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ASYMPTOTIC REGULARITY OF LINEAR POWER BOUNDED
OPERATORS

Hong-Kun Xu and Isao Yamada

Abstract. Let T be a linear power bounded operator on a Banach space X and
let Sλ = (1−λ)I+λT be the averaged map of T , where λ ∈ (0, 1). It is shown
that Sλ is asymptotically regular on X; that is, limn→∞ ‖Sn

λx−Sn+1
λ x‖ = 0

for every x ∈ X. Hence the sequence {Sn
λx} converges strongly provided it

has a weak cluster point.

1. INTRODUCTION

Let X be a Banach space, C a nonempty closed convex subset of X , and
T : C → C a nonexpansive mapping (i.e., ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C).
A point x ∈ C is a fixed point of T provided Tx = x. Construction of fixed points
of nonexpansive mappings is an important subject in the theory of nonexpansive
mappings and its applications in a number of applied areas, in particular, in signal
processing and image recovery (see, e.g., [4, 11, 12, 14, 16, 17]). However, the
sequence {T nx} of iterates of the mapping T at a point x ∈ C may not behave well,
in general. This means that it may not converge even in the weak topology. One
way to overcome this difficulty is to use the averaged mappings which are given by
Sλ := (1 − λ)I + λT , where I is the identity mapping on X and λ is a number
in (0, 1). By a result of Ishikawa [10], each averaged map Sλ is asymptotically
regular [2]: limn→∞ ‖Sn+1

λ x − Sn
λx‖ = 0 for all x ∈ C provided {Tnx} is

bounded. However, this does not mean that the iterates {T n
λ x} converge (either

strongly or weakly) to a fixed point of T , in general. Some additional conditions
are needed to impose, for example, uniform convexity and Fŕechet differentiability
of the norm of X (see Reich [13]). It would be simpler for linear nonexpansive
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mappings. Indeed, Dotson [5] proved the following result.

Theorem D. If X is a uniformly convex Banach space and if T is a linear
nonexpansive mapping on X , then for each x ∈ X , the iterates {S n

λx} of the
averaged map Sλ converges strongly to a fixed point of T .

Another important result for nonexpansive mappings is Baillon’s mean ergodic
theorem [1].

Theorem B. If X is a Hilbert space and if T : C → C is a nonexpansive
mapping with a fixed point, then for each x ∈ C, the means

Sn(x) =
1
n

n−1∑
i=0

T ix, n ≥ 1

converge weakly to a fixed point of T .

Theorem B has been extended to a uniformly convex Banach space with a
Fréchet differentiable norm (see Bruck [3]). But it is still unclear if Theorem B is
valid in a uniformly convex Banach space. On the other hand, Ky Fan asked (cf.
[9]) whether or not there exists the limit as n → ∞ of the sequence {‖Sn(x)−p‖}
in a Hilbert space, where p is a fixed point of T . This question seems unsolved.

It is the purpose of this paper to study some convergence results for linear power
bounded operators on a Banach space. More precisely, we will prove that if T is a
linear power bounded operator on a Banach space X , then each averaged mapping
Sλ is asymptotically regular on X ; hence the sequence {Sn

λx} converges strongly
to a fixed point of T provided it contains a weak cluster point, which is the case
if the space X is reflexive. We have therefore weakened the uniform convexity
assumption on the space X in Theorem D to reflexivity of the space X . (The
example to be given in Section 3 shows that reflexivity of X is unremovable; thus
our extension of Theorem D is sharp.)

We have also weakened the nonexpansiveness of T in Theorem D to power
boundedness of T . In proving the strong convergence of {Sn

λx} we shall employ
the abstract mean ergodic theorem of Eberlein [6, 7] which seems not widely known
(see [8]), but powerful.

We also answer Fan’s question for linear nonexpansive mappings in a Banach
space. The full question for nonlinear nonexpansive mappings remains open.

2. PRELIMINARIES

Let X be a Banach space and T a bounded linear operator on X . Recall that
T is power bounded if there is a constant M > 0 for which ‖T n‖ ≤ M for all
integers n ≥ 0; in particular, T is nonexpansive if ‖T‖ ≤ 1.
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Let G be a semigroup of linear operators on X . Let G∗ be the set of all operators
of the form

∑
ajTj, aj ≥ 0,

∑
aj = 1, Tj ∈ G and let O(x) be the orbit of G

and x, i.e., O(x) = {T ∗x : T ∗ ∈ G∗}. Recall that a family {Tα} of linear bounded
operators in X is an almost invariant integral system for G ([6, 7]) if the following
properties hold:

(a) Tαx ∈ O(x), x ∈ X ;
(b) ‖Tα‖ ≤ M ;
(c) limα(TTα − Tα)x = limα(TαT − Tα)x = 0, T ∈ G, x ∈ X.

The semigroup G is said to be ergodic if it possesses an almost invariant integral
system. The following abstract ergodic theorem is due to W. F. Eberlein [6, 7].

Theorem E. If G is ergodic, if x is a member of X and if {Tα} is an almost
invariant integral system for G, then the following statements on an element y ∈ X

are equivalent:

(i) y ∈ O(x), T y = y, T ∈ G;
(ii) y = limα Tαx;
(iii) y = limα Tαx weakly;
(iv) y is a weak cluster point of {Tαx}.

For the proof of Theorem 2 in the next section, we need the following result.

Lemma 1. Let {an}∞n=1 be a sequence of nonnegative real numbers satisfying
the property

(1) an+m ≤ an + bnam, n, m ≥ 1,

where {bn}∞n=1 is a sequence of positive numbers such that limn→∞ bn = 1. Then
the limn→∞ an/n exists.

Proof. For an arbitrary ε > 0, there is an integer n0 with the property

bn < 1 + ε for all n ≥ n0 and
an0

n0
< c + ε,

where
c = lim inf

n→∞
an

n
.

Repeatedly using (1) we get, for k ≥ 1,

(2) akn0 ≤
(

1 +
k−1∑
i=1

bin0

)
an0 < [1 + (k − 1)(1 + ε)]n0(c + ε).
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Now let n > n0 and write n = kn0 + r with k ≥ 1 and 0 ≤ r < n0. From (1)
and (2) it follows that

an

n
=

akn0+r

kn0 + r
≤ akn0 + bkn0ar

kn0 + r

≤ [1 + (k − 1)(1 + ε)]n0(c + ε)
kn0

+
bkn0ar

kn0 + r

≤
(

1
k

+
(

1 − 1
k

)
(1 + ε)

)
(c + ε) +

(1 + ε)ar

n
.

Letting n → ∞ gives
lim sup

n→∞
an

n
≤ (1 + ε)(c + ε).

This implies that
lim sup

n→∞
an

n
≤ c

and hence limn→∞ an/n exists.

2. CONVERGENCE RESULTS

For a given bounded linear operator T on a Banach space X , let G be the discrete
semigroup {Tn : n ≥ 0}. Suppose that T is power bounded; thus ‖T n‖ ≤ M for
some constant M > 0 and for all integers n ≥ 0. As before we put

Snx =
1
n

n−1∑
i=0

T ix, n ≥ 1.

Since T is linear we have

‖TSnx − Snx‖ = ‖SnTx − Snx‖ =
1
n
‖T nx − x‖ → 0 (n → ∞).

This implies that

lim
n→∞ ‖TmSnx − Snx‖ = lim

n→∞ ‖SnTmx − Snx‖ = 0

for all integers m ≥ 0. So {Sn} is an almost invariant integral system for G and
the following theorem (see [15, Chapter VII, section 3] for a more general case in
locally convex linear space) is a consequence of Eberlein’s abstract mean ergodic
theorem (Theorem E).

Theorem 1. Let T be a power bounded linear operator on a Banach space
X . If {Snx} has a weak cluster point, then it converges strongly to a fixed point
of T .
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We next turn to investigate the existence of the limn→∞ ‖Snx− p‖, where p is
a fixed point of T . We do not know the full answer to Fan’s question mentioned
in section one. The result below is only partial answer in the case of those linear
mappings which are almost nonexpansive, by which we mean linear operators T
such that limn→∞ ‖T n‖ = 1.

Theorem 1. Let T be a bounded linear operator on a Banach space X
which is almost nonexpansive. Then for each fixed point p of T , there exists the
limn→∞ ‖Snx − p‖.

Proof. Since T is linear, it suffices to prove the theorem for the case where
p = 0. Put

an = an(x) = ‖nSnx‖ =

∥∥∥∥∥
n−1∑
i=0

T ix

∥∥∥∥∥ .

Then for all integers n, m ≥ 0,

an+m =
∥∥∥∑n+m−1

i=0 T ix
∥∥∥

= ‖nSnx + mSmT nx‖ = ‖nSnx + T n(mSmx)‖

≤ an + bnam,

where bn = ‖T n‖ → 1 as n → ∞. By Lemma 1 we see that limn→∞ ‖Snx‖ exists.

Remark 1. If {Snx} has a weak cluster point, then it converges strongly
by Theorem 1. In this case, Theorem 2 is a consequence of Theorem 1. But
Theorem 2 indicates that even if {Snx} does not have a weak cluster point, the
limn→∞ ‖Snx− p‖ always exists. We do not know if Theorem 2 holds for a linear
power bounded operator T without assuming that {Snx} has a weak cluster point.

Next we present the main result of this paper; that is, the asymptotic regularity
of the averaged mappings. Recall that by an averaged map we mean a map S which
can be written as S = (1 − λ)I + λT , where λ is a number in (0, 1) and I and T

are the identity operator and a linear power bounded operator on the Banach space
X , respectively. We sometimes write Sλ for S to emphasize the dependence of S

upon λ. We also call Sλ the averaged map associated with T . Recall also that Sλ

is asymptotically regular on X if limn→∞ ‖Sn
λx − Sn+1

λ x‖ = 0 for every x ∈ X .
For convenience we include Stirling’s formula as a lemma.

Lemma 2. (Stirling’s Formula)
√

x(2x)!
(2xx!)2

≈ 1√
π

(as x → ∞).
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Theorem 3. Let Sλ be an averaged mapping associated with a linear power bounded
operator T . Then Sλ is asymptotically regular on X .

Proof. We first prove the case where λ = 1/2. In this case we write S = S1/2;
that is, S = 1

2 (I + T ). We have

Snx =
1
2
(I + T )nx

1
2n

n∑
j=0

(
n

j

)
T jx

TSnx = SnTx
1
2n

n∑
j=0

(
n

j

)
T j+1x

1
2n

n+1∑
j=1

(
n

j − 1

)
T jx.

We may assume that n = 2k is even, the case where n is odd being similar.
Rearranging the terms and using the fact that

(
n
j

)
=
(

n
n−j

)
, we obtain

Snx − SnTx =
1
2n



[(

n

0

)
x −

(
n

n

)
T n+1x

]
+

n∑
j=1

[(
n

j

)
−
(

n

j − 1

)]
T jx




=
1
2n


(x − T n+1x) +

k∑
j=1

[(
n

j

)
−
(

n

j − 1

)]
(T jx − T n−j+1x)


 .

Since
(
n
j

) − ( n
j−1

)
> 0 for 1 ≤ j ≤ k, we derive that from the last equation that

(with d = sup{‖T ix−T jx‖ : i, j ≥ 0} being the diameter of the sequence {T nx}),

‖Snx − SnTx‖ ≤ d

2n


1 +

k∑
j=1

[(
n

j

)
−
(

n

j − 1

)]


=
d

2n

(
n

k

)
=

d

2n

n!
(k!)2

≈ d√
πk

=
d√
πn/2

(by Stirling′s formula)

→ 0 (n → ∞).

Now consider the case: 0 < λ < 1/2. This can be reduced to the case of λ =
1/2. Indeed, for a given 0 < λ < 1/2, let µ = 2λ < 1 and let T̃ = (1− µ)I + µT .
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Then T̃ is linear and still power bounded. In fact,

‖T̃ n‖ =

∥∥∥∥∥
n∑

i=0

(
n

i

)
(1 − µ)n−iµiT i

∥∥∥∥∥
≤

n∑
i=0

(
n

i

)
(1 − µ)n−iµi‖T i‖

≤
n∑

i=0

(
n

i

)
(1 − µ)n−iµiM

= M,

where M > 0 is a constant such that ‖T n‖ ≤ M for all integers n ≥ 0. Now
rewrite Sλ as Sλ = 1

2(I + T̃ ) and apply the result just proved above to T̃ to obtain
the asymptotic regularity of Sλ for 0 < λ < 1/2.

Next consider the case: 1/2 < λ < 1. We first show a general result. That is,
if V is any linear power bounded operator on X which commutes T and which is
asymptotically regular, and if S = (V +T )/2, then S is also asymptotically regular.
This is, given x ∈ X , we need to prove that

lim
n→∞ ‖Snx − Sn+1x‖ = 0,

or sufficiently,

lim
n→∞ ‖Snx − TSnx‖ = 0 and lim

n→∞ ‖Snx − V Snx‖ = 0.

We first show that limn→∞ ‖Snx − TSnx‖ = 0. We have

Snx =
1
2n

n∑
j=0

(
n

j

)
V n−jT jx.

TSnx =
1
2n

n∑
j=0

(
n

j

)
V n−jT j+1x =

1
2n

n+1∑
j=1

(
n

j − 1

)
V n−j+1T jx.

Hence

Snx − TSnx =
1
2n

(V nx − T n+1x)

+
1
2n

n∑
j=1

[(
n

j

)
V n−j −

(
n

j − 1

)
V n−j+1

]
T jx
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=
1
2n

(V nx − T n+1x)

+
1
2n

n∑
j=1

[(
n

j

)
−
(

n

j − 1

)]
V n−jT jx

+
1
2n

n∑
j=1

(
n

j − 1

)
T j
(
V n−jx − V n−j+1x

)
= : An + Bn + Cn.

Put a = sup{‖V iT jx − V kT lx‖ : i, j, k, l ≥ 0}. Note that a is finite since V and
T are power bounded. It is a simple fact that

‖An‖ ≤ a

2n
→ 0 as n → ∞.

Without loss of generality we may assume that n = 2k is an even integer, the case
of an odd integer n being similar. Using again the fact that

(
n
j

)
=
(

n
n−j

)
, we have

n∑
j=1

[(
n

j

)
−
(

n

j−1

)]
V n−jT jx

=
k∑

j=1

[(
n

j

)
−
(

n

j−1

)]
V n−jT jx +

n∑
j=k+1

[(
n

j

)
−
(

n

j − 1

)]
V n−jT jx

=
k∑

j=1

[(
n

j

)
−
(

n

j−1

)]
V n−jT jx +

k∑
j=1

[(
n

k+j

)
−
(

n

k+j− 1

)]
V n−k−jT k+jx

=
k∑

j=1

[(
n

j

)
−
(

n

j−1

)]
V n−jT jx +

k∑
j=1

[(
n

k−j

)
−
(

n

k−j+1

)]
V n−k−jT k+jx

=
k∑

j=1

[(
n

j

)
−
(

n

j−1

)]
V n−jT jx +

k∑
j=1

[(
n

j−1

)
−
(

n

j

)]
V j−1T n−j+1x

=
k∑

j=1

[(
n

j

)
−
(

n

j−1

)] (
V n−jT jx − V j−1T n−j+1x

)
.

Hence

‖Bn‖ ≤ a

2n

k∑
j=1

[(
n

j

)
−
(

n

j − 1

)]

≤ a

2n

(
n

k

)

≈ a√
πk

=
a√
πn/2

(by Stirling′s formula)

→ 0 as n → ∞.
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To prove that ‖Cn‖ → 0 as n → ∞, we have (M is the constant such that
M ≥ ‖T n‖ for all n ≥ 0)

‖Cn‖ ≤ M

2n

n∑
j=1

(
n

j − 1

)∥∥V n−jx − V n−j+1x
∥∥

=
M

2n

n−1∑
j=0

(
n

n − j − 1

)∥∥V jx − V j+1x
∥∥

=
M

2n

n−1∑
j=0

(
n

j + 1

)∥∥V jx − V j+1x
∥∥ .

Now since limn→∞ ‖V nx − V n+1x‖ = 0, for any given ε > 0, there is an integer
k0 > 0 such that ‖V jx − V j+1x‖ < ε for all j ≥ k0. It follows that, for n > k0,

‖Cn‖ ≤ M

2n


ε

n−1∑
j=k0

(
n

j + 1

)
+ a

k0−1∑
j=0

(
n

j + 1

)


< Mε + aM

k0−1∑
j=0

1
2n

(
n

j + 1

)
.

Observing that

lim
n→∞

1
2n

(
n

j

)
= 0

for every fixed integer j ≥ 0, we conclude that limn→∞ ‖Cn‖ = 0.
Next we show that limn→∞ ‖Snx − V Snx‖ = 0. Noticing that

Snx − V Snx =
1
2n

n∑
j=0

(
n

j

)
T j
(
V n−jx − V n−j+1x

)
,

by repeating the argument above for the proof of Cn → 0, we can obtain that
limn→∞ ‖Snx − V Snx‖ = 0.

The proof can now be completed by the following observation: if V is a linear
power bounded operator which commutes T and which is asymptotically regular,
then similar to the previous case of V = I , we have for λ ∈ (0, 1/2), the averaged
operator Vλ = (1− λ)V + λT is also asymptotically regular.

As a matter of fact, this case can be reduced to the case of λ = 1/2. Putting
µ = 2λ < 1 and T̃ = (1−µ)V +µT , we can rewrite Vλ as Vλ = (V + T̃ )/2 which
is seen to be asymptotically regular by applying the above result to T := T̃ .

Finally since the the set of all the points of the form k/2n, where k = 1, 2, · · · , 2n−
1, n ≥ 1, is dense in (0, 1), we see that for every λ ∈ (0, 1), Sλ can be expressed
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in the form Sλ = (1 − σ)Sµ + σT , where 0 < σ < 1/2 and µ = k/2n < σ (but
close σ enough) for some 1 ≤ k ≤ 2n − 1 and n ≥ 1. Hence Sλ is asymptotically
regular.

Remark 2. Theorem 3 is not valid if T is not power bounded. For example, if
T = αI for some α > 1, then Sλ = (1−λ)I+λT = βI , where β = 1−λ+λα > 1.
Hence for any x 	= 0, ‖Sn

λx − Sn+1
λ x‖ = βn‖x‖ → ∞ as n → ∞.

Remark 3. We actually proved that ‖Sn
1/2x − Sn+1

1/2
x‖ = O(1/

√
n). We

conjecture that this is true for an arbitrary λ ∈ (0, 1); that is, ‖Sn
λx − Sn+1

λ x‖ =
O(1/

√
n).

Remark 4. The argument of Theorem 3 indeed shows that Theorem 3 actually
holds true in a locally convex linear space. That is, let X be a locally convex linear
topological space and let T be a linear continuous operator from X into X . Assume
that the family of operators {Tn : n ≥ 0} is equi-continuous in the sense that, for
any continuous semi-norm q on X , there exists a continuous semi-norm q′ on X

such that sup{q(T nx) : n ≥ 1} ≤ q′(x) for all x ∈ X . Then the averaged map
Sλ = (1 − λ)I + λT is asymptotically regular on X .

Theorem 4. Let T be a linear power bounded operator on a Banach space
X . Then for each 0 < λ < 1, the sequence {Sn

λx} of iterates of the averaged
mapping Sλ at x converges strongly to a fixed point of T provided {S n

λx} has a
weak cluster point.

Proof. By Theorem 3, we have

‖TSn
λx − Sn

λx‖ = ‖Sn
λTx − Sn

λx‖ → 0 (n → ∞).

Since T is linear and bounded, we further have that for each fixed integer m ≥ 0,

‖TmSn
λx − Sn

λx‖ = ‖Sn
λTmx − Sn

λx‖ → 0 (n → ∞).

Hence {Sn
λx} forms an almost invariant integral system for the semigroup G :=

{T n : n ≥ 0}. By Theorem E, we conclude that {Sn
λx} converges strongly to a

fixed point of T .

Corollary. Let T be a linear power bounded operator on a reflexive Banach
space X . Then for each 0 < λ < 1, the sequence {Sn

λx} of iterates of the averaged
mapping Sλ at x converges strongly to a fixed point of T .

The following example shows that without the assumption that {Sn
λx} have a

weak cluster point in Theorem 4, or that the space X be reflexive in the Corollary,
the conclusion in either Theorem 4 or the Corollary above may not be true.
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Example. Let X = �1 be the space of all absolutely summable sequences of
real numbers, equipped with the norm

‖x‖ =
∞∑

n=1

|an| if x =
∞∑

n=1

anen,

where {en}∞n=1 is the standard basis of �1; that is, for each n ≥ 1, en is the vector
whose n−th component is one and all else components are zero. Now define an
operator T : �1 → �1 by

Tx =
∞∑

n=1

anen+1, x =
∞∑

n=1

anen ∈ �1.

Namely, T is a shift operator on �1. It is not hard to see that T is an isometry.
Indeed, for every x =

∑∞
n=1 anen ∈ �1, we have ‖Tx‖ = ‖∑∞

n=1 anen+1‖ =∑∞
n=1 |an| = ‖x‖.
Now take x = e1 = (1, 0, · · · , 0, · · · ). Let S = (I +T )/2 be the averaged map

of T with λ = 1/2. Since it is easy to find that T jx = ej+1 for j ≥ 1, it follows
that

Snx =
1
2n

(I + T )nx

=
1
2n

n∑
j=0

(
n

j

)
T jx

=
1
2n

n∑
j=0

(
n

j

)
ej+1.

Consequently,

(2) ‖Snx‖ =
1
2n

n∑
j=0

(
n

j

)
= 1.

We use (Snx)k to denote the k−th component of Snx. Hence (Snx)k =
(

n
k−1

)
if

k < n and (Snx)k = 0 if k ≥ n. Suppose now that {Snx} converges strongly to
some y =

∑∞
n=1 bnen ∈ �1. Then for each fixed integer k ≥ 1, we have

bk = lim
n→∞(Snx)k = lim

n→∞
1
2n

(
n

k − 1

)
= 0.

This implies that y = 0, which contradicts (3) as y is the strong limit of {S nx}.
Therefore, {Snx} does not strongly converge.
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Since in �1, strong and weak convergences for sequences are equivalent, we see
that {Snx} does not have a weak cluster point. This also shows that in Theorem
4, the assumption that {Sn

λx} have a weak cluster point is not removable.

Remark 5. As pointed out in Remark 4, Theorem 3 holds true in a locally
convex linear space. It is however unclear if Theorem 4 holds true in a locally
convex linear space as we do not know if Eberlein’s abstract mean ergodic theorem
holds true in the setting of locally convex linear spaces.

Remark 6. Let z = z(λ) denote the limit of {Sn
λx} as obtained in Theorem

3. Then z is a fixed point of T . In another word, z solves the linear equation:
(I − T )z = 0. Since T is power bounded, the spectral radius of T , r(T ) =
limn→∞ ‖T n‖1/n = 1. Thus the maximum possible eigenvalue for T is one. If 1 is
not an eigenvalue of T , then the equation (I−T )z = 0 has only the trivial solution.
In this case we have that {Sn

λx} converges strongly to 0, for every λ ∈ (0, 1). If,
however, there is a λ0 ∈ (0, 1) for which, z0 = z(λ0) 	= 0, then 1 is the maximum
eigenvalue of T and z0 is an eigenvector of T corresponding to the maximum
eigenvalue 1 of T . We do not know else information for the set {z(λ) : 0 < λ < 1}.
It is interesting to know if this set can generate the eigenspace of T corresponding
to the (maximum) eigenvalue 1 of T .
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