xn+2(u, b) ≥ xn+3(u, b)
= f(xn+1(u, b), f(xn(u, b), xn+1(u, b))).

By (b), we have xn(u, b) ≥ xn+1(u, b) and so u ∈ An(b; ε). Consequently,
An+2(b; ε) ⊆ An(b; ε). Similarly for Bn+2(a; ε) ⊆ Bn(a; ε). Now set

Xn(b; ε) = An(b; ε)∩ An+1(b; ε) and Yn(a; ε) = Bn(a; ε) ∩ Bn+1(a; ε).

Then both Xn(b; ε) and Yn(a; ε) are closed sets in [ε,∞) such that

X−1(b; ε) ⊇ X1(b; ε) ⊇ X3(b; ε) ⊇ . . .

and
Y−1(a; ε) ⊇ Y1(a; ε) ⊇ Y3(a; ε) ⊇ . . .

by (3). We assert that X2n+1(b; ε) 	= ∅ and Y2n+1(a; ε) 	= ∅. Indeed, suppose
X2n+1(b; ε) = ∅. Then A2n+1(b; ε)c∪A2n+2(b; ε)c = [ε,∞). Also A2n+1(b; ε)c∩
A2n+2(b; ε)c = ∅. Suppose to the contrary that there is a u ∈ [ε,∞) such that
x2n+1(u, b) < x2n+2(u, b) < x2n+3(u, b). This contradicts the fact that the se-
quence {x2k−1} is decreasing. Note that A−1(b; ε)c = {u ∈ [ε,∞) : u < b} 	= ∅
because b > ε and that A0(b; ε)c = {u ∈ [ε,∞) : b < f(u, b)} 	= ∅ because
b ∈ Bf (ε). By (3), A−1(b; ε)c ⊆ A2n+1(b; ε)c and A0(b; ε)c ⊆ A2n+2(b; ε)c and
so both A2n+1(b; ε)c and A2n+2(b; ε)c are non-empty disjoint open sets in [ε,∞).
Then we arrive at a contradiction since [ε,∞) is connected. Consequently, we
have X2n+1(b; ε) 	= ∅. Also since B−1(a; ε)c = {v ∈ [ε,∞) : a < v} 	= ∅ and
B0(a; ε)c = {v ∈ [ε,∞) : v < f(a, v)} 	= ∅ because a ∈ Af (ε), it follows from a
similar argument that Y2n+1(a; ε) 	= ∅.

Proof of (i). Let a ∈ Af . Then there is an ε0 > 0 such that a ∈ Af (ε0). Since
Y−1(a; ε0) ⊆ B−1(a; ε0) = {v ∈ [ε0,∞) : a ≥ v}, it follows that Y−1(a; ε0) is a
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bounded set in [ε0,∞). Therefore by the above argument, we see that {Y−1(a; ε0),
Y1(a; ε0), Y3(a; ε0), . . .} is a decreasing sequence of non-empty compact sets in
[ε0,∞). Then there exists an element v0 of

⋂∞
n=−1 Y2n+1(a; ε0) by the Heine-Borel

covering theorem. Hence we have that

a = x−1(a, v0) ≥ x0(a, v0) ≥ x1(a, v0) ≥ x2(a, v0) ≥ · · · > 0,

and then the assertion (i) holds.

Proof of (ii). Let b ∈ Bf be such that Cf (b; ε) is a bounded set in [ε,∞) for
each ε ∈ (0, b). Then there is an ε1 > 0 such that b ∈ Bf (ε1). Note that Bf (ε1) ⊆
Bf (ε1/2). Then b ∈ Bf (ε1/2) and b >

ε1

2
. Since X−1(b; ε1/2) ⊆ A0(b; ε1/2) =

Cf (b; ε1/2), it follows that X−1(b; ε1/2) is a bounded set in
[ε1

2
,∞

)
. Therefore

by the above argument, we see that {X−1(b; ε1/2), X1(b; ε1/2), X3(b; ε1/2), . . .} is
a decreasing sequence of non-empty compact sets in

[ε1

2
,∞

)
. Then there exists an

element u0 of
⋂∞

n=−1 X2n+1(b; ε1/2) by the Heine-Borel covering theorem. Hence
we have that

x−1(u0, b) ≥ b = x0(u0, b) ≥ x1(u0, b) ≥ x2(u0, b) ≥ · · · > 0,

and then the assertion (ii) holds.

3. APPLICATION

Let g : (0,∞)× (0,∞) → (0,∞) be a continuous function which satisfies the
following conditions

(c) g(x, ·) is an increasing function for any fixed x > 0;

(d)
g(y, x)− g(x, y)

x − y
≥ 0 for each x, y > 0 with x 	= y.

Set f(x, y) =
x

1 + g(x, y)
for each x, y > 0. Then f is a continuous function

of (0,∞)×(0,∞) into (0,∞) which satisfies the condition (a). Also f satisfies the
condition (b). In fact, let x, y > 0 with x 	= y and suppose f(y, f(x, y)) ≤ f(x, y).
By (c), we have

x

1 + g(x, y)
= f(x, y) ≥ f(y, f(x, y))

=
y

1 + g

(
y,

x

1 + g(x, y)

) ≥ y

1 + g(y, x)
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and hence
(x − y)

(
1 + g(y, x) + y

g(y, x)− g(x, y)
x − y

)
≥ 0.

It follows from (d) that x − y ≥ 0 and so f satisfies the condition (b). Moreover
since

Af (ε) = {a ∈ [ε,∞) : b(1 + g(a, b)) < a for some b ≥ ε}
for each ε > 0, it follows from (c) that Af = (0,∞). Therefore we have from
Theorem 1 that for any a > 0, there exists a solution {xn} of Equation (1) such
that a = x−1 ≥ x0 ≥ x1 ≥ x2 ≥ · · · > 0. Set α = lim

n→∞xn. If α 	= 0, then

α =
α

1 + g(α, α)
and so αg(α, α) = 0, hence we arrive at a contradiction since

g(α, α) > 0. Therefore we have that lim
n→∞ xn = 0. Moreover if g(x, ·) is strictly

increasing for any fixed x > 0, then we have a = x−1 > x0 > x1 > x2 > · · · > 0.
In fact, suppose that there exists an N ≥ −1 such that xN = xN+1. Then we have

xN

1 + g(xN , xN+2)
= xN+3 ≤ xN+2 =

xN

1 + g(xN , xN+1)

and hence g(xN , xN+1) ≤ g(xN , xN+2). Therefore xN+1 ≤ xN+2 and so xN+1 =
xN+2 whenever g(x, ·) is strictly increasing for any fixed x > 0. By repeating this
argument, we have that xN = xN+1 = xN+2 = xN+3 = . . . and so lim

n→∞ xn =
xN > 0, a contradiction. Therefore we have the following:

Theorem 2. Let g : (0,∞)× (0,∞) → (0,∞) be a continuous function which
satisfies the conditions (c) and (d). Then for any a > 0, there exists a solution
{xn} of xn+1 =

xn−1

1 + g(xn−1, xn)
such that a = x−1 ≥ x0 ≥ x1 ≥ x2 ≥ · · · > 0

and lim
n→∞xn = 0.

In particular if g(x, ·) is a strictly increasing function for any fixed x > 0, then
the above solution {xn} is strictly decreasing.

Let h : (0,∞) → (0,∞) be a continuous increasing function and set

f(x, y) =
x

1 + h(y)
(x, y > 0).

Note that g(x, y) = h(y) (x, y > 0) satisfies the conditions (c) and (d). Note
also that Af = Bf = (0,∞) and Cf (b; ε) = {u ≥ ε : u ≤ b(1 + h(b))}, hence
bounded, for each pair (b, ε) with 0 < ε < b. Then by Theorems 1 and 2, we have
the following

Corollary 3. Let h : (0,∞) → (0,∞) be a continuous increasing function.
Then
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(i) For any a > 0, there exists a solution of the equation x n+1 =
xn−1

1 + h(xn)
such that a = x−1 ≥ x0 ≥ x1 ≥ x2 ≥ · · · > 0 and lim

n→∞ xn = 0.

In particular if h is strictly increasing, then the above solution {x n} is strictly
decreasing.

(ii) For any b > 0, there exists a solution of the equation x n+1 =
xn−1

1 + h(xn)
such that x−1 ≥ b = x0 ≥ x1 ≥ x2 ≥ · · · > 0 and lim

n→∞xn = 0.

In particular if h is strictly increasing, then the above solution {x n} is strictly
decreasing.

Remark. We note that Theorem A follows immediately from Corollary 3-
(i): In fact take h to be a C1-function such that h(0) = 0 and h′(x) > 0 for all
x ∈ [0,∞).

4. OTHER TYPICAL EXAMPLES

In this section, we give other typical examples of Theorem 2.

1. Let f(x, y) =
x

1 + x + y
. Then Af = (0,∞), Bf = (0, 1) and Cf =[

ε,
b(1 + b)
1− b

]
for each pair (b, ε) with 0 < ε < b ∈ Bf . Then it follows from

Theorems 1 and 2 that

(i) For any a>0, there exists a solution of the equation xn+1 =
xn−1

1+xn−1+xn
such that a = x−1 > x0 > x1 > x2 > · · · > 0 and lim

n→∞ xn =0.
(ii) For any b ∈ (0, 1), there exists a solution of the equation xn+1 =

xn−1

1 + xn−1 + xn
such that x−1 > b = x0 > x1 > x2 > · · · > 0 and

lim
n→∞xn = 0.

2. Let f(x, y) =
x

1 + xy
. Then Af = (0,∞), Bf = (0, 1) and Cf (b; ε) =[

ε,
b

1 − b2

]
for each pair (b, ε) with 0 < ε < b ∈ Bf . Then it follows from

Theorems 1 and 2 that

(i) For any a > 0, there exists a solution of the equation xn+1 =
xn−1

1 + xn−1xn
such that a = x−1 > x0 > x1 > x2 > · · · > 0 and lim

n→∞ xn = 0.
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(ii) For any b ∈ (0, 1), there exists a solution of the equation xn+1 =
xn−1

1 + xn−1xn
such that x−1 > b = x0 > x1 > x2 > · · · > 0 and

lim
n→∞ xn = 0.

3. Let f(x, y) =
x2

x + y
. Then Af = Bf = (0,∞) and Cf (b; ε) =

[
ε,

√
5 + 1
2

b

]

for each pair (b, ε) with 0 < ε < b ∈ Bf . Then it follows from Theorems 1
and 2 that

(i) For any a > 0, there exists a solution of the equation xn+1 =
x2

n−1

xn−1 + xn
such that a = x−1 > x0 > x1 > x2 > · · · > 0 and lim

n→∞ xn = 0.

(ii) For any b > 0, there exists a solution of the equation xn+1 =
x2

n−1

xn−1 + xn
such that x−1 > b = x0 > x1 > x2 > · · · > 0 and lim

n→∞xn = 0.
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