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A PROXIMAL METHOD FOR PSEUDOMONOTONE TYPE
VARIATIONAL-LIKE INEQUALITIES

Siegfried Schaible, Jen-Chih Yao and Lu-Chuan Zeng

Abstract. The purpose of this paper is to investigate the convergence of a
proximal method for solving pseudomonotone type variational-like inequalities.
The main result is given for the finite-dimensional case. However convergence
can still be obtained in an infinite-dimensional Hilbert space under a strong
pseudomonotone type assumption or a pseudo-Dunn type one on the operator
involved.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let K be a nonempty closed convex subset of H. Let T : K → H and η : K×K →
H be two mappings. We consider the variational-like inequality problem which is
to find x∗ ∈ K such that

(1) 〈T (x∗), η(y, x∗)〉 ≥ 0, ∀y ∈ K.

Problem (1) was studied previously by many authors; see, e.g., [1,2 5, 22, 25,
27, 30]. A randomized version of this problem was considered by Ding [6] in 1997.
Furthermore, if η(x, y) = x−y, ∀x, y ∈ K and T is pseudomonotone, then problem
(1) reduces to the following pseudomonotone variational inequality problem: find
x∗ ∈ K such that

(2) 〈T (x∗), y − x∗〉 ≥ 0, ∀y ∈ K.

This problem was studied by Yao [28, 29] and El Farouq [9, 10] for example.
In [28, 29] some results on the existence of solutions were obtained. Utilizing
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a technique developed by Cohen [3], El Farouq [10] studied the convergence of
the method based on the auxiliary problem principle under a pseudomonotonicity
assumption on the operator T . In addition, El Farouq [9] analyzed the convergence
of proximal methods for solving pseudomonotone variational inequalities (2).

The notion of pseudomonotonicity employed here was introduced by Karamar-
dian [16]. It is closely related to that of pseudoconvexity of functions; see [20].
Other concepts of generalized monotone operators are presented in [12, 17-19, 24,
32]. Some results on the existence of solutions of pseudomonotone variational in-
equalities are given in [4, 13-16, 28-29].

In order to study the proposed proximal method for solving problem (1), we
extend the notion of pseudomonotonicity of operators, the notion of pseudoconvexity
of functions and other concepts of generalized monotone operators. At first the result
on the existence of solutions for pseudomonotone type variational-like inequalities
is established. Then we discuss two cases. In the finite-dimensional case the
proximal method considered in this paper converges under a η-pseudomonotonicity
assumption on the operator. In the infinite-dimensional case our convergence results
are limited to η-pseudo-Dunn and η-strong pseudomonotonicity assumptions.

The paper is organized as follows. In Section 2 we give some new definitions and
basic results for generalized η-monotonicity. In Section 3 we present the proximal
method that is studied in this paper. Sections 4 and 5 are devoted to its convergence
in the finite-dimensional case and the infinite-dimensional case, respectively.

2. PRELIMINARIES

In this section we give various definitions and basic results on generalized η-
monotonicity.

Definition 2.1. Let K be a nonempty subset of H and let T : K → H ,
η : K × K → H be two mappings. Then

(i) T is η -monotone on K if
〈T (x)− T (y), η(x, y)〉 ≥ 0, ∀x, y ∈ K;

(ii) T is η -strongly monotone on K if there exists a constant α > 0 such that
〈T (x)− T (y), η(x, y)〉 ≥ α‖x − y‖2, ∀x, y ∈ K;

(iii) T has the η-Dunn property on K if there exists a constant A > 0 such that
〈T (x)− T (y), η(x, y)〉 ≥ (1/A)‖T (x)− T (y)‖2, ∀x, y ∈ K;

(iv) T is η-pseudomonotone on K if for each x, y ∈ K,

〈T (x), η(y, x)〉 ≥ 0 =⇒ 〈T (y), η(y, x)〉 ≥ 0;
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(v) T is η-strongly pseudomonotone on K if there exists a constant c > 0 such
that for each x, y ∈ K,

〈T (x), η(y, x)〉 ≥ 0 =⇒ 〈T (y), η(y, x)〉 ≥ c‖y − x‖2;

(vi) T has the η-pseudo-Dunn property on K if there exists a constant E > 0
such that for each x, y ∈ K,

〈T (x), η(y, x)〉 ≥ 0 =⇒ 〈T (y), η(y, x)〉 ≥ (1/E)‖T (y)− T (x)‖2;

(vii) T is η-quasimonotone on K if for each x, y ∈ K,

〈T (x), η(y, x)〉> 0 =⇒ 〈T (y), η(y, x)〉 ≥ 0;

(viii) T is η-weakly monotone on K if there exists L > 0 such that for each
x, y ∈ K,

〈T (x)− T (y), η(x, y)〉 ≥ −L‖x − y‖2.

Remark 2.1. If η(x, y) = x − y, ∀x, y ∈ K, then Definition 2.1 reduces to
Definition 2.1 in El Farouq [9] for example.

Lemma 2.1. Let η : K × K → H satisfy the condition

η(x, y) + η(y, x) = 0, ∀x, y ∈ K.

(i) If T : K → H is η-pseudomonotone, then for all solutions x ∗
1, x

∗
2 of problem

(1),

〈T (x∗
2), η(x∗

2, x
∗
1)〉 = 0.(3)

(ii) If T has the η-pseudo-Dunn property, then the set

S = {T (x∗) : 〈T (x∗), η(x, x∗)〉 ≥ 0, ∀x ∈ K}

is a singleton.
(iii) If T is η -strongly pseudomonotone and problem (1) has a solution, then it

is unique.

Proof. Let x∗
1 and x∗

2 in K be two solutions of problem (1). Then

〈T (x∗
1), η(x∗

2, x
∗
1)〉 ≥ 0 and 〈T (x∗

2), η(x∗
1, x

∗
2)〉 ≥ 0.(4)

(i) If T is η-pseudomonotone, then (4) implies 〈T (x∗
2), η(x∗

2, x
∗
1)〉 ≥ 0. Note that

η(x∗
1, x

∗
2) = −η(x∗

2, x
∗
1). Thus from (4) we get (3).
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(ii) If T has the η-pseudo-Dunn property, then

0 = 〈T (x∗
2), η(x∗

2, x
∗
1)〉 ≥ (1/E)‖T (x∗

2) − T (x∗
1)‖2.

Therefore, T (x∗2) = T (x∗
1). Hence the set S is a singleton.

(iii) By using the same reasoning as in (ii) in case T is η-strongly pseudomonotone,
we get x∗

1 = x∗
2.

We illustrate below the relationships between the η-monotonicity assumption
and some generalized η-monotonicity assumptions:

η − strong monotonicity ⇒ η − monotonicity ⇐ η − Dunn property

⇓ ⇓ ⇓
η−strong pseudomonotonicity ⇒ η−pseudomonotonicity ⇐ η−pseudo−Dunn property

⇓
η − quasimonotonicity

We easily obtain the following result from the definitions above.

Lemma 2.2. If T : K → H is η-strongly pseudomonotone with constant c and
Lipschitz continuous with constant L, then it has the η-pseudo-Dunn property with
constant L2/c.

Definition 2.2 [1]. A mapping η : K ×K → H is called Lipschitz continuous
if there is a constant λ > 0 such that ‖η(x, y)‖ ≤ λ‖x− y‖ ∀x, y ∈ K.

Definition 2.3 [1]. A differentiable function h : K → R on a convex subset
K is called

(i) η-convex if
h(y)− h(x) ≥ 〈h′(x), η(y, x)〉, ∀x, y ∈ K

where h′(x) is the Frechet derivative of h at x;

(ii) η-strongly convex if there exists a constant µ > 0 such that

h(y)− h(x)− 〈h′(x), η(y, x)〉 ≥ (µ/2)‖x− y‖2, ∀x, y ∈ K.
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Proposition 2.1 [1]. Let h be a differentiable η-strongly convex function
on a convex subset K of H and let η : K × K → H be a mapping such that
η(x, y) + η(y, x) = 0, ∀x, y ∈ K. Then, h′ is η-strongly monotone.

Lemma 2.3 [1]. Let η(y, ·) : K → H and h′ be sequentially continuous from
the weak topology to the weak topology and from the weak topology to the strong
topology, respectively, where y is any fixed point in K. Then the function g : K →
R, defined as g(x) = 〈h′(x), η(y, x)〉 for each fixed y ∈ K , is weakly sequentially
continuous.

For each D ⊆ H , we denote by co(D) the convex hull of D. A point-to-
set mapping G : H → 2H is called a KKM mapping if for every finite subset
{x1, x2, · · · , xk} of H , co({x1, x2, · · · , xk}) ⊆ ∪k

i=1G(xi).

Lemma 2.4 [11]. Let K be an arbitrary nonempty subset in a Hausdorff topo-
logical vector space E and let G : K → 2E be a KKM mapping. If G(x) is closed
for all x ∈ K and is compact for at least one x ∈ K, then ∩ x∈KG(x) �= ∅.

3. A PROXIMAL METHOD

In this section, we present a proximal method [7, 8, 21, 23, 26, 31]. The
proximal method was initially introduced by Martinet [21] as a regularization method
in the context of convex optimization in Hilbert spaces. In the early seventies it has
been extended widely to the general framework of maximal monotone inclusions by
Rockafellar. Recently, it has also been extended to develop the proximal method for
solving problem (2); see, e.g., [9].

We consider an auxiliary function h : K → R which is chosen differentiable
and η-strongly convex, and a sequence {εn}∞n=0 of positive numbers. For some
x ∈ H , we introduce the problem

〈h′(ỹ(x)) + εnT (ỹ(x))− h′(x), η(y, ỹ(x))〉 ≥ 0, ∀y ∈ K.(5)

If ỹ(x) exists and is equal to x, then it is a solution of the original problem (1).

Algorithm 3.1. Proximal Algorithm.

(i) Start from some initial point x0 in K.

(ii) At stage n, knowing xn ∈ K, compute xn+1 as a solution of the variational-
like inequality

〈εnT (xn+1) + h′(xn+1) − h′(xn), η(y, xn+1)〉 ≥ 0 ∀y ∈ K(6)

where h′ is the Frechet derivative of a function h : K → R at x.
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Lemma 3.1. Let x ∈ H . Suppose that

(i) T : K → H is η-weakly monotone with constant L;
(ii) h : K → R is η-strongly convex with constant µ;
(iii) η(x, y)+ η(y, x) = 0, ∀x, y ∈ K;
(iv) εn < µ/L.

Then the operator Fn(y) = εnT (y) + h′(y) − h′(xn) is η-strongly monotone
on K with constant µ − εnL.

Proof. Since h is η-strongly convex with constant µ, we obtain

h(y2)− h(y1) − 〈h′(y1), η(y2, y1)〉 ≥ µ

2
‖y1 − y2‖2,

and hence
〈h′(y1), η(y1, y2)〉 ≥ µ

2
‖y1 − y2‖2 + h(y1) − h(y2).

Similarly, we obtain

−〈h′(y2), η(y1, y2)〉 ≥ µ

2
‖y2 − y1‖2 + h(y2) − h(y1).

Thus, we derive

〈h′(y1)− h′(y2), η(y1, y2)〉 ≥ µ‖y1 − y2‖2;

that is, h′ is η-strongly monotone with constant µ. Since T is η-weakly monotone
with constant L, we have for each y1, y2 ∈ K,

〈Fn(y1) − Fn(y2), η(y1, y2)〉
= εn〈T (y1) − T (y2), η(y1, y2)〉+ 〈h′(y1)− h′(y2), η(y1, y2)〉
≥ −εnL‖y1 − y2‖2 + µ‖y1 − y2‖2

= (µ − εnL)‖y1 − y2‖2.

Lemma 3.2. Suppose that problem (1) has a solution. Let T : K → H be
η-weakly monotone with constant L. Assume that

(i) η : K × K → H satisfies the following conditions:
(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ K,

(b) η(x, y) = η(x, z) + η(z, y), ∀x, y, z ∈ K,

(c) for each fixed y ∈ K, η(·, y) : K → H is affine,
(d) for each fixed x ∈ K, η(x, ·) : K → H is sequentially continuous from

the weak topology to the weak topology;
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(ii) h : K → R is η-strongly convex with constant µ, and its derivative h ′ is
sequentially continuous from the weak topology to the strong topology;

(iii) for each fixed n ≥ 0 and z ∈ K, {x ∈ K : 〈εnT (x)+h′(x)−h′(z), η(y, x)〉 ≥
0} is bounded for at least one y ∈ K;

(iv) for each fixed y ∈ K, 〈T (·), η(y, ·)〉 : K → R is weakly upper semicontinu-
ous.

If {εn} satisfies εn < µ/L, for each iterate xn there exists a unique solution
x = xn+1 ∈ K of

〈εnT (x) + h′(x)− h′(xn), η(y, x)〉 ≥ 0, ∀y ∈ K.(7)

Proof. Existence of a solution of problem (7).
We write (7) as follows: find x ∈ K such that

〈εnT (x) + h′(x)− h′(xn), η(y, x)〉 ≥ 0, ∀y ∈ K.

For each fixed n ≥ 0 and each y ∈ K, we define

G(y) = {x ∈ K : 〈εnT (x) + h′(x)− h′(xn), η(y, x)〉 ≥ 0}.

Since y ∈ G(y), G(y) is nonempty for each y ∈ K. Now, we claim that G is a KKM
mapping. Suppose to the contrary that there exists a finite subset {y1, y2, · · · , yk}
of K and αi ≥ 0, ∀i = 1, 2, · · · , k with

∑k
i=1 αi = 1 such that x̂ =

∑k
i=1 αiyi /∈

G(yi), ∀i = 1, 2, · · · , k. Then by virtue of assumptions (a), (c) in (i), we have

0 = 〈εnT (x̂) + h′(x̂)− h′(xn), η(x̂, x̂)〉

≤
k∑

i=1

αi〈εnT (x̂) + h′(x̂) − h′(xn), η(yi, x̂)〉 < 0,

a contradiction. Hence, G is a KKM mapping.
In view of conditions (i) (d), (ii), (iv) and Lemma 2.3, we can readily see that

G(y) is a weakly closed subset of K for each y ∈ K. Moreover, from condition
(iii) we know that G(y)is weakly compact for at least one point y ∈ K. Hence, by
Lemma 2.4, we have ∩y∈KG(y) �= ∅ which implies that there exists at least one
solution of (7).

Uniqueness of solutions of problem (7).
Let x1, x2 be two solutions of (7). Then

〈εnT (x1) + h′(x1)− h′(xn), η(y, x1)〉 ≥ 0,(8)
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〈εnT (x2) + h′(x2)− h′(xn), η(y, x2)〉 ≥ 0(9)

for all y ∈ K. Taking y = x2 in (8) and y = x1 in (9) and adding these inequalities,
we obtain

〈Fn(x1) − Fn(x2), η(x1, x2)〉 ≤ 0,(10)

where Fn(y) = εnT (y) + h′(y) − h′(xn). According to Lemma 3.1, the operator
Fn is η-strongly monotone on K with constant µ − εnL. Thus from (10) we get

(µ − εnL)‖x1 − x2‖2 ≤ 〈Fn(x1) − Fn(x2), η(x1, x2)〉 ≤ 0.

and therefore x1 = x2 since µ − εnL > 0. Hence the solution of (7) is unique.

4. CONVERGENCE RESULTS IN THE FINITE-DIMENSIONAL CASE

In this section we assume that H is a finite-dimensional space. We present at
first a general convergence result based on η-pseudomonotonicity. Then we give
stronger results under a η-pseudo-Dunn assumption or a η-strong pseudomonotonic-
ity assumption. We finally study the special case of the proximal algorithm. We
will make the following assumptions throughout the remainder of this section.

Assumption 4.1.

(i) K is bounded, closed and convex;

(ii) T is continuous and η-weakly monotone with constant L on K;

(iii) h is η-strongly convex with constant µ on K and its derivative h′ is contin-
uous;

(iv) εn satisfies α < εn < µ/L for some α > 0.

The following theorem is based on η-pseudomonotonicity.

Theorem 4.1. Suppose that problem (1) has a solution x∗. Assume that
η : K × K → H is Lipschitz continuous with constant λ such that

(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ K,

(b) η(x, y) = η(x, z) + η(z, y), ∀x, y, z ∈ K,

(c) for each fixed y ∈ K, η(·, y) : K → H is affine.
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Under Assumption 4.1, starting from any x 0 ∈ K, Algorithm 3.1 generates
a well-defined sequence {xn}. Moreover, if T is η-pseudomonotone on K , then
{‖xn+1 − xn‖} converges to zero. In addition, if h ′ is Lipschitz continuous, then
the sequence {xn} converges to a solution of problem (1).

Proof. We consider the function Φ which is the Bregman distance between x

and x∗ induced by the η-strongly convex function h(·) and defined by

Φ(x) = h(x∗) − h(x) − 〈h′(x), η(x∗, x)〉.(11)

From the η-strong convexity of h on K, we get

Φ(xn) ≥ (µ/2)‖xn − x∗‖2 ≥ 0.(12)

We now study the variation of Φ for one step of Algorithm 3.1,

�n+1
n = Φ(xn+1)− Φ(xn).

We see that
�n+1

n = s1 + s2

with

s1 = h(xn) − h(xn+1) − 〈h′(xn), η(xn, xn+1)〉,
s2 = 〈h′(xn)− h′(xn+1), η(x∗, xn+1)〉.

The η-strong convexity of h on K yields

s1 = −[h(xn+1) − h(xn) − 〈h′(xn), η(xn+1, xn)〉]
≤ −(µ/2)‖xn − xn+1‖2.

By using (7) with x = xn+1 and y = x�, we obtain

s2 ≤ εn〈T (xn+1), η(x∗, xn+1)〉.
By using (1) with y = xn+1 and the η-pseudomonotonicity of T , we get

s2 ≤ 0.

Thus

�n+1
n ≤ −(µ/2)‖xn+1 − xn‖2(13)

and hence �n+1
n is negative unless xn+1 = xn in which case (7) shows that xn

is a solution of (1). It follows that the sequence {Φ(xn)} is strictly decreasing.
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Since it is positive, it must converge, and the difference between two consecutive
terms tends to zero. Therefore ‖xn+1 − xn‖ converges to zero. Moreover since the
sequence {Φ(xn)} is convergent, it is bounded. Thus from (13) we deduce

‖xn − x∗‖2 ≤ (2/µ) · sup
n≥0

Φ(xn).

Let x̄ be a cluster point of the sequence {xn} and let {xni} be a subsequence
converging to x̄. Since η is Lipschitz continuous with constant λ, h′ is Lipschitz
continuous with constant B and εn > α, we have in view of (7) for any y ∈ K

〈T (xn+1), η(y, xn+1)〉 ≥ −(1/εn)〈h′(xn+1) − h′(xn), η(y, xn+1)〉
≥ −(1/α)B‖xn+1 − xn‖ · λ‖y − xn+1‖
= (−λB/α)‖xn+1 − xn‖‖y − xn+1‖.

Since T is continuous and ‖xni+1 −xni‖ converges to zero, taking the limit for the
subsequence {ni} in the last inequality yields

〈T (x̄), η(y, x̄)〉 ≥ 0, ∀y ∈ K.

Hence x̄ is a solution of problem (1).
Now we prove that the sequence {xn} has a unique cluster point. Assume

that it has two cluster points x̄ and x̂. Then both cluster points can be used as
x∗ in (11) to define the Lyapunov function Φ. This yields two possible Lyapunov
functions denoted by Φ̄ and Φ̂, respectively. It was proved that Φ(xn) has a limit.
It may depend on the solution x∗ used to define Φ. The corresponding limits will
be denoted by l̄ and l̂, respectively. Consider subsequences {ni} and {mj} such
that xni and xmj converge to x̄ and x̂, respectively. One has

Φ̂(xni) = Φ̄(xni) + R(xni)

where
R(xni) = h(x̂) − h(x̄) − 〈h′(xni), η(x̂, x̄)〉

hereby using assumption (b). In the limit, Φ̄(xni) and Φ̂(xni) tend to l̄ and l̂, respec-
tively. Since h′ is continuous and the subsequence {xni} converges to x̄, R(xni)
converges to a limit l such that

l ≥ (µ/2)‖x̂− x̄‖2.

The latter inequality stems from the η-strong convexity of h on K . Therefore

l̂ ≥ l̄ + (µ/2)‖x̂− x̄‖2.
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By interchanging the roles of x̄ and x̂ and of the subsequences {nj} and {mj}, the
same calculations yield

l̄ ≥ l̂ + (µ/2)‖x̄− x̂‖2.

Then, the following inequalities hold simultaneously:

0 ≤ (µ/2)‖x̂− x̄‖2 ≤ l̂ − l̄,

0 ≤ (µ/2)‖x̂− x̄‖2 ≤ l̄ − l̂.

This implies that x̄ = x̂ which completes the proof.

Corollary 4.1. With the assumptions of Theorem 4.1, if T has the η-pseudo-
Dunn property with constant E on K , then the following statements hold:

(i) ‖xn+1 − xn‖ converges to zero;

(ii) {T (xn)} converges to T (x∗).

Proof. We proceed as in the proof of Theorem 4.1. By using the fact that T has
the η-pseudo-Dunn property with constant E and since εn > α, with calculations
analogous to those leading to (13), we get

�n+1
n = s1 + s2

≤ −(µ/2)‖xn+1 − xn‖2 + εn〈T (xn+1, η(x∗, xn+1)〉
≤ −(µ/2)‖xn+1 − xn‖2 − (α/E)‖T (xn+1)− T (x∗)‖2.

Hence �n+1
n is negative unless T (xn+1) = T (x∗) and xn+1 = xn in which case

(7) shows that xn is a solution of (1). The sequence {Φ(xn)} is strictly decreasing.
Since it is positive, it must converge. The difference between two consecutive terms
tends to zero. Therefore ‖T (xn+1)− T (x∗)‖ converges to zero.

Corollary 4.2. Suppose that, in addition to the assumptions of Theorem 4.1, ex-
cept for the Lipschitz continuity assumption on h ′, T is η-strongly pseudomonotone
with constant c on K. Then the sequence {xn} converges to the unique solution
x∗ of problem (1).

Proof. The technique of the proof remains the same as the one developed
for Theorem 4.1. By using similar calculations and the fact that T is η-strongly
pseudomonotone, we get

�n+1
n = s1 + s2

≤ −(µ/2)‖xn+1 − xn‖2 + εn〈T (xn+1), η(x∗, xn+1)〉
≤ −(µ/2)‖xn+1 − xn‖2 − cα‖xn+1 − x∗‖2.
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�n+1
n is negative unless xn+1 = xn = x∗. The sequence {T (xn)} is strictly

decreasing. Since it is positive, it must converge, and the difference between two
consecutive terms tends to zero. Therefore xn converges to x∗.

5. CONVERGENCE RESULTS IN THE INFINITE-DIMENSIONAL CASE

In this section we assume that H is an infinite-dimensional space.

Definition 5.1. T is called Hölder continuous on K if there exist constants
β > 0 and D ≥ 0 such that for all x1, x2 ∈ K,

‖T (x2) − T (x1)‖ ≤ D‖x2 − x1‖β .

Assumption 5.1.

(i) K is a bounded, closed and convex subset in H ;
(ii) T is Hölder continuous and η-weakly monotone with constant L on K;
(iii) h is η-strongly convex with constant µ on K and its derivative h′ is Lipschitz

continuous with constant B;
(iv) εn satisfies α < εn < µ/L for some α > 0.

Theorem 5.1. Suppose that problem (1) has a solution x∗. Assume that

(i) η : K × K → H is Lipschitz continuous with constant λ such that

(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ K,

(b) η(x, y) = η(x, z) + η(z, y), ∀x, y, z ∈ K,

(c) for each fixed y ∈ K, η(·, y) : K → H is affine,
(d) for each fixed x ∈ K, η(x, ·) : K → H is sequentially continuous from

the weak topology to the weak topology;

(ii) h′ is sequentially continuous from the weak topology to the strong topology;

(iii) for each fixed y ∈ K, 〈T (·), η(y, ·)〉 : K → R is weakly upper semicontinu-
ous.

Under Assumption 5.1, starting from any x0 ∈ K, Algorithm 3.1 generates a
well-defined sequence{xn}. Moreover if T has the η-pseudo-Dunn property with
constant E on K, then the following statements hold:

(i) ‖xn+1 − xn‖ converges to zero;
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(ii) T (xn) strongly converges to T (x∗);

(iii) {xn} weakly converges to a solution of problem (1).

Proof. According to Lemma 3.2, starting from any x0 ∈ K, Algorithm 3.1
generates a well-defined sequence {xn}. We proceed as in the proof of Theorem
4.1. By using the fact that T has the η-pseudo-Dunn property with constant E and
since εn > α, with calculations analogous to those leading to (13), we obtain

�n+1
n = s1 + s2

≤ −(µ/2)‖xn+1 − xn‖2 + εn〈T (xn+1), η(x∗, xn+1)〉
≤ −(µ/2)‖xn+1 − xn‖2 − (α/E)‖T (xn+1)− T (x∗)‖2.

Hence �n+1
n is negative unless T (xn+1) = T (x∗) and xn+1 = xn in which case

(7) shows that xn is a solution of (1). The sequence {Φ(xn)} is strictly decreasing.
Since it is positive, it must converge, and the difference between two consecutive
terms tends to zero. Therefore ‖xn+1−xn‖ converges to 0 and ‖T (xn+1)−T (x∗)‖
converges to zero by the Hölder continuity of T .

Let x̄ be a weak cluster point of the sequence {xn} , and let {xni} be a
subsequence weakly converging to x̄. Since η is Lipschitz continuous with constant
λ, h′ is Lipschitz continuous with constant B and εn > α, we have in view of (7)
that for each y ∈ K,

〈T (xn+1), η(y, xn+1)〉 ≥ (−1/εn)〈h′(xn+1) − h′(xn), η(y, xn+1)〉
≥ (−λB/α)‖xn+1 − xn‖‖y − xn+1‖.

Since ‖xni+1 − xni‖converges to 0, using assumption (iii) and taking the superior
limit for the subsequence {ni} in the last inequality, we conclude that for each
y ∈ K

(14)
〈T (x̄), η(y, x̄)〉 ≥ limsupni→∞〈T (xni+1), η(y, xni+1)〉

≥ limsupni→∞(−λB/α)‖xni+1−xni‖‖y−xni+1‖=0.

This implies that x̄ is a solution of problem (1).
Now we prove that the sequence {xn} has a unique weak cluster point. Assume

that it has two weak cluster points x̄ and x̂. Then both weak cluster points can be
used as x∗to define the Lyapunov function Φ. This yields two possible Lyapunov
functions, denoted by Φ̄ and Φ̂, respectively. It was proved that Φ(xn) has a limit.
It may depend on the solution x∗ used to define Φ. The corresponding limits will
be denoted by l̄ and l̂, respectively. Consider subsequences {ni} and {mj} such
that xni and xmj weakly converge to x̄ and x̂, respectively. One has that

Φ̂(xni) = Φ̄(xni) + R(xni)
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where
R(xni) = h(x̂) − h(x̄)− 〈h′(xni), η(x̂, x̄)〉.

Note that Φ̄(xni) and Φ̂(xni) tend to l̄ and l̂, respectively. Since the subsequence
{xni} weakly converges to x̄, by using assumption (ii) we infer that R(xni) con-
verges to a limit l such that

l ≥ (µ/2)‖x̂− x̄‖2.

The latter inequality stems from the η-strong convexity of h on K . Therefore,

l̂ ≥ l̄ + (µ/2)‖x̂− x̄‖2.

By interchanging the roles of x̄ and x̂ and of the subsequences {ni} and {mj}, the
same calculations yield

l̄ ≥ l̂ + (µ/2)‖x̂− x̄‖.
Then the following inequalities hold simultaneously:

0 ≤ (µ/2)‖x̂− x̄‖2 ≤ l̂ − l̄,

0 ≤ (µ/2)‖x̂− x̄‖2 ≤ l̄ − l̂.

This shows that x̄ = x̂. The proof is now complete.

The proof of the following result is the same as the one of Corollary 4.2 and
hence will be omitted.

Corollary 5.1. Suppose that problem (1) has a solution x ∗. Under the previous
assumptions, starting from any x 0 ∈ K, Algorithm 3.1 generates a well-defined
sequence {xn}. Moreover, if T is η-strongly pseudomonotone with constant c on
K, then the sequence {xn} strongly converges to the unique solution x ∗ of problem
(1).

6. CONCLUSION

In this paper, we studied the convergence of the proximal method for solving cer-
tain non-monotone variational-like inequalities. We showed that the sequence gen-
erated by the proximal algorithm is still well-defined under a η-weak monotonicity
assumption on the operator involved in the variational-like inequality problem and
proved the convergence in the finite-dimensional case under a η-pseudomonotonicity
assumption. In the infinite-dimensional case, the convergence can still be established
under a η-pseudo-Dunn assumption or a η-strong pseudomonotonicity assumption
on the operator.



A Proximal Method for Pseudomonotone Type Variational-Like Inequalities 511

ACKNOWLEDGEMENT

The authors thank the referee for useful comments. The research of the first
and second authors was partially supported by the National Science Council of
Taiwan. The research of the third author was partially supported by the Teaching
and Research Award Fund for Outstanding Young Teachers in Higher Education
Institutions of MOE, China and the Dawn Program Foundation in Shanghai.

REFERENCES

1. Q. H. Ansari and J. C. Yao, Iterative Schemes for Solving Mixed Variational-Like
Inequalities, J. Optim. Theory Appl., 108 (2001), 527-541.

2. Q. H. Ansari and J. C. Yao, Nonlinear Variational Inequalities for Pseudomonotone
Operators with Applications, Adv. Nonlinear Var. Inequal., 3 (2000), 61-69.

3. G. Cohen, Auxiliary Problem Principle Extended to Variational Inequalities, J. Optim.
Theory Appl., 49 (1988), 325-333.

4. J. P. Crouzeix, Pseudomonotone Variational Inequality Problems: Existence of Solu-
tions, Math. Prog., 78 (1997), 305-314.

5. N. H. Dien, Some Remarks on Variational-Like and Quasi-Variational-Like Inequal-
ities, Bull. Austral. Math. Soc., 46 (1992), 335-342.

6. X. P. Ding, Random Mixed Variational-Like Inequalities in Topological Vector Spaces,
J. Sichuan Normal Univ., 20 (1997), 1-13.

7. J. Eckstein, Nonlinear Proximal Point Algorithms Using Bregman Functions, Math.
Oper. Res., 18 (1993), 202-226.

8. J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford Splitting Method and the
Proximal Point Algorithm for Maximal Monotone Operators, Math. Prog., 55 (1992),
293-318.

9. N. El Farouq, Pseudomonotone Variational Inequalities:Convergence of Proximal
Methods, J. Optim. Theory Appl., 109 (2001), 311-326.

10. N. El Farouq, Pseudomonotone Variational Inequalities: Convergence of the Auxiliary
Problem Method, J. Optim. Theory Appl., 111 (2001), 305-326.

11. K. Fan, A Generalization of Tychonoff’s Fixed-Point Theorem, Math. Ann., 142
(1961), 305-310.

12. N. Hadjisavvas and S. Schaible, On Strong Pseudomonotonicity and (Semi) Strict
Quasimonotonicity, J. Optim. Theory Appl., 79 (1993), 139-155.

13. N. Hadjisavvas and S. Schaible, Quasimonotone Variational Inequalities in Banach
Spaces, J. Optim. Theory Appl., 90 (1996), 95-111.



512 Siegfried Schaible, Jen-Chih Yao and Lu-Chuan Zeng

14. N. Hadjisavvas and S. Schaible, Quasimonotonicity and Pseudomonotonicity in Vari-
ational Inequalities and Equilibrium Problems, in: Generalized Convexity, General-
ized Monotonicity: Recent Results, eds, J. P. Crouzeix, J. E. Martinez-Legaz and M.
Volle, Kluwer Academic Publishers, Dordrecht, 1998, 257-275.

15. J. S. Pang and P. T. Harker, Finite-Dimensional Variational Inequality and Nonlinear
Complementarity Problems: A Survey of Theory, Algorithms,and Applications, Math.
Prog., Series B, 48 (1990), 161-220.

16. S. Karamardian, Complementarity Problems over Cones with Monotone and Pseu-
domonotone Maps, J. Optim. Theory Appl., 18 (1976), 445-455.

17. S. Karamardian and S. Schaible, Seven Kinds of Monotone Maps, J. Optim. Theory
Appl., 66 (1990), 37-47.

18. S. Karamardian, S. Schaible and J. P. Crouzeix, Characterizations of Generalized
Monotone Maps, J. Optim. Theory Appl., 76 (1993), 399-413.

19. S. Komlosi, Generalized Monotonicity and Generalized Convexity, J. Optim. Theory
Appl., 84 (1995), 361-376.

20. O. L. Mangasarian, Pseudo-Convex Functions, J. SIAM Control Series A, 3 (1965),
281-290.

21. B. Martinet, Algorithms pour la Resolution de Problems d’Optimisation et de Min-
max, These d’Etat, Universite de Grenoble, 1972.

22. J. Parida, M. Sahoo and A. Kumar, A Variational-Like Inequality Problem, Bull.
Austral. Math. Soc., 39 (1989), 225-231.

23. R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J.
Control Optim., 14 (1976), 877-898.

24. S. Schaible, Generalized Monotonicity- A Survey, in: Generalized Convexity, Edited
by S. Komlosi, R. Papcsak, and S. Schaible, Springer Verlag, Berlin, 1994, pp.
229-249.

25. A. H. Siddiqi, A. H. Khaliq and Q. H. Ansari, On Variational-Like Inequalities, Ann.
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