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FUNCTIONS OF BOUNDED MEAN OSCILLATION

Der-Chen Chang and Cora Sadosky

Abstract. BMO, the space of functions of bounded mean oscillation, was
first introduced by F. John and L. Nirenberg in 1961. It became a focus of
attention when C. Fefferman proved that BMO is the dual of the (real) Hardy
space H1 in 1971. In the past 30 years, this space was studied extensively by
many mathematicians. With the help of BMO, many phenomena can be char-
acterized clearly. In this review we discuss the connections between BMO
functions, the sharp function operator, Carleson measures, atomic decomposi-
tions and commutator operators in Rn. We strive to cover some of the main
developments in the theory, including BMO in a bounded Lipschitz domain
in Rn and in the product space R ×R.

1. THE BMO SPACE AND THE SHARP FUNCTION OPERATOR

The Lebesgue Lp spaces play an important role in Fourier analysis, as can be
seen in many examples (see e.g., Stein’s books [39] and [40]). However, many
important classes of operators are not well behaved on the spaces L1 and L∞. In
fact, many of these operators are unbounded on L1. Therefore, L1 is too large to
be the domain of such operators. By the same token, the target space of many
canonical operators exceeds L∞. Hence L∞ is too small to be the range of such
operators. (These two deficiencies are dual in a certain sense.) The motivation
to find substitutes for the spaces L1 and L∞ led to the Hardy space H1 (derived
from complex function theoretic considerations in the early part of last century), and
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to the space BMO of functions of bounded mean oscillation (introduced by John
and Nirenberg [29] in 1961, in the context of partial differential equations). These
spaces turned out to be the “right” spaces to study instead of L1, L∞ respectively.
In fact, many of the operators that we wish to study, and which are ill-behaved on L1

or L∞, are bounded on H1 and on BMO; an example being the T (1) theorem for
Calderón-Zygmund operators by David and Jourńe [18]. These two spaces lead to
deep insights concerning quasi-conformal mappings, Cauchy integrals on Lipschitz
curves, probability theory, and partial differential equations.

In this paper, we just concentrate on the space BMO. We discuss the con-
nections between BMO functions, the sharp function operator, Carleson measures,
atomic decompositions, and commutator operators in Rn. We also summarize some
of the main developments in theBMO theory, including those on bounded Lipschitz
domains in Rn, and on the product space R ×R.

We start with two definitions. Here, as in the rest of the survey, Q stands for a
cube with sides parallel to the axes.

Definition 1.1. Let f be a locally integrable function defined on Rn, n ≥ 1.
Denote f �

Q the mean oscillation of f in a cube Q,

f �
Q =

1
|Q|

∫
Q

∣∣f(x) − fQ

∣∣dx
where

fQ =
1
|Q|

∫
Q
f(x) dx.

The sharp function operator � : f �→ f � is defined as follows:

(1.1) f �(x) = sup
r>0

f �
Q(x;r)

,

where Q(x; r) is a cube centered at x and of diameter �(Q) = r.

Definition 1.2. f is a funcion of bounded mean oscillation, f ∈ BMO, if and
only if f� ∈ L∞(Rn).

Denote ‖f‖∗ = ‖f �‖L∞ as the BMO norm of f . Note that

‖f‖∗ = 0 if f ≡ constant.

Therefore, an element in BMO is in fact an equivalent class. More precisely,

f = g in BMO ⇔ f − g = constant.
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Obviously, BMO(Rn) is a normed space. Furthermore, we may replace fQ, the
mean of f over Q, by any other constant. More precisely, one can show that
f ∈ BMO(Rn) if and only if for any cube Q ⊂ Rn, there exists a constant CQ

(depending on Q) such that

sup
Q

1
|Q|

∫
Q

∣∣f(x)− CQ(x)
∣∣dx <∞.

Denote
‖f‖∗∗ = sup

Q
inf
C

1
|Q|

∫
Q
|f(x)− C|dx.

It can be shown that ‖f‖∗∗ and ‖f‖∗ are equivalent. We may use either ‖ · ‖∗ or
‖ · ‖∗∗ as the norm function on BMO to show that BMO is a Banach space.

It is easy to see that L∞ ⊂ BMO, but BMO 
⊂ L∞. A famous example is
log |x| ∈ BMO(Rn)\L∞(Rn). Another interesting phenomenon is that, in general,
we cannot localize a BMO function. For example, χ[0,∞) log |x| 
∈ BMO(R)
although log |x| ∈ BMO(R).

From the definitions of ‖ · ‖∗ and ‖ · ‖∗∗, a deeper knowledge about BMO(Rn)
can be obtained. In fact, from ‖ · ‖∗ (or ‖ · ‖∗∗), the statement

“f ∈ BMO(Rn) ⇔
∫

Q
|f(x)− fQ| dx <∞”

implicitly implies that

“f ∈ BMO(Rn) ⇔
∫

Q
|f(x)− fQ|p dx <∞, for 1 ≤ p <∞.”

Furthermore, we can make a weaker assumption on
∫
Q |f(x)−fQ|dx <∞ in order

to characterize BMO(Rn).
Let us define

(1.2) µQ(α) = |{x ∈ Q : |f(x)− fQ| > α}|

where |A| is the Lebesgue measure of the set A. Then we have

Proposition 1.3. If there exist two constants B, β such that, for all cubes Q,

(1.3) µQ(α) ≤ B · |Q| · e−βα

then f ∈ BMO(Rn).

In fact, property (1.3) characterizes BMO, as proved by F. John and L. Niren-
berg [29]. Here we state a slightly more general version of this theorem. Let
Φ : R+ → R+ be a continuously increasing function satisfying Φ(R+) = R+ and

Φ(α+ β) ≤ CΦ(Φ(α) + Φ(β) + 1), for all α, β ∈ R+,
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for CΦ ≥ 1 a universal constant. Denote

BMOΦ(Rn) ={
f ∈ LΦ

loc(R
n) :‖f‖∗,Φ=Φ−1

(
sup
Q

inf
CQ∈C

1
|Q|

∫
Q

Φ(|f(x)−CQ|)dx
)
<∞

}
.

Theorem 1.4. (John-Nirenberg inequality). For every f ∈ BMOΦ, every Q ⊂
Rn, and α > 0, there exist two positive constants B, depending only on the
dimension n, and bf , such that

(1.4)
1
|Q|µQ(α) ≤ B · exp

(
− α

bf

)

where µQ(α) is defined by (1.2).

As a consequence, one has

Corollary 1.5. Suppose that f is a measurable function having the property
that for all cubes Q there exists a constant CQ such that

sup
Q

1
|Q| |{x ∈ Q : |f(x)− CQ| > α}| = ψ(α) → 0, as α→ ∞.

Then f ∈ BMO(Rn).

One of the applications of the John-Nirenberg inequality is to show that all
BMOp(Rn), i.e., BMOΦ for Φ(x) = xp, are equivalent when 1 ≤ p < ∞. By
definition, BMOp(Rn) is the class of all measurable functions such that

‖f‖p
∗,p = sup

Q

1
|Q|

∫
Q

∣∣f(x) − fQ

∣∣pdx <∞

with BMO1 = BMO.
Assume that f ∈ BMOp(Rn). Since Φ(x) = xp, we have

Φ(α+ β) ≤ Cp(Φ(α) + Φ(β)).

Furthermore, one may choose the constant B in (1.3) as e. Therefore, the constant
bf will be

(Cp2ne‖f‖p
∗,p + Cp‖f‖p

∗,p)
1
p = C′

p‖f‖∗,p.
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Therefore, we can rewrite (1.4) as follows:

1
|Q| |{x ∈ Q : |f(x)− cQ| > α}| ≤ e · exp

(
− α

C′
p‖f‖∗,p

)
.

It follows that

‖f‖∗ = sup
Q

1
|Q|

∫
Q
|f(x)− cQ|dx

≤ e ·
∫ ∞

0
exp

(
− α

C′
p‖f‖∗,p

)
dα ≤ C̃p · ‖f‖∗,p.

Similarly, we have

‖f‖∗,p = sup
Q

(
1
|Q|

∫
Q

|f(x) − cQ|pdx
)1

p

≤ C′
p

(∫ ∞

0

αp−1 · e−
α

Cp‖f‖∗ dα

)1
p

≤ C̃p · ‖f‖∗.

Now we have the following corollary.

Corollary 1.6. Let 1 ≤ p < ∞, then BMOp(Rn) = BMO(Rn). More
precisely,

C−1
p ‖f‖∗,p ≤ ‖f‖∗ ≤ Cp‖f‖∗,p.

We now state the maximal theorem for the sharp function operator due to C.
Fefferman and E.M. Stein [ 20]. This theorem will allow the interpolation between
Lp and BMO spaces.

Theorem 1.7. (Sharp function operator). Let 1 < p < ∞. For every f ∈
Lp(Rn) there exists a constant Cp, independent of f , depending only on n and p,
such that

(1.5) C−1
p ‖f‖Lp ≤ ‖f �‖Lp(Rn) ≤ Cp‖f‖Lp

and thus

(1.6) f ∈ Lp(Rn) ⇔ f � ∈ Lp(Rn).
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Remark. We know that if f ∈ L∞ ∩ L1 then f ∈ Lp for all 1 < p < ∞.
A similar result holds for BMO, namely that if f ∈ BMO ∩ L1 then f ∈ Lp,
1 < p <∞. Moreover,

‖f‖Lp ≤ Cp · ‖f‖
1
p

L1 · ‖f‖
1
p′∗ .

This fact can be proved by using Theorem 1.7.

As we mentioned at the beginning of this section, many classical operators T
are bounded from Lp(Rn) to itself for 1 < p <∞, but not for p = 1 or p = ∞ (see
e.g., Sadosky [37], Stein-Weiss [42]). The substitute results for p = 1 and p = ∞
usually are T : L1 → L1,∞ and T : L∞,∞ → L∞. Here Lp,∞, 1 ≤ p < ∞, is
the space of all measurable functions such that∣∣∣{x ∈ Rn : T (f)(x) > α

}∣∣∣ ≤ C

α
‖f‖Lp , for all α > 0.

One may ask for a substitute result for the action of T on L∞. We shall see that
this will be T : L∞ → BMO, since BMO plays the same role with respect
to L∞ as Lp,∞ plays with respect to Lp, for 1 ≤ p < ∞. The next theorem
of C. Fefferman and E.M. Stein [20] is, thus, an extension of the Marcinkiewicz
interpolation theorem (see e.g., Sadosky [37], Stein-Weiss [42]) for the endpoint
(∞,∞).

Theorem 1.8. (Interpolation theorem between Lp and BMO). Let 1 < p <∞
and T be a linear operator, continuous from L p into itself and from L∞ intoBMO,
i.e.,

T : Lp(Rn) → Lp(Rn) and T : L∞(Rn) → BMO(Rn)

continuously. Then T : Lq(Rn) → Lq(Rn) continuously for all p < q <∞.
Let 1 < q ≤ ∞. A (1, q)-atom centered at the origin is defined as follows. Let

a be a measurable function on Rn, supported on a cube Q, and satisfying

• Size condition:
‖a‖Lq ≤ |Q|

1
q
−1;

• Moment condition: ∫
Q
a(x) dx = 0.

An integrable function f is in the space H 1(Rn) if and only if

f =
∞∑

k=1

λkak
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where ak are (1, q)-atoms with
∑∞

k=1 |λk| <∞. We may define

‖f‖H1 = inf
{ ∞∑

k=1

|λk|
}

where the infimum is taken over all possible atomic decompositions of f , as in
Coifman [12]. Now we can state the famous duality theorem for the real Hardy
space H1(Rn) which was first proved by C. Fefferman [19].

Theorem 1.9. (C. Fefferman-E.M. Stein). The dual space of the real Hardy
space H1(Rn) is BMO(Rn).

Moreover, we have the following result as an application of Theorem 1.9.

Theorem 1.10. A function g ∈ BMO(Rn) if and only if there exist functions
g0, g1, . . . , gn ∈ L∞(Rn) such that

g = g0 +
n∑

j=1

Rj(gj),

for
Rj(gj)(x) = Cn

∫
Rn

xj − yj

|x− y|n+1
gj(y)dy, j = 1, . . . , n,

where the Rj, j = 1, . . . , n, are the Riesz transforms on Rn.

In the case n = 1 there is only one Riesz transform, i.e., the Hilbert transform,

H(g)(x) = P.V.
1
π

∫ ∞

−∞
g(y)
x− y

dy.

Then, a function g ∈ BMO(R) if and only if

(1.7) g = g0 + H(g1), g0, g1 ∈ L∞(R).

Observe that this is again equivalent to the duality in one dimension:

BMO(R) = (H1(R))∗ = (L1(R) ∩ HL1(R))∗ = L∞(R) + HL∞(R).

In 1976, Coifman, Rochberg and Weiss [14] introduced a new characterization
of BMO(Rn) in terms of commutator operators bounded on L2(Rn). Let Mf

be the multiplication operator by a function f , and let K be a Calderón-Zygmund
singular integral operator. Then [Mf , K] is the commutator operator defined by
[Mf , K]φ = f K(φ) − K(fφ).
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Theorem 1.11. Let Rj , j = 1, . . . , n, be the Riesz transforms, and let K be
a Calderón-Zygmund singular integral operator in R n. Then, if f ∈ BMO(Rn),
the commutator [Mf , K] is a bounded operator on Lp(Rn), for 1 < p < ∞.
Conversely, if the commutators [Mf ,Rj] for j = 1, . . . , n, are bounded operators
on Lp(Rn), for some p, 1 < p <∞, then f ∈ BMO(Rn).

In the case when n = 1 this reduces to f ∈ BMO(R) if and only if [M f ,H]
is a bounded operator in L2(R).

Theorem 1.7 is in turn equivalent to the “weak factorization” property for the
space real H1(Rn):

For all f ∈ H1(Rn) there exist two sequences (gi), (hi) ⊂ H2(Rn) such that

f =
∞∑
i=1

gi hi and
∞∑
i=1

‖gi‖L2‖hi‖L2 <∞ .

Remark.
Let w(x) > 0. We call w an Ap weight, and write w ∈ Ap, if

sup
Q

( 1
|Q|

∫
Q
w(x)dx

)( 1
|Q|

∫
Q
w

− 1
p−1 (x)dx

)p−1
<∞, 1 < p <∞ .

For the maximal function operator, M(w)(x) ≤ Cw(x) for almost every x ∈ Rn,
and for p = 1, w ∈ A1 if and only if

w
(
{x ∈ Rn : M(f)(x) > λ}

)
≤ c

λ

∫
Rn

|f(x)|dx

where
w(E) =

∫
E
w(x)dx for all E ⊂ Rn.

In [33] Muckenhoupt showed that, for 1 < p <∞,∫
Rn

M(f)p(x)w(x)dx ≤ Cp

∫
Rn

|f(x)|pw(x)dx

if and only if w ∈ Ap. Hunt, Muckenhoupt and Wheeden proved similar (and much
deeper) results for the Hilbert transform [28], later generalized (with simplified
proofs) for Calderón-Zygmund operators in Rn by Coifman and C. Fefferman [13].
A close connection between the BMO functions and the Ap weights follows from
the central role played by the Hilbert transform in BMO theory. More precisely,
for 1 < p < ∞, if w ∈ Ap then logw ∈ BMO; conversely, if logw ∈ BMO,
then there exists a positive number α > 0 such that wα ∈ Ap. For how these
facts, together with the Helson-Szegö characterization of the A2 weights, provide a
different proof of the duality (H1)∗ = BMO in one variable, see e.g. [38].
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2. THE BMO SPACE AND CARLESON MEASURES

The space of BMO is closely linked with the Carleson measures. Carleson
measures were first introduced by the Swedish mathematician L. Carleson in the
early 60’s to solve the corona problem [1]. Since then it has become an increasingly
important tool in Fourier analysis. In his celebrated paper quoted above, Carleson
sought the characterization of all non-negative measures µ defined on R2

+ satisfying

(2.8)
∫
R2

+

∣∣Pt ∗ f(y)
∣∣2dµ(y, t) ≤ C‖f‖2

L2(R)

for all f ∈ L2(R). Here

Pt ∗ f(y) =
1
π

∫
R

t

(t2 + |y − z|2)f(z)dz

is the Poisson integral of f and C is a universal constant. Let us look at this problem
more carefully, in the general case of Rn, n ≥ 2.

Let Q be any cube in Rn of diameter �(Q). Define the Carleson box corre-
sponding to Q as

S(Q) =
{
(y, t) ∈ Rn+1

+ : y ∈ Q , 0 < t < �(Q)
}
.

Consider f = χ2Q. It is easy to show that (Pt ∗ f)(y) ≥ c, for a positive constant
c whenever (y, t) ∈ S(Q). Plugging this into (2.8),

c ′µ(S(Q)) ≤
∫
Rn+1

+

∣∣Pt ∗ f(y)
∣∣2dµ(y, t) ≤ C ′|Q|,

it is
µ(S(Q)) ≤ C|Q|.

Thus, we have the following definition.

Definition 2.1. A non-negative measure µ defined on Rn+1
+ is called a Carleson

measure if

(2.9) µ(S(Q)) ≤ C|Q|, for all Q ⊂ Rn,

where C is a universal constant. The smallest constant C satisfying (2.9) is called
the “norm” of the Carleson measure µ and is denoted by ‖µ‖C .
Indeed, (2.8) holds for all Carleson measures µ. We start with the following theorem.
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Theorem 2.2. Let f be a continuous function defined on Rn+1
+ and let µ be

a Carleson measure. Then

(2.10)
∫
Rn+1

+

|f(y, t)|dµ(y, t) ≤ C

∫
Rn

f∗(x)dx,

where
f∗(x) = sup

|y−x|<t
|f(y, t)|

is the nontangential maximal function of f . Here C is a constant depending only
on ‖µ‖C.

As a consequence, we have the following corollary.

Corollary 2.3. (Carleson Embedding Theorem). Let f ∈ Lp(Rn), 1 < p <∞,
and let µ be a Carleson measure defined on Rn+1

+ . Then the Poisson integral
Pt ∗ f(y) of f satisfies the following inequality∫

Rn+1
+

|Pt ∗ f(y)|pdµ(y, t) ≤ C‖f‖p
Lp .

The spaceBMO has deep connections with Carleson measures, as shown by the
characterization given by C. Fefferman [19] of BMO functions through canonically
associated Carleson measures. First we relateBMO(Rn) with the Poisson integrals.
For details see Stein [39].

Proposition 2.4. Let ε > 0 and let Q be an arbitrary cube centered at x 0 with
�(Q) = d. Then there exists a constant A = Aε,n such that for all f ∈ BMO(Rn),
then

(2.11)
∫
Rn

dε|f(x) − fQ|
dn+ε + |x− x0|n+ε

dx ≤ A · ‖f‖∗.

The following corollary is a consequence of the above proposition in the case
ε = 1.

Corollary 2.5. Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then the Poisson integral of f ,
Pt ∗ f(x), exists for every (x, t) ∈ Rn+1

+ .

Theorem 2.6. (C. Fefferman). The function g ∈ BMO(Rn) if and only if the
associated measure defined on Rn+1

+ by

dµg(x, t) = t
∣∣∇u∣∣2(x, t) dx dt,



Functions of Bounded Mean Oscillation 583

where u(x, t) = Pt ∗ g(x) is the Poisson integral of g, is a Carleson measure.

Theorem 2.7. Let g ∈ BMO(Rn) and let ψ be a radial function in S(Rn)
satisfying

∫
Rn ψ(x)dx= 0. Then

∣∣ψt ∗ g(x)
∣∣2 dxdt

t
, with ψt(·) =

1
tn
ψ
( ·
t

)
is a Carleson measure defined on Rn+1

+ .

Theorem 2.2 has an interesting generalization, that eventually leads to the con-
verse of Theorem 2.7. Let f(y, t) and g(y, t) be two functions defined on Rn+1

+ .
Denote by

Ap(f)(x) =
( ∫

Γ(x)
|f(y, t)|pdydt

tn+1

) 1
p
, p <∞,

A∞(f)(x) = sup
(y,t)∈Γ(x)

∣∣f(y, t)
∣∣,

and by

Cp(g)(x) = sup
B,x∈B

( 1
|B|

∫
B
|g(y, t)|pdydt

t

) 1
p
, p <∞,

where Γ(x) = {(y, t) : |x − y| < t} is the cone with vertex at the point x. Then
we have the following theorem of Coifman, Meyer and Stein [15].

Theorem 2.8. For 1
p + 1

p′ = 1, 1 < p ≤ ∞, we have

(2.12)
∫ ∫

Rn+1
+

∣∣f(y, t)g(y, t)
∣∣dydt
t

≤ C

∫
Rn

Ap(f)(x)Cp′(g)(x)dx,

where C is a constant independent of f and g.

Remark. In particular, when p = ∞, p′ = 1 and Cp′(g)(x) ∈ L∞(Rn), i.e.,
when

∣∣g(y, t)∣∣dydt
t is a Carleson measure, inequality (2.12) becomes∫ ∫

Rn+1
+

∣∣f(y, t)g(y, t)
∣∣dydt
t

≤ C

∫
Rn

A∞(f)(x)dx,

which is (2.10).

By Theorem 2.8, one can give another proof of the result (H1)∗ = BMO. Let
ψ be a radial function in the class of S(Rn) such that supp(ψ) ⊂ {|x| < 1} and∫
Rn ψ(x)dx = 0. Assume further that∫ ∞

0

|ψ̂(t)|2
t

dt = 1.
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Let g ∈ BMO(Rn). Then by Theorem 2.7,
∣∣ψt∗g(x)

∣∣2 dxdt
t is a Carleson measure.

Moreover, A2(f)(x) = S(f)(x), the area function of f . For arbitrary f ∈ H1(Rn),
applying Theorem 2.8 to f and g with p = p′ = 2, it is∫

Rn

f(x)g(x)dx =
∫ ∫

Rn+1
+

(
ψt ∗ f(x)

)(
ψt ∗ g(x)

)dxdt
t

≤ C

∫
Rn

S(f)(x)C2

(
ψt ∗ g

)
(x)dx

≤ C‖g‖∗ ·
∫
Rn

S(f)(x)dx

≤ C‖g‖∗ · ‖f‖H1.

This tells us that g defines a continuous linear functional on H 1(Rn).

If we assume now that (H1)∗ = BMO, Theorem 2.8 can be applied for f ∈
H1(Rn) with p = p′ = 2, to prove the following result which can be considered as
the converse of Theorem 2.7.

Theorem 2.9. Let ψ ∈ S(Rn) satisfying
∫
Rn ψ(x)dx = 0. We assume further

that ∫ ∞

0

|ψ̂(ξt)|2
t

dt = C 
= 0, ∀ ξ ∈ Rn.

If g ∈ L1
loc(R

n) and ∣∣∣ψt ∗ g
∣∣∣2 dxdt

t
∈ C (Rn+1

+ ),

then g ∈ BMO(Rn).

Further Remarks.

1. If we replace the Carleson box S(Q) by a Carleson tent, defined by

T (Q) =
{
(y, t) ∈ Rn+1

+ : y ∈ Q, B(y; t) ⊂ Q
}
,

where B(y; t) is the ball centered at y with radius t, then the results in this
section remain true. Furthermore, if we replace also the cubes Q by a balls
B, the same still holds.

2. Varopoulos gave another characterization of the space BMO(Rn) providing
applications to the ∂̄-problem and the Corona problem. In [43], he showed
that for a compactly supportedBMO function f , there exists F ∈ C∞(Rn+1

+ )
such that

• limt→0 F (x, t) − f(x) ∈ L∞(Rn)
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• The measure

|∇F | dxdt =
(∣∣∂F
∂t

∣∣+ n∑
j=1

∣∣ ∂F
∂xj

∣∣)dxdt ∈ C(Rn+1
+ )

• There exists a function g ∈ L1(Rn) such that

sup
t>0

|F (x, t)| ≤ g(x)

• |∇F (x, t)| = O(t−1).

Conversely, if F ∈ C1(Rn+1
+ ) is such that |∇F | dxdt is a Carleson measure

and limt→0 F (x, t) = f(x) for almost every x ∈ Rn, then

• f ∈ BMO(Rn) when n = 1;

• If |∇F (x, t)| = O(t−1), then f ∈ BMO(Rn) when n ≥ 2.

3. In 1976, Carleson gave a new decomposition theorem for BMO functions
[3]. Let ϕ ∈ C1(Rn) be a radial function satisfying

|ϕ(x)|+ |∇ϕ(x)| ≤ C(1 + |x|)−n−1,

∫
Rn

ϕ(x)dx = 1.

If g(x) is a compactly supported BMO function, then there exists a sequence
{gj} such that

∞∑
j=1

‖gj‖L∞ ≤ C‖g‖∗,

where C is a constant depending only on n. Moreover, there exists a sequence
{λj} depending on x such that

g(x) = g1(x) +
∞∑

j=2

∫
Rn

ϕλj(x− y)gj(y)dy + constant.

Conversely, if a function g has the above decomposition, then g ∈ BMO(Rn)
and

‖g‖∗ ≤ C ·
∞∑

j=1

‖gj‖L∞.

As a consequence of the Carleson’s result, one may obtain another proof of
maximal function characterization of the space H1(Rn).
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4. Let F (z) be an analytic function defined on the upper half plane R2
+ = {z =

x + iy : y > 0}. Then F is an analytic BMO function if and only if
y|F ′(z)|2dxdy is a Carleson measure defined on R2

+. Define ‖F‖BMO =
‖y|F ′(z)|2dxdy‖C. Let z1, z2 ∈ R2

+. Define the hyperbolic distance between
z1 and z2 as follows:

d(z1, z2) ≈ log
(
1 +

|x1 − x2|
y1 + y2

)
+
∣∣∣ log

y1
y2

∣∣∣.
We call a sequence {zk} ⊂ R2

+ is η-dense if for arbitrary z ∈ R2
+, there

exists zj ∈ {zk} such that d(z, zj) < η. We call {zk} is η-separated if for
any z1, z2 ∈ {zk}, one has d(zj, zk) ≥ η. Furthermore, we call {zk} is a
η-lattice if the sequence is 5η-dense and η

5 -separated. In [34], Rochberg and
Semmes proved the following result. If f is an analytic BMO function, then
for arbitrary constant α > 1, there exists a η-lattice {zk} and a universal
constant C such that

(2.9) F (z) =
∞∑

k=1

λk
yα
k

(z − z̄k)α

and ∥∥∥ ∞∑
k=1

|λk|2ykδzk

∥∥∥
C
≤ C‖F‖2

BMO.

Here δzk
is the Dirac delta measure defined at the point zk. Conversely,

if (2.9) holds and
∑∞

k=1 |λk|2ykδzk
is a Carleson measure, then the series∑∞

k=1 λk
yα

k
(z−z̄k)α converges to the function F (z) in the BMO norm. More-

over,

‖F‖2
BMO ≤ C

∥∥∥ ∞∑
k=1

|λk|2ykδzk

∥∥∥
C
.

Using this result, one may prove that the Hankel operator is bounded on L2

if and only if the Bergman projection of its symbol belongs to BMO. For
more detail, readers may consult the papers [34] and [35].

3. BMO FUNCTIONS DEFINED ON A BOUNDED DOMAIN

The developments described in the last two sections are closely tied with the
groups that act naturally on Euclidean space: translations, rotations, and dilations.
Indeed the profound impact that these groups have on the analysis of Euclidean
space is one of the principal themes of the books by Sadosky [37], Stein [39] and
Stein-Weiss [42]. Since variable coefficient operators do not respect the action of
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these groups, the theory of pseudodifferential operators was developed, at least in
part, as an extension of the theory of singular and fractional integrals in this more
general setting (see Stein [40]). However, the corresponding fine structure provided
by the new function spaces in the constant coefficient theory (particularly the spaces
Hp and BMO) has been slow to evolve in this more general context.

Let Ω ⊂ Rn be a bounded Lipschitz domain. In the papers [6] and [7], we
study the local Hardy spaces on such a domain. Using a constructive method to
derive atomic decompositions for two different Hardy spaces: hp

d(Ω) and h
p
z(Ω).

Here
h

p
d(Ω) =

{
f ∈ (C∞

d )′(Ω̄) : md(f) ∈ Lp
}

with

C∞
d (Ω̄) =

{
φ ∈ C∞(Ω̄) : φ|∂Ω = 0

}
and md(f)(x) = sup

φ∈C∞
d

∣∣〈f, φ〉∣∣.
The space hp

z(Ω) is defined

hp
z(Ω) =

{
f ∈ hp(Rn) : f = 0 on Rn \ Ω̄

}
,

where

hp(Rn) =
{
f ∈ S ′(Rn) : Mloc(f)(x) = sup

0<ε<1

∣∣φε ∗ f(x)
∣∣ ∈ Lp(Rn)

}

is the local Hardy space developed by Goldberg [24]. Intuitively, we may consider
the space hp

d as the restriction of hp(Rn) to the domain Ω which can be considered
the largest Hardy space defined on the domain Ω. An element f ∈ hp

z can be
extended to a global hp distribution by setting f(x) = 0 when x 
∈ Ω̄. This is
the smallest Hardy space can be defined on the domain Ω. In order to make these
notions more precise, we need the following definition.

Definition 3.1. Let Ω be a bounded domain in Rn with Lipschitz boundary.
A cube Q ⊂ Ω (with sides parallel to the axes) is of type (a) if �(Q) < 1 and
4Q ⊂ Ω. A cube Q is of type (b) if �(Q) ≥ 1 or if 2Q∩Ωc = ∅ and 4Q∩Ωc 
= ∅.

Since we have two h1 spaces, we also define two bmo(Ω) spaces.

Definition 3.2. Let Ω be a bounded Lipschitz domain in Rn. We say that a
function g on Rn is in bmoz(Ω) if g is locally integrable and

(3.14)
sup

type (a)cubes

1
|Q|

∫
Q
|g(x)− gQ|dx+ sup

type (b)cubes

1
|Q|

∫
Q
|g(x)|dx

≡ ‖g‖bmoz(Ω) <∞.



588 Der-Chen Chang and Cora Sadosky

It can be shown that bmoz(Ω) =
{
g ∈ bmo(Rn) : supp(g) ⊂ Ω̄

}
.

Definition 3.3. Let Ω be a bounded domain in Rn with Lipschitz boundary.
We say that a function g on Ω is in bmor(Ω) if g is locally integrable and

sup
0<	(Q)<1

1
|Q|

∫
Q

|g(x)− gQ|dx+ sup
	(Q)>1

1
|Q|

∫
Q

|g(x)|dx ≡ ‖g‖bmor(Ω) <∞,

where the suprema are taken over all cubes Q ⊂ Ω.

It can be shown that when g ∈ bmor(Ω) then there exists a function G ∈ bmo(Rn)
such that

G
∣∣
Ω

= g and ‖G‖bmo ≤ CΩ · ‖g‖bmor,

where CΩ is a constant depending on Ω only.
Similar to C. Fefferman’s duality theorem, we have the following theorem from

[4].

Theorem 3.4. Let Ω be a bounded Lipschitz domain in Rn. Then we have

• If g ∈ bmor(Ω), then there exists a unique linear functional L in the dual
space of h1

z(Ω̄) such that

(3.15) L(f) =
∫

Ω
f(x)g(x)dx

for all f ∈ h1
z(Ω̄). Conversely, if L in the dual space of h1

z(Ω), then there
exists a unique g ∈ bmor(Ω) such that (3.15) holds. The correspondence
L ↔ g given by (3.15) is a Banach space isomorphism between bmo r(Ω)
and the dual space of h1

z(Ω).
• If g ∈ bmoz(Ω), then there exists a unique linear functional L in the dual

space of h1
d(Ω̄) such that (3.15) holds for all f ∈ h1

d(Ω̄). Conversely, if L
in the dual space of h1

r(Ω), then there exists a unique g ∈ bmoz(Ω) such
that (3.15) holds. The correspondence L ↔ g given by (3.15) is a Banach
space isomorphism between bmoz(Ω) and the dual space of h1

r(Ω).

In [16], Coifman, Lions, Meyer, and Semmes showed that for g ∈ BMO(Rn),

‖g‖BMO ≈ sup

E, 
F

∫
Rn

g(x) ·
〈
�E, �F

〉
dx,

where the supremum is taken over all vector fields �E, �F in L2(Rn,Rn) satisfying
∇ · �E = 0, ∇ × �F = �0. Here L2(Rn,Rn) is the collection of all vector fields
�E = (E1, . . . , En) : Rn → Rn such that ‖E	‖L2 ≤ 1 for � = 1, . . . , n. We
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may obtain similar results for bmor and bmoz. For detailed discussion, see the
forthcoming paper [9]. More precisely, we have the following theorem.

Theorem 3.5. Let Ω be a bounded Lipschitz domain in Rn.

• If g ∈ bmor(Ω) then

‖g‖bmor ≈ sup

E, 
F

∫
Ω
g(x) ·

〈
�E, �F

〉
dx,

the supremum is taken over all vector fields �E and �F in L2(Ω,Rn) such
that ∇ · �E = 0, �E · �n

∣∣
∂Ω

= 0, ∇× �F = �0, �F × �n
∣∣
∂Ω

= �0. Here L2(Ω,Rn)
is the collection of all vector fields �E = (E1, . . . , En) : Ω → Rn such that
‖E	‖L2(Ω) ≤ 1 for � = 1, . . . , n.

• If g ∈ bmoz(Ω), then

‖g‖bmoz ≈ sup

e, 
f

∫
Ω
g(x) ·

〈
�e, �f
〉
dx,

the supremum is taken over all vector fields �e = �E
∣∣
Ω

and �f = �F
∣∣
Ω

where
�E, �F ∈ L2(Rn,Rn) satisfying ∇ · �E = 0, ∇× �F = �0.

The above results give decompositions of the space h1
r(Ω) and h1

z(Ω). We have
the following theorem.

Theorem 3.6. Let Ω be a bounded domain in Rn with Lipschitz boundary.

• For a function f ∈ h1
z(Ω), there exist two sequences {�ek}, {�fk} ⊂ L2(Ω,Rn)

satisfying ∇ · �ek = 0, �n · �ek
∣∣
∂Ω

= 0, ∇ × �fk = 0, and �n × �fk

∣∣
∂Ω

= �0 such
that

f(x) =
∞∑

k=1

λk

〈
�ek, �fk

〉
.

Moreover, one has
∑∞

k=1 |λk| <∞. Here �n is the unit outward normal along
∂Ω.

• Similarly, for a function f ∈ h1
r(Ω), there exist two sequences { �Ek}, { �Fk} ⊂

L2(Rn,Rn) satisfying ∇ · �Ek = 0 and ∇× �Fk = 0 such that

f(x) =
∞∑

k=1

λk

〈
�ek, �fk

〉

where �ek = �Ek

∣∣
Ω

and �fk = �Fk

∣∣
Ω

. Moreover, one has
∑∞

k=1 |λk| <∞.
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Further Remarks.
1. The main purpose of the papers [6] and [7] is to studyH p regularity properties

of boundary value problems for Laplacian on a smooth domains in Rn. In
order to achieve this goal, we need extra assumptions on the smoothness of
the domain Ω. Indeed, one may prove that if G is the solution operator for the
Dirichlet problem on a C(1,1) domain Ω, then for 1 ≤ j, k ≤ n, ∂2G

∂xj∂xk
is a

bounded operator from bmoz(Ω) to bmoz(Ω) and from bmor(Ω) to bmor(Ω)
(see Chang and Li [8]).

2. Similar result can be obtained for Neumann problem. Let G̃ be the solution
operator for the Neumann problem, then for 1 ≤ j, k ≤ n, ∂2G̃

∂xj∂xk
is a bounded

operator from bmor(Ω) to bmor(Ω). Moreover, there exists counterexample
to show that ∂2G̃

∂xj∂xk
is not bounded from bmoz(Ω) to bmoz(Ω).

4. BMO AND CARLESON MEASURES ON PRODUCT SPACES

Before we go further, let us look at the Hardy spaces in Rn. The space Hp(Rn)
is invariant under the automorphisms:

(4.16) x ∈ Rn �→ δx, δ > 0.

For example, denote fδ(x) = δ−n/pf
(

x
δ

)
, then

‖fδ‖Hp = ‖f‖Hp.

This is so because the maximal function which characterizes H p space,

φ∗(f)(x) = sup
|x−y|<t

∣∣(φt ∗ f)(y)
∣∣

is defined by φt(·) = t−nφ
( ·

t

)
is invariant under the automorphism (4.16). Roughly

speaking, we are using a single parameter to study Hp and BMO functions in Rn.
The story is totally different when we move to product spaces. Let us consider Hp

and BMO spaces on the simplest product space, R×R. The dilations defined on
this product space are bi-parametric:

(x1, x2) ∈ R ×R �→ (δ1x1, δ2x2), δ1, δ2 > 0.

Harmonic analysis on multi-parameter and single-parameter spaces have signif-
icant differences. Let us look at a simple example. The Hardy-Littlewood maximal
operator corresponding to the single-parameter harmonic analysis is:

M(f)(x) = sup
Q

1
|Q|

∫
Q
|f(x+ y)|dy,
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where Q is a cube centered at the origin. It is well known that the operator M is
bounded from Lp to itself for 1 < p ≤ ∞ and of weak type (1, 1). However, the
corresponding operator in multi-parameter harmonic analysis is the strong maximal
operator:

Ms(f)(x1, x2) = sup
I×J

1
|I × J|

∫
I×J

|f(x1 + y1, x2 + y2)|dy1dy2,

where I × J is a rectangle containing the point (x1, x2). There is a big difference
between the operators M and Ms. While the operator Ms is still bounded from
Lp to itself for 1 < p ≤ ∞, it is no longer of weak type (1, 1). The best result that
can obtained is∣∣∣{(x1, x2) ∈ I × J : Ms(f)(x1, x2) > λ

}∣∣∣ ≤ C

λ
‖f‖L log L(I×J),

the famous Jessen-Marcinkiewicz-Zygmund inequality. This simple example pro-
vides a very strong hint that rectangles are not enough to define Hp atoms on
the product spaces. Indeed, Carleson proved in 1974 that on the product space
R2

+ × R2
+ rectangles are not enough to characterize the support of Hp atoms and

Carleson measures. In [2], he constructed his famous counterexample of a measure
satisfying

µ(S(R)) ≤ C|R|, where R = I × J ⊂ R ×R is an arbitrary rectangle,

but for which the Carleson Embedding Theorem∫ ∫
R2

+×R2
+

Pt1t2[f ]p(y1, y2)dµ ≤ Cp

∫
R×R

|f(x1, x2)|pdx1dx2, p > 1

does not hold. By this example it follows that the space BMORect(R × R),
introduced by R. Fefferman, of functions f satisfying

(4.17) sup
I,J

1
|I |

1
|J|

∫
I

∫
J
|f(x1, x2)− fJ(x1) − fI(x2) + fI×J |2dx1 dx2 < ∞

(where fJ(x1) = 1
|J|
∫
J f(x1, x2)dx2 and fI(x2) = 1

|I|
∫
I f(x1, x2)dx1 are the mean

values of f(x1, · ), f( · , x2) over the intervals J and I , respectively, and fI×J is
the mean value of f(x1, x2) over the rectangle I×J) is not the dual of H1(R×R),
since it is too large.

Let us remark here that the smaller space bmo (R × R), of functions f of
bounded mean oscillation in R ×R, i.e., satisfying

(4.18) sup
I,J

1
|I × J|

∫
I×J

∣∣f(x1, x2)− fI×J

∣∣ dxx dx2 < ∞
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is not the dual of H1(R× R) (see e.g., [40]).
The fact that rectangles were not enough to deal with Carleson measures created

a fundamental difficulty to build up an H p theory on product spaces. Using proba-
bility methods, Gundy and Stein [25] reached a breakthrough in 1979. In order to
explain it, let us first recall some definitions. A function u(x, t) = u(x1, t1, x2, t2)
is called biharmonic on R2

+×R2
+ if u is harmonic in (x1, t1) and (x2, t2) separately.

Denote Γ(x) = Γ(x1) × Γ(x2) where Γ(xj) =
{
(yj, tj) ∈ R2

+ : |yj − xj| < tj
}

for j = 1, 2. In [25], Gundy and Stein showed that for a biharmonic function u,

‖u∗‖Lp ≈ ‖S(u)‖Lp, 0 < p <∞.

Here
u∗(x) = u∗(x1, x2) = sup

(y,t)∈Γ(x)

∣∣u(x, t)∣∣
is the nontangential maximal function, and

S(u)(x) = S(u)(x1, x2) =
( ∫ ∫

Γ(x)

∣∣∇1∇2u(y, t)
∣∣2dydt)1/2

is the area integral of u. This allowed them to build up a real H p theory on the
product space R2

+ ×R2
+, i.e., a tempered distribution f ,

(4.19) f ∈ Hp(R×R) ⇔ ϕ∗(f)(x) = sup
(y,t)∈Γ(x)

∣∣(f ∗ ϕt)(y)
∣∣ ∈ Lp(R2)

where ϕ ∈ C∞
0 (R2),

∫
ϕ(x)dx 
= 0, ϕt(x) = 1

t1t2
ϕ
(

x1
t1
, x2

t2

)
.

A main question in the theory in product space is: What is the correct atomic
decomposition for H p(R× R)? The answer is an atomic decomposition using all
open subsets in R×R, instead of just rectangles. This is a fundamental result due
to S.-Y. A. Chang and R. Fefferman (see [10] and [11]), which we explain below.

Let Ω be a bounded open set in R × R, and denote by D(Ω) the set of all
dyadic rectangles contained in Ω. We define (p, 2)-atoms as follows.

Definition 4.1. Let 0 < p ≤ 1. A function a(x1, x2) is a (p, 2)-atom defined
on R× R if it satisfies the following properties:

• supp(a) ⊂ Ω, where Ω is a bounded open set in R× R

• a has a further decomposition

a =
∑

R∈D(Ω)

aR

where each aR satisfies
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(i) supp(aR) ⊂ 3R

(ii) ∫
R
aR(x1, x2)xk1

1 dx1 = 0, for all x2 and 0 ≤ k1 ≤
[1
p
− 1
]

∫
R
aR(x1, x2)xk2

2 dx2 = 0, for all x1 and 0 ≤ k2 ≤
[1
p
− 1
]

where k1 and k2 are two non-negative integers

• ‖a‖2
L2 ≤ |Ω|1−

2
p and

∑
R∈D(Ω) ‖aR‖2

L2 ≤ |Ω|1−
2
p .

Now we have the following theorem.

Theorem 4.2. A tempered distribution f ∈ H p(R× R) if and only if

f =
∞∑

j=1

λjaj

where aj’s are (p, 2)-atoms with
∑∞

j=1 |λj|p <∞. Moreover,

‖f‖Hp = inf
( ∞∑

j=1

|λj|p
) 1

p

where the infimum is taking over all possible atomic decomposition of f .

The necessity of the above theorem was obtained by R. Fefferman in [21] and
the sufficiency was proved by Han [26]. Theorem 4.2 shows that the atomic de-
composition for Hp(R× R) is much more complicated than that of Hardy spaces
on R. One interesting question is: What function space can be obtained if we just
use functions which have atomic decompositions in terms of atoms supported on
rectangles? Here we consider only the case p = 1.

Definition 4.3. We call a(x1, x2) a rectangular atom defined on R× R if

• supp(a) ⊂ R = I × J where I and J are intervals in R;

• ∥∥∥ ∂k1+k2a

∂xk1
1 ∂x

k2
2

∥∥∥
L∞

≤ |I |−1−k1|J|−1−k2

with 0 ≤ k1, k2 ≤ 1;
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• ∫
R

a(x1, x2)dx1 = 0 for all x2 ∈ R;∫
R
a(x1, x2)dx2 = 0 for all x1 ∈ R.

Definition 4.4. Let f ∈ L1(R×R). We call

S1(f)(x1, x2) =
∫ ∫

Γ(x1,x2)

∣∣f ∗ Ψt1t2(y1, y2)
∣∣dydt
t21t

2
2

the generalized S-function of f . Here Ψ(x1, x2) = ψ(x1)ψ(x2) with ψ ∈ S(R)
and

∫
R ψ(x)dx = 0.

Now we have

Theorem 4.5. Let f ∈ L1(R × R). Then S1(f) ∈ L1(R × R) if and only
if f has rectangular atomic decomposition, i.e., f =

∑∞
j=1 λjaj where aj’s are

rectangular atoms with
∑∞

j=1 |λj| <∞. Moreover,

‖S1(f)‖L1 ≈ inf
{ ∞∑

j=1

|λj| : for all possible f =
∞∑

j=1

λjaj

}
.

In fact, the condition S1(f) ∈ L1(R × R) implies that f is an element in
the Besov space B0,1

1 (R × R). This is the smallest Banach space which norm is
invariant under the automorphisms

(x1, x2) �→ (x1 + h1, x2 + h2), for all h1, h2 ∈ R

and
(x1, x2) �→ (δ1x1, δ2x2), for all δ1, δ2 > 0.

It follows that B0,1
1 (R×R) has nicer properties than H 1(R×R). The rectangular

atomic decomposition is one of them. It is not hard to show that the dual of this
space is BMORect(R×R), and that it properly contains the dual of H1(R×R).

Let us now turn to Carleson measures on the product space.

Definition 4.6. Let µ be a non-negative measure defined on the product space
R2

+ ×R2
+. We call µ a Carleson measure if∫ ∫

R2
+×R2

+

Pt1t2[f ]p(y1, y2)dµ ≤ Cp

∫
R×R

|f(x1, x2)|pdx1dx2, 1 < p <∞
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for all f ∈ Lp(R×R). Here Cp is a constant independent of f , and Pt1t2[f ] is the
Poisson integral of f .

Definition 4.7. Let Ω ⊂ R2 be an open set. Denote R(y, t) the rectangle
centered at y = (y1, y2) with dimensions 2t1 and 2t2. The Carleson box S(Ω) on
Ω is defined as

S(Ω) =
⋃

R(y,t)⊂Ω

S(R(y, t)).

Now we have the following theorem.

Theorem 4.8. (S.-Y. A. Chang) The necessary and sufficient condition charac-
terizing a Carleson measure µ defined on R 2

+ × R2
+ is

µ
(
S(Ω)

)
≤ C|Ω|

for all open sets Ω ⊂ R2.
We now define by duality

BMO(R × R) = (H1(R× R))∗.

The following theorem was proved by S.-Y. A. Chang and R. Fefferman in [11].

Theorem 4.9. The following statements are equivalent:

(1) g ∈ BMO(R ×R);

(2) There exists gj ∈ L∞(R2), j = 0, 1, 2, 3, such that

g = g0 + H1(g1) + H2(g2) + H1H2(g3)

where Hk , k = 1, 2, is the Hilbert transform with respect to the variable x k:

Hk(f)(xk) = lim
ε→0

1
π

∫
|yk |>ε

f(xk − yk)
yk

dyk

(3) dµg(y, t) =
∣∣∇1∇2u

∣∣2t1t2dydt is a Carleson measure defined on R2
+ ×R2

+,
where u = P [g] is the Poisson integral of g

(4)
∣∣Ψt ∗ g

∣∣2 dydt
t is a Carleson measure defined on R2

+ × R2
+, where Ψ(x) =

ψ(x1)ψ(x2) with ψ ∈ S(R) and
∫
R ψ(x)dx = 0.
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The characterization of BMO(R × R) given in Theorem 4.9 (2) corresponds
to its duality with H 1(R × R) = {f ∈ L1(R2) : H1(f) ∈ L1(R2),H2(f) ∈
L1(R2),H1 H2(f) ∈ L1(R2) }, and gives an easy way to construct functions in
BMO(R×R) starting from bounded functions. Observe that this is the analog to
(4.9) when BMO(R) is substituted for BMO(R ×R).

The main problem impairing the BMO theory in product spaces for more
than twenty years was the impossibility to check if a given function is or not in
BMO(R×R). On the other hand, it is easy to see if a function is in BMO(Rn)
just by checking the bounded mean oscillation condition (1.1) itself. But, in product
spaces, bounded mean oscillation defines the space bmo(R×R), which is strictly
contained in BMO(R ×R), as shown in [17].

An alternative way to bounded mean oscillation for checking if a given func-
tion is or not in BMO(R) exists and was given in Section 1. In fact, Theorem
1.11 asserts that the boundedness in L2(R) of the commutator operator [Mf ,H] is
equivalent to f ∈ BMO(R).

It was precisely through commutators–this time in terms of a nested commuta-
tor with two one-dimensional Hilbert transforms–that checking if a function is in
BMO(R × R) was finally achieved by Lacey and Ferguson in [22]. The con-
jecture of characterizing a BMO space through the L2 boundedness of the nested
commutator appeared first in work of Ferguson and Sadosky [23], and its relevance
to the problem was confirmed in work of Pott and Sadosky [36]. The proof of [22]
is based on a wavelet version of a Chang-Fefferman characterization in [11], norm
estimates for the nested commutator from [23], the John-Nirenberg inequality from
[10], and a new version of Journé’s geometric lemma [31], which is by far its most
technical and intricate part. The result follows.

Theorem 4.10. (Ferguson and Lacey). f ∈ BMO(R × R) if and only if
[[Mf ,H1], H2] extends to a bounded operator in L 2(R2) and

‖[[Mf ,H1], H2]‖L2 →L2 ≈ ‖f‖BMO.

This result is now equivalent to the characterizations of BMO(R×R) given in The-
orem 4.9. It follows directly from [23] that all such characterizations of BMO(R×
R) are equivalent to the weak factorization of its predual, H 1(R2

+ × R2
+):

For all f ∈ H1(R2
+ ×R2

+), there exist {gj}, {hj} ⊂ H2(R2
+ × R2

+) such that

f =
∞∑

j=1

gj hj with
∞∑

j=1

‖gj‖L2‖hj‖L2 <∞ .
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Final Remarks.
1. It was mentioned above that the space BMORect(R×R), defined by (4.17),

admits a rectangular atomic decomposition. It can also be defined through
associated Carleson measures defined on rectangles. On the other hand, the
space bmo(R× R) of bounded mean oscillation, defined by (??), is closely
linked to the class A∗

p of weights in product spaces, and appears naturally
in the solution of multi-parametric harmonic analysis problems. Among its
several characterizations in [17], [23], is one in terms of double commutators,
i.e., f ∈ bmo(R×R) if and only if [Mf ,H1H2] is bounded in L2(R2).
The theory of Hankel operators, of independent interest, has many applica-
tions, in particular to engineering systems. It may seem a curiosity that the
main result of the theory, the Nehari theorem on bounded Hankel operators,
can be written in terms of the space BMO(T) on the circle. But more is
true. The spaces BMORect(T×T) and bmo(T×T), deemed for many years
of no interest in the theory of product BMO, reappeared in the theory of the
“small” and “big” Hankel operators on the torus. It is a striking fact that the
study of the symbols of the small and big Hankel operators played a crucial
role in the characterization of product BMO on the torus given in [22] (for
details, see [38]).

2. Recently Lacey and Terwilleger [32] have obtained the analogue of the Ferguson-
Lacey characterization for BMO(R × R× R) in terms of third order com-
mutators of the type [[[Mf ,H1], H2], H3], by extending to the tridisk the
geometrical study done in [22], through a new and essential twist. This result
suggests that much of the theory may be satisfactorily extended to R×· · ·×R
for product spaces of n factors when n > 2, since the geometrical hurdles may
be more surmontable than previously thought. It is still to be seen which of
the particular features of the theory of BMO(Rn) actually extend to BMO
in product spaces of several factors.

3. Many results on H1(R×R) can be generalized to the space H1(R×R×R),
but not all. A classical result in Rn asserts that if the operator T is bounded
on L2(Rn) and if

∫
(2Q)c |T (a)(x)|dx ≤ C‖a‖L1 , whenever a is an atom

supported in a cube Q, then T is of weak type (1, 1) (see also Chang [5]
and Han [27]). In 1986, R. Fefferman [21] extended the result to product
space. Let T be an operator bounded in L2(R×R). If for each H1(R×R)
rectangular atom a, there exists a δ > 0 such that

(4.20)
∫

(γR)c
|T (a)(x)|dx≤ Cγ−δ, ∀ γ ≥ 2

then T is bounded from H1(R × R) to L1(R2). Here γR is a rectangular
box which has the same center as R such that �(γR) = γ�(R). This result
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shows that to consider just rectangular atoms is enough to ensure the desired
boundedness of the operator in this context.

Let us now call a function a(x1, x2, x3) an H1(R× R×R) rectangular atom
if

• supp(a) ⊂ R = I1 × I2 × I3, where Ij is an interval in R;

•
∫
R a(x1, x2, x3)dx1 =

∫
R a(x1, x2, x3)dx2 =

∫
R a(x1, x2, x3)dx3 = 0;

• ‖a‖L2 ≤ |R|−1/2 =
∏3

j=1 |Ij|−1/2.

Let T be a bounded operator on L2(R3), and assume that the condition (4.20) is
satisfied for H1(R × R× R) atoms. A natural question is whether T is bounded
from H1(R × R × R) to L1(R3). The answer is no in general. In [30], Journé
showed that

• There exists an operator T satisfying the above conditions but which is not
bounded from H1(R×R× R) to L1(R3);

• If T is an convolution operator defined on R ×R× R and δ > 1
8 in (4.20),

then T is bounded from H1(R×R ×R) to L1(R3).

This phenomenon reflects a striking difference between product spaces R×R and
R×R×R, which, in this case, may be the result of the essential role the rectangular
atoms play in the theorem. There is a long way to go in order to get the full picture
for harmonic analysis on product domains. Readers may consult the commemorative
paper by Stein [41].
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