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EXISTENCE THEOREM OF CONE SADDLE-POINTS APPLYING
A NONLINEAR SCALARIZATION

Kenji Kimura and Tamaki Tanaka

Abstract. This paper is concerned with a nonlinear scalarization for vector-
valued functions. We consider applying the scalarization to existence of cone
saddle-points. Some properties of the scalarization about cone-continuity and
cone-convexity are described and then as an application, an existence theorem
for vector saddle-points is treated.

1. INTRODUCTION

This paper is concerned with applying a scalarization of vector-valued functions
by nonconvex separation to existence theorems of cone saddle-points. The scalar-
ization has been studied in [1,3]. In this paper, we compile some useful properties
for the existence theorems. An application of those properties has been considered
in Theorem 4 and [2].

The organization of this paper is given as follows. In Section 2 we consider some
properties of an ordering cone in a normed space, and then we state some definitions
concerned with continuity and convexity for vector-valued functions. In Section 3
we consider a scalarization with the ordering cone for vector-valued functions and
study some properties of the scalarizing function. In Section 4 we show an existence
theorem for a vector-valued saddle-point problem as an application by means of its
scalarization.
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2. PRELIMINARY AND TERMINOLOGY

In the beginning, we give some notations used throughout this paper. We denote
the topological interior, closure and boundary of a set S by intS, clS and bd S,
respectively, and the complementary set of S by Sc. In addition, we denotes the
composite of two functions f and g by g◦f .

Before dealing with the nonlinear scalarization for vector-valued functions, we
consider some properties of ordering cones on normed spaces; a convex cone induces
a partial ordering, and we call such one an ordering cone. Throughout of the paper,
let Z be a normed space over the real scalar field R, and let C be a solid pointed
convex cone in Z. Solidness means that the topological interior is nonempty, and
then we have

intC + (−intC) = Z.

Moreover, for any k ∈ intC and z ∈ Z there exists t ∈ R such that

z ∈ (t·k − C).(1)

We see this property by the following facts:

(i) Every neighborhood U of the origin of Z is an absorbing set, i.e., for any
x ∈ Z there exists t > 0 such that t·x ∈ U .

(ii) C is a cone.

The property remains even if C in (1) replaced by intC or clC. Pointedness means
that

C ∩ (−C) = {0Z},
where 0Z stands for the origin point of Z. Indeed, by the pointedness and solidness,
if C in (1) is replaced by bd C or Cc, the property (1) is held; and especially the
fact that for any k ∈ intC and z ∈ Z there exists t ∈ R such that

z ∈ (t·k − bd C),(2)

has a meaning in Lemma 1.
Here, we note connections of Propositions, Lemmas, and Theorems in the paper

briefly. Theorem 4 is led by Theorems 1, 2 and 3, and Corollary 1. Theorems 1
and 3 are led by Proposition 2 and Lemma 1. Theorem 2 and Corollary 1 are led
by Lemma 1. Lemma 1 is led by Proposition 3 and Lemma 3. Lemma 3 is led by
Propositions 3 and 4. Propositions 2 and 3 are led by Proposition 1.

Proposition 1. ([9]). Let Z be a normed space. If C is a solid convex cone
in Z, then

clC + intC = intC.
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Proposition 2. Let Z be a normed space and C a solid convex cone in Z. If
z /∈ (−intC) then

(z + clC) ∩ (−intC) = ∅.
Moreover, If z /∈ (−clC) then

(z + clC) ∩ (−clC) = ∅.

Proof. This is clear from Proposition 1.

Proposition 3. Let Z be a normed space, C a solid convex cone in Z with
C �= Z, and k ∈ intC. Then, for a, b ∈ R the following three conditions are
equivalent each other:

(i) a < b,

(ii) (a·k − clC) ⊂ (b·k − intC),

(iii) (a·k − bd C) ∩ (b·k− intC) �= ∅.

Proof. This is clear from Proposition 1.

Remark 1. Proposition 3 implies that if a �=b then (a·k−bd C)∩(b·k−bdC)=∅.

Proposition 4. Let Z be a normed space and C a solid pointed convex cone
in Z. Assume that k ∈ intC and that t ∈ R. Then

(i) z /∈ t·k − cl C if and only if there exists ε > 0 such that

z /∈ (t + ε)·k − clC, and

(ii) z ∈ t·k − intC if and only if there exists ε > 0 such that

z ∈ (t − ε)·k− intC.

Proof. The proof is clear from the properties of closed set and open set, res-
pectively.

Next, we give some definitions about continuities and convexities concerned
with respect to ordering cone C.

Definition 1. ([3, 8].) Let X be a topological space, Z a normed space with a
partial ordering defined by a solid pointed convex cone C. A vector-valued function
f : X → Z is said to be C-continuous at x ∈ X if it satisfies one of the following
three equivalent conditions:
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(i) f−1(z + intC) is open.

(ii) For any neighborhood V ⊂ Z of f(x), there exists a neighborhood U ⊂ X

of x such that f(u) ∈ V + C for all u ∈ U .

(iii) For any k ∈ intC, there exists a neighborhood U ⊂ X of x such that
f(u) ∈ f(x)− k + intC for all u ∈ U .

Remark 2. Whenever Z = R and C = R+, C-continuity and (−C)-
continuity are the same as ordinary lower and upper semicontinuity, respectively.
In [8, Definition 2.1 (pp.314-315)] corresponding to ordinary functionals, the above
C-continuous is called C-lower semicontinuous, and (−C)-continuous is called
C-upper semicontinuous.

Definition 2. ([7].) Let K be a convex set in a real vector space X , Z a
normed space with a partial ordering defined by a solid pointed convex cone C. A
vector-valued function f : X → Z is said to be C-convex on K if

λf(x1) + (1− λ)f(x2) ∈ f(λx1 + (1 − λ)x2) + C

for every x1, x2 ∈ K and λ ∈ [0, 1].

Definition 3. ([7].) Let K be a convex set in a real vector space X , Z a
normed space with a partial ordering defined by a solid pointed convex cone C. A
vector-valued function f : X → Z is said to be C-properly quasiconvex on K if
either

f(λx1 + (1− λ)x2) ∈ f(x1) − C,

or
f(λx1 + (1− λ)x2) ∈ f(x2) − C,

for every x1, x2 ∈ K and λ ∈ [0, 1].

Definition 4. ([7].) Let K be a convex set in a real vector space X , Z a
normed space with a partial ordering defined by a solid pointed convex cone C. A
vector-valued function f : X → Z is said to be C-naturally quasiconvex on K if

f(λx1 + (1− λ)x2) ∈ co {f(x1), f(x2)} − C,

for every x1, x2 ∈ K and λ ∈ [0, 1], where coS stands for the convex hull of the
set S.

Definition 5. ([7].) Let K be a convex set in a real vector space X , Z a
normed space with a partial ordering defined by a solid pointed convex cone C. A
function f : X → Z is said to be C-quasiconvex on K if it satisfies one of the
following two equivalent conditions:
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(i) for each x1, x2 ∈ K and λ ∈ [0, 1],

f(λx1 + (1 − λ)x2) ∈ z − C, for all z ∈ C(f(x1), f(x2)),

where C(f(x1), f(x2)) is the set of upper bounds of f(x1) and f(x2), i.e.,

(3) C(f(x1), f(x2)) := {z ∈ Z : z ∈ f(x1) + C and z ∈ f(x2) + C};

(ii) for each z ∈ Z,
A(z) := {x ∈ K : f(x) ∈ z − C}

is convex or empty.

In Definitions 2-5, if f is (−C)-convex, (−C)-properly quasiconvex, (−C)-
naturally quasiconvex, (−C)-quasiconvex then we call f C-concave, C-properly
quasiconcave, C-naturally quasiconcave, C-quasiconcave, respectively.

3. NONLINEAR SCALARIZATION BY NONCONVEX SEPERATION FOR VECTOR-VALUED MAPS

Let Z be a normed space, C a solid pointed convex cone in Z and k an interior
point of C. We consider the scalarizing function h from Z to R as follows:

h(z; k) := inf{t ∈ R : z ∈ t·k − C}.(4)

By the argument on (1) in Section 2, we see that for any z ∈ Z and k ∈ intC there
exists uniquely a corresponding real number to h(z; k), and we know that h(z; k)
is subadditive and positive homogeneous. For convenience, it may be written as hk

instead of h(·; k).
Next, we give some useful properties of the above scalarizing function.

Lemma 1. ([1, Theorem 2.1]) Let Z be a normed space, C a solid pointed
convex cone in Z, k ∈ intC, and h(·; k) the scalarizing function defined by (4).
Then for any z ∈ Z and t ∈ R we have:

(i) z ∈ t·k − intC if and only if h(z; k) < t,

(ii) z ∈ t·k − bd C if and only if h(z; k) = t, and

(iii) z /∈ t·k − cl C if and only if h(z; k) > t.

Corollary 1. Let Z be a normed space with the partial ordering by solid
pointed convex cone C, k ∈ intC, and h(·; k) the scalarizing function defined by
(4). Then, we have:

(i) if z1 ∈ z2 − C then h(z1; k) ≤ h(z2; k),
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(ii) if z1 ∈ z2 − intC then h(z1; k) < h(z2; k), and

(iii) if h(z1; k) ≤ h(z2; k) then z2 /∈ z1 − intC.

Proof. From Lemma 1, the proof follows immediately.

Theorem 1. Let X be a topological space, Z a normed space with the partial
ordering by a solid pointed convex cone C in Z and k ∈ intC. Let h k be the
scalarizing function on Z defined by (4) and f a vector-valued function from X to
Z.

(i) If f is C-continuous at x ∈ X , then (hk ◦f) is lower semicontinuous at
x ∈ X .

(ii) If f is (−C)-continuous at x ∈ X , then (hk◦f) is upper semicontinuous at
x ∈ X .

Remark 3. If cone C is closed, then Theorem 3.1 and Corollary 3.1 in [5] for
single-valued cases are reduced to (i) and (ii) of Theorem 1, respectively.

Corollary 2. Let X be a topological space, Z a normed space with the partial
ordering by a solid pointed convex cone C in Z and k ∈ intC. Let h k be the
scalarizing function on Z defined by (4) and f a vector-valued function from X to
Z. If f is C-continuous and (−C)-continuous at x ∈ X , then (h k◦f) is continuous
at x ∈ X .

Remark 4. In the case that C has a bounded closed convex base, the C-
continuity and (−C)-continuity of the vector-valued function f guarantee the con-
tinuity of f , nevertheless hk◦f is continuous; see [3, Theorem 5.3 and Remark 5.4
(pp. 22-23)].

Theorem 2. (see [3, Proposition 6.3 (p. 30)]). Let K be a convex set in a
real vector space X , Z a normed space, a solid pointed convex cone C in Z and
k ∈ intC. Let hk be the scalarizing function on Z defined by (4) and f a vector-
valued function from X to Z. Then, f is C-quasiconvex on K if and only if (h k◦f)
is quasiconvex on K.

Corollary 3. Let K be a convex set in a real vector space X , Z a normed
space and a solid pointed convex cone C in Z and k ∈ intC. Let h k be the
scalarizing function on Z defined by (4) and f a vector-valued function from X
to Z. If f is C-naturally quasiconvex on K , then (hk◦f) is quasiconvex on K.
Moreover, if f is C-properly quasiconvex on K, then (hk◦f) is quasiconvex on
K.
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Proof. If f is C-properly quasiconvex on K then f is also C-naturally quasicon-
vex on K, and if f is C-naturally quasiconvex on K then f is also C-quasiconvex
on K; see [7, Theorem 2.1].

Theorem 3. Let K be a convex set in a real vector space X , Z a normed
space, a solid pointed convex cone C in Z and k ∈ intC. Let hk be the scalarizing
function on Z defined by (4) and f a vector-valued function from X to Z. If f is
(−C)-properly quasiconvex on K, then (hk◦f) is quasiconcave on K.

Proof. Let Lev≥((hk◦f); α) be the upper level set of (hk◦f) at a scalar α,
i.e.,

Lev≥((hk◦f); α) := {x ∈ K : (hk◦f)(x) ≥ α}.
Let λ ∈ [0, 1] and x1, x2 ∈ Lev≥((hk◦f); α), by Lemma 1,

f(x1), f(x2) /∈ (α·k− intC).

By Proposition 2, we have

(f(xi) + C) ∩ (α·k − intC) = ∅ for i = 1, 2.

Thus, by the (−C)-properly quasiconvexity of f , we have

f(λx1 + (1 − λ)x2) /∈ (α·k − intC),

which implies that λx1 + (1 − λ)x2 ∈ Lev≥((hk◦f); α), by Lemma 1.

4. APPLICATIONS

In this section, we consider the vector-valued saddle-point problem, and we show
an existence theorem of weak C-saddle-points as an application of the scalarization.

Let X and Y be nonempty subsets in two normed spaces, respectively, and Z a
normed space with a partial ordering by induced a solid pointed convex cone in Z.
Suppose that F is a vector-valued function from X×Y to Z, then the vector-valued
saddle-point problem is to find a pair x ∈ X and y ∈ Y such that

(P )

{
F (x, y)− F (u, y) /∈ intC for all u ∈ X,

F (x, v)− F (x, y) /∈ intC for all v ∈ Y.

A point (x, y) ∈ X × Y is said to be a weak C-saddle-point of function F on
X × Y , if it is a solution of the problem.

Theorem 4. Let X and Y be nonempty compact convex sets in two normed
spaces, respectively, and Z a normed space with a partial ordering induced by a
solid pointed convex cone C in Z. If a vector-valued function F : X × Y → Z
satisfies that
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(i) x 
→ F (x, y) is C-continuous and C-quasiconvex on X for every y ∈ Y ,

(ii) y 
→ F (x, y) is (−C)-continuous and (−C)-properly quasiconvex on Y for
every x ∈ X ,

then F has at least one weak C-saddle point.

Proof. Since C is solid we can take k ∈ intC, and so we can define the
scalarizing function hk in (4). We see that, by Theorems 1 and 2, the map x 
→
(hk ◦F )(x, y) is lower semicontinuous and quasiconvex on X , and we see that,
by Theorems 1 and 3, the map y 
→ (hk ◦F )(x, y) is upper semicontinuous and
quasiconcave on Y . By Sion’s minimax theorem [6], (hk ◦F ) has an ordinary
saddle point and by Corollary 1, F has at least one weak C-saddle-point.

Theorem 5. Let X be a compact convex set of a normed space, and Z a
normed space with a partial ordering defined by a solid pointed convex cone C. If
f : X → Z is C-quasiconvex on X , then argminh◦f(x) is a convex set in X , and

(argmin h◦f(x)) ⊂ {x ∈ X : f(u)− f(x) /∈ −intC for all u ∈ X},
where argminh◦f(x) := {x ∈ X : h◦f(x) = min

u∈X
h◦f(u)}.

Remark 5. Theorem 5 is a useful result. We can consider something like a
convex envelope for vector-valued functions by using Theorem 5 with Theorems 1,
2, and 3. Its detail and application have been studied in [2].
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