TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 2, pp. 563-571, February 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

EXISTENCE THEOREM OF CONE SADDLE-POINTS APPLYING A NONLINEAR SCALARIZATION

Kenji Kimura and Tamaki Tanaka

Abstract. This paper is concerned with a nonlinear scalarization for vectorvalued functions. We consider applying the scalarization to existence of cone saddle-points. Some properties of the scalarization about cone-continuity and cone-convexity are described and then as an application, an existence theorem for vector saddle-points is treated.

1. INTRODUCTION

This paper is concerned with applying a scalarization of vector-valued functions by nonconvex separation to existence theorems of cone saddle-points. The scalarization has been studied in [1,3]. In this paper, we compile some useful properties for the existence theorems. An application of those properties has been considered in Theorem 4 and [2].

The organization of this paper is given as follows. In Section 2 we consider some properties of an ordering cone in a normed space, and then we state some definitions concerned with continuity and convexity for vector-valued functions. In Section 3 we consider a scalarization with the ordering cone for vector-valued functions and study some properties of the scalarizing function. In Section 4 we show an existence theorem for a vector-valued saddle-point problem as an application by means of its scalarization.

Received December 6, 2004; Revised June 27, 2005; Accepted October 5, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 90C29; Secondary 52A41.

Key words and phrases: Vector-valued function, Scalarizing function, Cone semicontinuity, Cone convexity, Weak saddle point, Existence theorem.

This work is based on research 13640097 supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science of Japan.

Dedicated to Professor Hang-Chin Lai for his 70th birthday.

Kenji Kimura and Tamaki Tanaka

2. PRELIMINARY AND TERMINOLOGY

In the beginning, we give some notations used throughout this paper. We denote the topological interior, closure and boundary of a set S by int S, cl S and bd S, respectively, and the complementary set of S by S^c . In addition, we denotes the composite of two functions f and g by $g \circ f$.

Before dealing with the nonlinear scalarization for vector-valued functions, we consider some properties of ordering cones on normed spaces; a convex cone induces a partial ordering, and we call such one an ordering cone. Throughout of the paper, let Z be a normed space over the real scalar field R, and let C be a solid pointed convex cone in Z. Solidness means that the topological interior is nonempty, and then we have

$$\operatorname{int} C + (-\operatorname{int} C) = Z.$$

Moreover, for any $k \in \operatorname{int} C$ and $z \in Z$ there exists $t \in R$ such that

We see this property by the following facts:

- (i) Every neighborhood U of the origin of Z is an absorbing set, i.e., for any $x \in Z$ there exists t > 0 such that $t \cdot x \in U$.
- (ii) C is a cone.

The property remains even if C in (1) replaced by int C or cl C. Pointedness means that

$$C \cap (-C) = \{0_Z\},\$$

where 0_Z stands for the origin point of Z. Indeed, by the pointedness and solidness, if C in (1) is replaced by $\operatorname{bd} C$ or C^c , the property (1) is held; and especially the fact that for any $k \in \operatorname{int} C$ and $z \in Z$ there exists $t \in R$ such that

(2)
$$z \in (t \cdot k - \operatorname{bd} C),$$

has a meaning in Lemma 1.

Here, we note connections of Propositions, Lemmas, and Theorems in the paper briefly. Theorem 4 is led by Theorems 1, 2 and 3, and Corollary 1. Theorems 1 and 3 are led by Proposition 2 and Lemma 1. Theorem 2 and Corollary 1 are led by Lemma 1. Lemma 1 is led by Proposition 3 and Lemma 3. Lemma 3 is led by Propositions 3 and 4. Propositions 2 and 3 are led by Proposition 1.

Proposition 1. ([9]). Let Z be a normed space. If C is a solid convex cone in Z, then

$$\operatorname{cl} C + \operatorname{int} C = \operatorname{int} C.$$

Proposition 2. Let Z be a normed space and C a solid convex cone in Z. If $z \notin (-\operatorname{int} C)$ then

$$(z + \operatorname{cl} C) \cap (-\operatorname{int} C) = \emptyset.$$

Moreover, If $z \notin (-\operatorname{cl} C)$ *then*

$$(z + \operatorname{cl} C) \cap (-\operatorname{cl} C) = \emptyset.$$

Proof. This is clear from Proposition 1.

Proposition 3. Let Z be a normed space, C a solid convex cone in Z with $C \neq Z$, and $k \in \text{int } C$. Then, for $a, b \in R$ the following three conditions are equivalent each other:

- (*i*) a < b,
- (*ii*) $(a \cdot k \operatorname{cl} C) \subset (b \cdot k \operatorname{int} C),$
- (*iii*) $(a \cdot k \operatorname{bd} C) \cap (b \cdot k \operatorname{int} C) \neq \emptyset$.

Proof. This is clear from Proposition 1.

Remark 1. Proposition 3 implies that if $a \neq b$ then $(a k - b d C) \cap (b k - b d C) = \emptyset$.

Proposition 4. Let Z be a normed space and C a solid pointed convex cone in Z. Assume that $k \in \text{int } C$ and that $t \in R$. Then

(i) $z \notin t \cdot k - \operatorname{cl} C$ if and only if there exists $\varepsilon > 0$ such that $z \notin (t + \varepsilon) \cdot k - \operatorname{cl} C$, and

(ii) $z \in t \cdot k - \operatorname{int} C$ if and only if there exists $\varepsilon > 0$ such that

 $z \in (t - \varepsilon) \cdot k - \operatorname{int} C.$

Proof. The proof is clear from the properties of closed set and open set, respectively.

Next, we give some definitions about continuities and convexities concerned with respect to ordering cone C.

Definition 1. ([3, 8].) Let X be a topological space, Z a normed space with a partial ordering defined by a solid pointed convex cone C. A vector-valued function $f: X \to Z$ is said to be C-continuous at $x \in X$ if it satisfies one of the following three equivalent conditions:

565

-

- (i) $f^{-1}(z + \operatorname{int} C)$ is open.
- (ii) For any neighborhood $V \subset Z$ of f(x), there exists a neighborhood $U \subset X$ of x such that $f(u) \in V + C$ for all $u \in U$.
- (iii) For any $k \in \text{int } C$, there exists a neighborhood $U \subset X$ of x such that $f(u) \in f(x) k + \text{int } C$ for all $u \in U$.

Remark 2. Whenever Z = R and $C = R_+$, C-continuity and (-C)-continuity are the same as ordinary lower and upper semicontinuity, respectively. In [8, Definition 2.1 (pp.314-315)] corresponding to ordinary functionals, the above C-continuous is called C-lower semicontinuous, and (-C)-continuous is called C-upper semicontinuous.

Definition 2. ([7].) Let K be a convex set in a real vector space X, Z a normed space with a partial ordering defined by a solid pointed convex cone C. A vector-valued function $f: X \to Z$ is said to be C-convex on K if

$$\lambda f(x_1) + (1-\lambda)f(x_2) \in f(\lambda x_1 + (1-\lambda)x_2) + C$$

for every $x_1, x_2 \in K$ and $\lambda \in [0, 1]$.

Definition 3. ([7].) Let K be a convex set in a real vector space X, Z a normed space with a partial ordering defined by a solid pointed convex cone C. A vector-valued function $f : X \to Z$ is said to be C-properly quasiconvex on K if either

$$f(\lambda x_1 + (1 - \lambda)x_2) \in f(x_1) - C,$$

or

$$f(\lambda x_1 + (1 - \lambda)x_2) \in f(x_2) - C,$$

for every $x_1, x_2 \in K$ and $\lambda \in [0, 1]$.

Definition 4. ([7].) Let K be a convex set in a real vector space X, Z a normed space with a partial ordering defined by a solid pointed convex cone C. A vector-valued function $f: X \to Z$ is said to be C-naturally quasiconvex on K if

$$f(\lambda x_1 + (1 - \lambda)x_2) \in \operatorname{co} \{f(x_1), f(x_2)\} - C,$$

for every $x_1, x_2 \in K$ and $\lambda \in [0, 1]$, where $\cos S$ stands for the convex hull of the set S.

Definition 5. ([7].) Let K be a convex set in a real vector space X, Z a normed space with a partial ordering defined by a solid pointed convex cone C. A function $f : X \to Z$ is said to be C-quasiconvex on K if it satisfies one of the following two equivalent conditions:

Existence Theorem of Cone Saddle-Points Applying a Nonlinear Scalarization

(i) for each $x_1, x_2 \in K$ and $\lambda \in [0, 1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \in z - C$$
, for all $z \in C(f(x_1), f(x_2))$,

567

where $C(f(x_1), f(x_2))$ is the set of upper bounds of $f(x_1)$ and $f(x_2)$, i.e.,

(3)
$$C(f(x_1), f(x_2)) := \{z \in Z : z \in f(x_1) + C \text{ and } z \in f(x_2) + C\};$$

(ii) for each $z \in Z$,

$$A(z) := \{ x \in K : f(x) \in z - C \}$$

is convex or empty.

In Definitions 2-5, if f is (-C)-convex, (-C)-properly quasiconvex, (-C)naturally quasiconvex, (-C)-quasiconvex then we call f C-concave, C-properly quasiconcave, C-naturally quasiconcave, C-quasiconcave, respectively.

3. NONLINEAR SCALARIZATION BY NONCONVEX SEPERATION FOR VECTOR-VALUED MAPS

Let Z be a normed space, C a solid pointed convex cone in Z and k an interior point of C. We consider the scalarizing function h from Z to R as follows:

(4)
$$h(z;k) := \inf\{t \in R : z \in t \cdot k - C\}.$$

By the argument on (1) in Section 2, we see that for any $z \in Z$ and $k \in \text{int } C$ there exists uniquely a corresponding real number to h(z; k), and we know that h(z; k) is subadditive and positive homogeneous. For convenience, it may be written as h_k instead of $h(\cdot; k)$.

Next, we give some useful properties of the above scalarizing function.

Lemma 1. ([1, Theorem 2.1]) Let Z be a normed space, C a solid pointed convex cone in Z, $k \in \text{int } C$, and $h(\cdot; k)$ the scalarizing function defined by (4). Then for any $z \in Z$ and $t \in R$ we have:

- (i) $z \in t \cdot k \operatorname{int} C$ if and only if h(z; k) < t,
- (*ii*) $z \in t \cdot k bd C$ if and only if h(z; k) = t, and
- (*iii*) $z \notin t \cdot k \operatorname{cl} C$ if and only if h(z; k) > t.

Corollary 1. Let Z be a normed space with the partial ordering by solid pointed convex cone C, $k \in \text{int } C$, and $h(\cdot; k)$ the scalarizing function defined by (4). Then, we have:

(i) if $z_1 \in z_2 - C$ then $h(z_1; k) \le h(z_2; k)$,

(*ii*) if
$$z_1 \in z_2$$
 - int C then $h(z_1; k) < h(z_2; k)$, and

(*iii*) if $h(z_1; k) \leq h(z_2; k)$ then $z_2 \notin z_1 - \operatorname{int} C$.

Proof. From Lemma 1, the proof follows immediately.

Theorem 1. Let X be a topological space, Z a normed space with the partial ordering by a solid pointed convex cone C in Z and $k \in \text{int } C$. Let h_k be the scalarizing function on Z defined by (4) and f a vector-valued function from X to Z.

- (i) If f is C-continuous at $x \in X$, then $(h_k \circ f)$ is lower semicontinuous at $x \in X$.
- (*ii*) If f is (-C)-continuous at $x \in X$, then $(h_k \circ f)$ is upper semicontinuous at $x \in X$.

Remark 3. If cone C is closed, then Theorem 3.1 and Corollary 3.1 in [5] for single-valued cases are reduced to (i) and (ii) of Theorem 1, respectively.

Corollary 2. Let X be a topological space, Z a normed space with the partial ordering by a solid pointed convex cone C in Z and $k \in \text{int } C$. Let h_k be the scalarizing function on Z defined by (4) and f a vector-valued function from X to Z. If f is C-continuous and (-C)-continuous at $x \in X$, then $(h_k \circ f)$ is continuous at $x \in X$.

Remark 4. In the case that C has a bounded closed convex base, the C-continuity and (-C)-continuity of the vector-valued function f guarantee the continuity of f, nevertheless $h_k \circ f$ is continuous; see [3, Theorem 5.3 and Remark 5.4 (pp. 22-23)].

Theorem 2. (see [3, Proposition 6.3 (p. 30)]). Let K be a convex set in a real vector space X, Z a normed space, a solid pointed convex cone C in Z and $k \in \text{int } C$. Let h_k be the scalarizing function on Z defined by (4) and f a vector-valued function from X to Z. Then, f is C-quasiconvex on K if and only if $(h_k \circ f)$ is quasiconvex on K.

Corollary 3. Let K be a convex set in a real vector space X, Z a normed space and a solid pointed convex cone C in Z and $k \in \text{int } C$. Let h_k be the scalarizing function on Z defined by (4) and f a vector-valued function from X to Z. If f is C-naturally quasiconvex on K, then $(h_k \circ f)$ is quasiconvex on K. Moreover, if f is C-properly quasiconvex on K, then $(h_k \circ f)$ is quasiconvex on K.

568

Existence Theorem of Cone Saddle-Points Applying a Nonlinear Scalarization

Proof. If f is C-properly quasiconvex on K then f is also C-naturally quasiconvex on K, and if f is C-naturally quasiconvex on K then f is also C-quasiconvex on K; see [7, Theorem 2.1].

Theorem 3. Let K be a convex set in a real vector space X, Z a normed space, a solid pointed convex cone C in Z and $k \in \text{int } C$. Let h_k be the scalarizing function on Z defined by (4) and f a vector-valued function from X to Z. If f is (-C)-properly quasiconvex on K, then $(h_k \circ f)$ is quasiconcave on K.

Proof. Let $\text{Lev}_{\geq}((h_k \circ f); \alpha)$ be the upper level set of $(h_k \circ f)$ at a scalar α , i.e.,

$$\operatorname{Lev}_{>}((h_k \circ f); \alpha) := \{ x \in K : (h_k \circ f)(x) \ge \alpha \}.$$

Let $\lambda \in [0,1]$ and $x_1, x_2 \in \text{Lev}_{>}((h_k \circ f); \alpha)$, by Lemma 1,

$$f(x_1), f(x_2) \notin (\alpha \cdot k - \operatorname{int} C).$$

By Proposition 2, we have

$$(f(x_i) + C) \cap (\alpha \cdot k - \operatorname{int} C) = \emptyset$$
 for $i = 1, 2$.

Thus, by the (-C)-properly quasiconvexity of f, we have

$$f(\lambda x_1 + (1 - \lambda)x_2) \notin (\alpha \cdot k - \operatorname{int} C),$$

which implies that $\lambda x_1 + (1 - \lambda)x_2 \in \text{Lev}_{\geq}((h_k \circ f); \alpha)$, by Lemma 1.

4. Applications

In this section, we consider the vector-valued saddle-point problem, and we show an existence theorem of weak C-saddle-points as an application of the scalarization.

Let X and Y be nonempty subsets in two normed spaces, respectively, and Z a normed space with a partial ordering by induced a solid pointed convex cone in Z. Suppose that F is a vector-valued function from $X \times Y$ to Z, then the vector-valued saddle-point problem is to find a pair $x \in X$ and $y \in Y$ such that

$$(P) \quad \begin{cases} F(x,y) - F(u,y) \notin \text{ int } C & \text{ for all } u \in X, \\ F(x,v) - F(x,y) \notin \text{ int } C & \text{ for all } v \in Y. \end{cases}$$

A point $(x, y) \in X \times Y$ is said to be a weak C-saddle-point of function F on $X \times Y$, if it is a solution of the problem.

Theorem 4. Let X and Y be nonempty compact convex sets in two normed spaces, respectively, and Z a normed space with a partial ordering induced by a solid pointed convex cone C in Z. If a vector-valued function $F : X \times Y \to Z$ satisfies that

- (i) $x \mapsto F(x, y)$ is C-continuous and C-quasiconvex on X for every $y \in Y$,
- (ii) $y \mapsto F(x, y)$ is (-C)-continuous and (-C)-properly quasiconvex on Y for every $x \in X$,

then F has at least one weak C-saddle point.

Proof. Since C is solid we can take $k \in \text{int } C$, and so we can define the scalarizing function h_k in (4). We see that, by Theorems 1 and 2, the map $x \mapsto (h_k \circ F)(x, y)$ is lower semicontinuous and quasiconvex on X, and we see that, by Theorems 1 and 3, the map $y \mapsto (h_k \circ F)(x, y)$ is upper semicontinuous and quasiconcave on Y. By Sion's minimax theorem [6], $(h_k \circ F)$ has an ordinary saddle point and by Corollary 1, F has at least one weak C-saddle-point.

Theorem 5. Let X be a compact convex set of a normed space, and Z a normed space with a partial ordering defined by a solid pointed convex cone C. If $f: X \to Z$ is C-quasiconvex on X, then $\operatorname{argmin} h \circ f(x)$ is a convex set in X, and

 $(\operatorname{argmin} h \circ f(x)) \subset \{x \in X : f(u) - f(x) \notin -\operatorname{int} C \text{ for all } u \in X\},\$

where $\operatorname{argmin} h \circ f(x) := \{x \in X : h \circ f(x) = \min_{u \in X} h \circ f(u)\}.$

Remark 5. Theorem 5 is a useful result. We can consider something like a convex envelope for vector-valued functions by using Theorem 5 with Theorems 1, 2, and 3. Its detail and application have been studied in [2].

ACKNOWLEDGMENT

The authors are thankful to Professor Lai-Jiu Lin of National Changhua University of Education for his valuable comments and encouragement.

REFERENCES

- 1. C. Gerth and P. Weidner. Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.
- K. Kimura and T. Tanaka, Existence result for vector-valued saddle-point problem by using convex envelope, *Nonlinear analysis and convex analysis*, Yokohama Publishers, Yokohama, 2004, pp. 187-193.
- 3. D. T. Luc, Lecture notes in economics and mathematical systems, *Theory of vector* optimization, Vol 319, Springer-Verlag, Berlin, 1989.
- D. T. Luc and C. Vargas, A saddlepoint theorem for set-valued maps, *Nonlinear Anal.*, 18 (1992), 1-7.

- 5. S. Nishizawa, T. Tanaka and P. G. Georgiev, On inherited properties of set-valued maps, *Nonlinear analysis and convex analysis*, Yokohama Publishers, Yokohama, 2003, pp. 341-350.
- 6. M. Sion, On general minimax theorems, Pacific. J. Math., 8 (1958), 295-320.
- T. Tanaka, Cone-quasiconvexity of vector-valued functions, *Sci. Rep. Hirosaki Univ.*, 42 (1995), 157-163.
- 8. T. Tanaka, Generalized semicontinuity and existence theorems for cone saddle points, *Appl. Math. Optim.*, **36** (1997), 313-322.
- 9. T. Tanaka and D. Kuroiwa, The convexity of A and B assures int A + B = int (A + B), Appl. Math. Lett., 6 (1993), 83-86.

Kenji Kimura Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan. E-mail: kimura@math.nsysu.edu.tw

Tamaki Tanaka Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Niigata 950-2181, Japan E-mail: tamaki@math.sc.niigata-u.ac.jp