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CONVERGENCE OF ISHIKAWA ITERATIVE SEQUENCES FOR
ACCRETIVE LIPSCHITZIAN MAPPINGS IN BANACH SPACES

Jong Kyu Kim

Abstract. In this paper, we study the convergence theorems of the Ishikawa
iterative sequences with mixed errors for the accretive Lipschitzian mappings
in Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we assume that E is a real Banach space, E∗ is the dual
space of E , F (T ) and R(T ) are the sets of fixed points and range of mapping T,
respectively. We also assume that J : E → 2E∗ is the normalized duality mapping
defined by

J(x) = {f ∈ E∗, 〈x, f〉 = ||x||||f ||, ||f || = ||x||}, x ∈ E.

Definition 1.1. Let T : E → E be a mapping.

(i) T is said to be accretive, if for any x, y ∈ E, there exists j(x−y) ∈ J(x−y)
such that

〈Tx − Ty, j(x− y)〉 ≥ 0.

(ii) T is said to be m-accretive, if R(I + rT ) = E for all r > 0, where I is the
identity operator on E .

Remark 1.1. By using the Kato inequality [12], we know that T : E → E is
accretive if and only if for all x, y ∈ E and for all r > 0 the following inequality
holds:
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(1.1) ||x − y|| ≤ ||x− y + r(Tx − Ty)||.

Definition 1.2. Let T : E → E be a mapping, x0 and u0 be two given points
in E , {αn} and {βn} be two real sequences in [0, 1], {vn} and {wn} be two
sequences in E satisfying the following conditions:

(i) vn = v′ + v′′, ||v′n|| = o(αn) (n ≥ 0) and
∑∞

n=0 ||v′′n|| < ∞,
(ii) ||wn|| → 0 ( n → ∞).

Then
(1) the sequence {xn} defined by

(1.2)

{
xn+1 = (1− αn)xn + αnTyn + vn

yn = (1− βn)xn + βnTxn + wn (n ≥ 0)

is called the Ishikawa iterative sequence with mixed errors [14].
(2) the sequence {xn} defined by

(1.3)

{
xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTxn (n ≥ 0)

is called the Ishikawa iterative sequence [8], where the sequences {α n}
appeared in (1.2) and (1.3) are all same.

The convergence problems for Mann iterative sequence, Ishikawa iterative se-
quence, Ishikawa iterative sequence with mixed errors and Ishikawa iterative se-
quence with errors (see, Definition 2.1) for strong accretive mappings and strongly
pseudo-contractive mappings have been studied extensively by many authors, see,
for example, Chang et al [2-3], Chidume [4-6], Fang et al. [7], Ishikawa [8], Kim
et al. [9-11], Li et al. [13], Liu [14-15], Mann [16], Rhoades et al. [17], Sastry et
al. [18], Solutz [19], Xu [20] and Zeng [21],

In this paper, we study the convergence theorems of the Ishikawa iterative se-
quences with mixed errors for the accretive Lipschitzian mappings in Banach spaces.

2. MAIN RESULTS

First, we study the convergence results of the Ishikawa iterative sequence with
mixed errors defined by (1.2) for accretive Lipschitzian mappings in Banach spaces.

In order to prove our main theorems, we need the following important lemma.

Lemma 2.1. ([14]) Let {an}, {bn} and {cn} be nonnegative real sequences
satisfying the condition:

an+1 ≤ (1 − λn)an + bn + cn (n ≥ n0),



Convergence of Ishikawa Iterative Sequences 555

where n0 is some nonnegative integer and {λn} is a sequence in [0, 1] such that∑∞
n=0 λn = ∞, bn = o(λn) and

∑∞
n=0 cn < ∞. Then an → 0 as n → ∞.

Theorem 2.1. Let E be a real Banach space, T : E → E be a Lipschitzian
continuous accretive mapping with a Lipschitz constant L ≥ 1. Define an operator
S : E → E by Sx = f − Tx, x ∈ E , where f ∈ E is any given point. For
any given x0 ∈ E let {xn} be the Ishikawa iterative sequence with mixed errors
defined by

(2.1)

{
xn+1 = (1 − αn)xn + αnSyn + vn

yn = (1 − βn)xn + βnSxn + wn (n ≥ 0),

where {vn}, {wn} are two sequences in E and {αn}, {βn} are two real sequences
in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 αn = ∞,

(ii) there exists η ∈ (0, 1
2 ) such that

(1 + L){αn(1 + L)(1 + Lβn) + Lβn} < 1
2 − η (n ≥ n0),

where n0 is some nonnegative integer,

(iii) (a) vn = v′n + v′′n , ||v′n|| = o(αn) (n ≥ 0) and
∑∞

n=0 ||v′′n|| < ∞,

(b) ||wn|| → 0 ( n → ∞).
Then S has a unique fixed point p ∈ E and the sequence {x n} defined by (2.1)
converges strongly to p.

Proof. Since T : E → E is a Lipschitzian continuous accretive mapping,
by the well-known result in Browder [1], T is m-accretive. Therefore, for given
f ∈ E , the equation x + Tx = f has a unique solution p ∈ E . We know that p is
a fixed point of S and S is also a Lipschitzian mapping with a Lipschitz constant
L ≥ 1. Again since (−S) is accretive, by (1.1) we have

(2.2) ||x − y|| ≤ ||x− y − r(Sx− Sy)||

for all x, y ∈ E and r > 0. It follows from (2.1) that for all n ≥ 0,

xn = xn+1 + αnxn − αnSyn − vn

= xn+1 + αn(xn+1 + αnxn − αnSyn − vn) − αnSyn − vn

= (1 + αn)xn+1 + αn(−S)xn+1 + α2
n(xn − Syn)

+αn(Sxn+1 − Syn) − (1 + αn)vn
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and so

||xn − p|| ≥ ||(1 + αn)(xn+1 − p) + αn((−S)xn+1 − (−S)p)||
−α2

n||xn − Syn|| − αn||Sxn+1 − Syn|| − (1 + αn)||vn||

= (1 + αn)
{
||xn+1 − p +

αn

1 + αn
((−S)xn+1 − (−S)p)||

}
−α2

n||xn − Syn|| − αn||Sxn+1 − Syn|| − (1 + αn)||vn||

= (1 + αn)
{
||xn+1 − p − αn

1 + αn
(Sxn+1 − Sp)||

}
−α2

n||xn − Syn|| − αn||Sxn+1 − Syn|| − (1 + αn)||vn||

By using (2.2), we know that

(2.3)
||xn − p|| ≥ (1 + αn)||xn+1 − p|| − α2

n||xn − Syn||
−αn||Sxn+1 − Syn|| − (1 + αn)||vn||

On the other hand, we have

(2.4)
||xn − Sxn|| ≤ ||xn − p||+ L||xn − p||

≤ (1 + L)||xn − p||.

It follows from (2.1), by using (2.4), we have

(2.5)
||xn − yn|| ≤ βn||xn − Sxn|| + ||wn||

≤ βn(1 + L)||xn − p||+ ||wn||.

Now we consider the second and the third term on the right side of (2.3). By
using (2.4) and (2.5), we have

(2.6)

||xn − Syn|| = ||xn − Sxn||+ ||Sxn − Syn||
≤ (1 + L)||xn − p||+ L||xn − yn||
≤ (1 + L)||xn − p||+ L{βn(1 + L)||xn − p||+ ||wn||}
= (1 + L)(1 + Lβn)||xn − p|| + L||wn||.

By using (2.5) and (2.6), we have
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(2.7)

||Sxn+1 − Syn|| ≤ L||xn+1 − yn||
≤ L(||xn+1 − xn||+ ||xn − yn||)
= L(αn||xn − Syn|| + ||vn||+ ||xn − yn||)
≤ L[αn{(1 + L)(1 + Lβn)||xn − p||+ L||wn||}]

+L||vn||+ L{βn(1 + L)||xn − p|| + ||wn||}
= L(1 + L)(αn(1 + Lβn) + βn)||xn − p||

+L(Lαn + 1)||wn||+ L||vn||.
Substituting (2.6) and (2.7) into (2.3), we have

(1 + αn)||xn+1 − p||
≤ ||xn − p||+ α2

n||xn − Syn||+ αn||Sxn+1 − Syn||+ (1 + αn)||vn||
≤ ||xn − p||+ α2

n[(1 + L)(1 + Lβn)||xn − p||+ L||wn||]
+αn[L(1 + L)(αn(1 + Lβn) + βn)||xn − p||+ L(Lαn + 1)||wn||
+L||vn||] + (1 + αn)||vn||

= [1 + α2
n(1 + L)(1 + Lβn) + αnL(1 + L){αn(1 + Lβn) + βn}]||xn − p||

+α2
nL||wn|| + αnL(Lαn + 1)||wn|| + Lαn||vn|| + (1 + αn)||vn||

= ||xn − p||+ αn(1 + L)[αn(1 + Lβn) + L{αn(1 + Lβn) + βn}]||xn − p||
+αnL(αn + Lαn + 1)||wn||+ (Lαn + 1 + αn)||vn||

which implies that

(1 + αn)||xn+1 − p|| ≤ ||xn − p||+ αnγn||xn − p||
+kn + (Lαn + 1 + αn)||vn||,

and so

(2.8)
||xn+1 − p|| ≤ 1

1 + αn
{||xn − p||+ γnαn||xn − p||

+kn + (αn(1 + L) + 1)||vn||},
where

γn = (1 + L)[αn(1 + Lβn) + L{αn(1 + Lβn) + βn}]
= (1 + L){αn(1 + L)(1 + Lβn) + Lβn}

and
kn = αnL(αn(1 + L) + 1)||wn||.
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Since (1 + αn)−1 ≤ 1 and (1 + αn)−1 ≤ 1 − αn
2 , it follows from (2.8) that

(2.9)
||xn+1 − p|| ≤ (1 − αn

2
)||xn − p||+ γnαn||xn − p||

+kn + (αn(1 + L) + 1)||vn||.

By condition (ii), we know that there exists η ∈ (0, 1
2) such that

(2.10) γn <
1
2
− η (n ≥ n0).

Again, by condition (iii)-(a), since vn = v′n + v′′n and ||v′n|| = o(αn), there exists a
nonnegative sequence {εn} with εn → 0 such that ||v ′

n|| = εnαn and so

(2.11) ||vn|| ≤ εnαn + ||v′′n|| ( n ≥ 0).

It follows from (2.9) - (2.11) that

(2.12)

||xn+1 − p|| ≤ (1− αn

2
)||xn − p||+ (

1
2
− η)αn||xn − p||+ kn

+(αn(1 + L) + 1){εnαn + ||v′′n||}
≤ (1− ηαn)||xn − p|| + bn + cn,

where
bn = kn + (αn(1 + L) + 1)εnαn, cn = (2 + L)||v′′n||.

Since S is Lipschitzian continuous, therefore we know that bn = o(ηαn) and∑∞
n=0 cn < ∞. It follows from Lemma 2.1 that

||xn − p|| → 0 (n → ∞).

Hence the Ishikawa iterative sequence {xn} with mixed errors defined by (2.1)
converges strongly to a unique fixed point p of S in E. This completes the proof
of Theorem 2.1.

In (2.1), if vn = wn = 0 (n ≥ 0), then we can obtain the following theorem:

Theorem 2.2. Let E be a real Banach space, T : E → E be an accretive
Lipschitzian mapping with a Lipschitz constant L ≥ 1. Let {α n} and {βn} be two
real sequences in [0,1] satisfying the conditions (i) and (ii) in Theorem 2.1. Let
{xn} be the Ishikawa iterative sequence defined by

(2.13)

{
xn+1 = (1− αn)xn + αnSyn

yn = (1− βn)xn + βnSxn (n ≥ 0).
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Then S has a unique fixed point p ∈ E and the sequence {x n} defined by (2.13)
converges strongly to p.

Now, we also study the convergence of one kind of Ishikawa iterative sequence
with errors (see ([20]).

Definition 2.1. Let T : E → E be an accretive Lipschitzian mapping. Define
a mapping S : E → E by Sx = f − Tx for x ∈ E, and f ∈ E be a given point.
Let x0 ∈ E be a given point, {αn}, {βn}, {γn}, {δn} be four real sequences in [0,
1] with αn + γn ≤ 1, βn + δn ≤ 1 and {sn}, {tn} be two bounded sequences in
E . Then the sequence {xn} defined by

(2.14)

{
xn+1 = (1− αn − γn)xn + αnSyn + γntn

yn = (1− βn − δn)xn + βnSxn + δnsn (n ≥ 0)

is called the Ishikawa iterative sequence with errors, which was introduced and
studied in Xu [20].

Theorem 2.3. Let E be a real Banach space, T : E → E be an accretive
Lipschitzian mapping with a Lipschitz constant L ≥ 1. Define a mapping S : E →
E by Sx = f − Tx for any x ∈ E . Let {αn}, {βn}, {γn}, {δn} be four real
sequences in [0, 1] satisfying the following conditions:

(i) αn + γn ≤ 1, βn + δn ≤ 1,
(ii) (1 + L){αn(1 + L)(1 + Lβn) + Lβn} < 1

2 − η (n ≥ n0), where η ∈ (0, 1
2)

is a constant and n0 is some nonnegative integer,
(iii)

∑∞
n=0 αn = ∞,

(iv)
∑∞

n=0 γn < ∞, δn → 0.

Let {xn} be the Ishikawa iterative sequence with errors defined by (2.14). If the
sequence {xn} is bounded, then S has a unique fixed point p ∈ E and the sequence
{xn} converges strongly to p.

Proof. First we rewrite (2.14) as follows:{
xn+1 = (1− αn)xn + αnSyn + γn(tn − xn)

yn = (1− βn)xn + βnSxn + δn(sn − xn) (n ≥ 0).

Letting vn = γn(tn − xn) and wn = δn(sn − xn), ∀n ≥ 0. Then we have

(2.15)
{

xn+1 = (1− αn)xn + αnSyn + vn

yn = (1− βn)xn + βnSxn + wn ∀ (n ≥ 0).
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By the assumption, the sequences {xn}, {tn} and {sn} are bounded in E . Again
by the condition (iv) we know that δn → 0 and

∑∞
n=0 γn < ∞, therefore we have

∞∑
n=0

||vn|| < ∞ and ||wn|| → 0 (n → ∞),

which imply that the iterative sequence {xn} defined by (2.14) is a special case
of the Ishikawa iterative sequence with mixed errors defined by (2.1) and all the
conditions in Theorem 2.1 are satisfied. Therefore the conclusion of Theorem 2.3
can be obtained from Theorem 2.1 immediately. This completes the proof.
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