TAIWANESE JOURNAL OF MATHEMATICS

Vol. 10, No. 2, pp. 409-415, February 2006

This paper is available online at http://www.math.nthu.edu.tw/tjm/

SOME ASYMPTOTES RELATED TO k-th-POWER FREE NUMBERS

Jong-Yi Chen

Abstract. In this note we find some relations between k-free numbers. We obtain some asymptotes of the error term in the summation of k-free integers $R_k(x)$. Further, we determine some constants which happen in the summation of k-free integers.

1. Introduction and Results

Let $g_k(n)$ be the index function of k-free number, i.e.

$$g_k(n) = \begin{cases} 1 & \text{if } n \text{ is k-free }, \\ 0 & \text{otherwise.} \end{cases}$$

By the property of Möbius function, it is not difficult to show that the number of k-free natural numbers not exceeding x is

$$Q_k(x) = \sum_{n \le x} g_k(n) = \sum_{n \le x} \sum_{d^k \mid n} \mu(d) = \frac{x}{\zeta(k)} + R_k(x),$$

where $R_k(x)$ is the error term and

$$R_k(x) = O(x^{\frac{1}{k}}).$$

Since the generating function $\frac{\zeta(s)}{\zeta(ks)}$ has poles on the line $\Re(s)=\frac{1}{2k}$, it follows that

$$R_k(x) = \Omega(x^{\frac{1}{2k}}).$$

(See [2, 3]). And it is thus conjectured

Received October 7, 2004; Revised March 25, 2005; Accepted May 11, 2005.

2000 Mathematics Subject Classification: Primary 11N25, 11N37.

Key words and phrases: Asymptote, k- Free numbers, Zeta function.

Partially supported by National Science Council of Taiwan (NSC 91-2115-M-026-003).

$$R_k(x) = O(x^{\frac{1}{2k} + \epsilon}),$$

where ϵ denote any small positive real number. The modern estimate belongs to Walfisz [4]. He showed that

$$R_k(x) = O(x^{\frac{1}{k}} \exp(-ck^{\frac{-8}{5}} (\log x)^{\frac{3}{5}} (\log \log x)^{\frac{-1}{5}})).$$

Clearly, any substantial sharpening of $R_k(x)$ results in a wider zero-free region for the Riemann Zeta function $\zeta(s)$.

In this note we study the average behaviour of the error terms $R_k(x)$ and provide a fundamental viewpoint to them . Some relations between k-free numbers are established (lemma 2.1, corollary 2.2). Applying these relations, we acquire some asymptotes of $R_k(x)$. The obtained results are stated as follows.

Theorem 1.1. Let k,h > 1 be integers, x be a large number. The following asymptotes hold.

(*i*)

(1.1)
$$\sum_{n \le x^{\frac{1}{k}}} g_h(n) R_k(\frac{x}{n^k}) = \frac{x^{\frac{1}{k}}}{(k-1)\zeta(k)\zeta(h)} + O(x^{\frac{1}{kh}})$$

(ii)

(1.2)
$$\sum_{n < x^{\frac{1}{k}}} R_k(\frac{x}{n^k}) = \frac{x^{\frac{1}{k}}}{(k-1)\zeta(k)} + O(1)$$

(iii)

(1.3)
$$\sum_{n \le x} \frac{g_k(n)}{n} = \frac{\log x}{\zeta(k)} + c_k + O(x^{\frac{1}{k} - 1} \log x),$$

where $c_k=-\frac{k\zeta'(k)}{\zeta^2(k)}+\frac{\gamma}{\zeta(k)}$ are constants which depend on k. Here γ denotes the Euler's constant.

(iv)

(1.4)
$$\sum_{n \le x} g_k(n) R_k(\frac{x}{n}) = \left(\frac{\gamma - 1}{\zeta^2(k)} - \frac{k\zeta'(k)}{\zeta^3(k)}\right) x + O(x^{\frac{1}{2} + \frac{1}{2k}} \log x).$$

The equations (1.1),(1.2) and (1.4) give us patterns of elimination of the summands $R_k(\frac{x}{n^k})$ and $R_k(\frac{x}{n})$. Equation (1.3) is necessary to deduce (1.4). It is obtained by elementary method. It is also a better result than what the partial summation method can give.

2. Lemmas

The following lemmas will be applied in the proof of the theorem.

Lemma 2.1. For any complex number s, we have

$$\sum_{n \le x^{\frac{1}{k}}} \frac{g_h(n)}{n^{ks}} \sum_{m \le \frac{x}{n^k}} \frac{g_k(m)}{m^s} = \sum_{N \le x} \frac{g_{kh}(N)}{N^s}.$$

Proof. Clearly, if p is a prime and a < kh is a natural number, then the kh-free number $N = p^a$ can be expressed uniquely as $N = n^k m g_h(n) g_k(m)$, where $n = p^b$ and $m = p^r$ are h- free and k- free integers respectively by the fact that a = kQ + R has unique integer solution (Q, R) = (b, r) under the restriction $0 \le r < k$.

Likewise, if $p_1, p_2, \cdots p_t$ are prime numbers and $\alpha_1, \alpha_2, \cdots \alpha_t$ are natural numbers less than kh, then by the fundamental theorem of arithmetic, the kh- free number $N = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ can be expressed uniquely as $N = n^k m g_h(n) g_k(m)$, where $n = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}$ and $m = p_1^{\gamma_1} p_2^{\gamma_2} \dots p_t^{\gamma_t}$ are h- free and k- free integers respectively by the fact that the equation system

$$\begin{cases}
\alpha_1 &= Q_1k + R_1 \\
\alpha_2 &= Q_2k + R_2 \\
\vdots &\vdots \\
\alpha_t &= Q_tk + R_t
\end{cases}$$

has unique integer solution $(Q_1, Q_2, \dots, R_1, R_2, \dots) = (\beta_1, \beta_2, \dots, \gamma_1, \gamma_2, \dots)$ under the restriction $0 \le \gamma_i < k$ for $1 \le i \le t$.

Therefore the summation items of the left-hand side and the right-hand side are exactly the same and the identity is thus valid.

Choosing h large enough such that $2^h > x^{\frac{1}{k}}$, we obtain:

Corollary 2.2. *Under the same hypothesis of Lemma 2.1, the following equality holds.*

$$\sum_{n \le x^{\frac{1}{k}}} \frac{1}{n^{ks}} \sum_{m \le \frac{x}{n^k}} \frac{g_k(m)}{m^s} = \sum_{n \le x} \frac{1}{n^s}$$

Lemma 2.3. For any complex number $s \neq 1$ such that the real part $\Re(s) = \sigma > \frac{1}{k}$, we have

$$\sum_{n \le x} \frac{g_k(n)}{n^s} = \frac{x^{1-s}}{(1-s)\zeta(k)} + \frac{\zeta(s)}{\zeta(ks)} + O(x^{\frac{1}{k}-\sigma}).$$

Proof. Let x < M. Denote $Q_k(x,M) = \sum_{x < n \le M} g_k(n)$ and $S_{x,M} = \sum_{x < n \le M} \frac{g_k(n)}{n^s}$. By the partial summation method, we have

$$\begin{split} S_{x,M} &= \frac{Q_k(x,M)}{M^s} - \int_x^M Q_k(x,t) dt^{-s} \\ &= \frac{M - x + O(M^{\frac{1}{k}})}{\zeta(k)M^s} + \int_x^M \frac{t - x + O(t^{\frac{1}{k}})}{\zeta(k)} st^{-s-1} dt \\ &= \frac{M^{1-s} - x^{1-s}}{\zeta(k)(1-s)} + O(M^{\frac{1}{k}-\sigma}) + O(x^{\frac{1}{k}-\sigma}). \end{split}$$

Note that $\sum_{n<\infty} \frac{g_k(n)}{n^s} = \frac{\zeta(s)}{\zeta(ks)}$ for $\sigma>1$. Then as $\sigma>1$ and M approaches infinity, we have

$$\sum_{n \le x} \frac{g_k(n)}{n^s} = \lim_{M \to \infty} \sum_{n \le M} \frac{g_k(n)}{n^s} - S_{x,M} = \frac{\zeta(s)}{\zeta(ks)} + \frac{x^{1-s}}{(1-s)\zeta(k)} + O(x^{\frac{1}{k}-\sigma}).$$

Thus we obtain this lemma for $\sigma>1$. Denote $f_x(s)=\sum_{n\leq x}\frac{g_k(n)}{n^s}-\frac{x^{1-s}}{(1-s)\zeta(k)}.$ Clearly, $f_x(s)$ converges to $\frac{\zeta(s)}{\zeta(ks)}$ for $\sigma>1$. Besides, we have

$$|f_M(s) - f_x(s)| = |S_{x,M} - \frac{M^{1-s} - x^{1-s}}{(1-s)\zeta(k)}| = O(M^{\frac{1}{k}-\sigma}) + O(x^{\frac{1}{k}-\sigma}).$$

By Cauchy condition for uniform convergence, $f_x(s)$ converges for $\sigma > \frac{1}{k}$. Furthermore, by the principle of analytic continuation of functions on the complex plane, $f_x(s)$ converges to the same function $\frac{\zeta(s)}{\zeta(ks)}$ not only for $\sigma > 1$ but also for $\sigma > \frac{1}{k}$.

Now this lemma can be obtained for $\sigma > \frac{1}{k}$. We have

$$\sum_{n \le x} \frac{g_k(n)}{n^s} = \lim_{M \to \infty} f_M(s) + \frac{M^{1-s}}{(1-s)\zeta(k)} - S_{x,M}$$
$$= \frac{\zeta(s)}{\zeta(ks)} + \frac{x^{1-s}}{(1-s)\zeta(k)} + O(x^{\frac{1}{k}-\sigma}).$$

Lemma 2.4. If γ is Euler's constant, then the following statement holds.

$$\sum_{n \le x} \frac{1}{n} = \log x + \gamma + O(\frac{1}{x}).$$

Proof. See [1] theorem 3.2.

3. Proof of Theorem

Taking s = 0 for lemma 2.1 and expanding it by lemma 2.3, we have

$$\sum_{n \le x^{\frac{1}{k}}} g_h(n) \sum_{m \le \frac{x}{n^k}} g_k(m) = \sum_{n \le x^{\frac{1}{k}}} g_h(n) \left(\frac{x}{\zeta(k)n^k} + R_k(\frac{x}{n^k}) \right)$$

$$= \frac{x}{\zeta(k)} \left(\frac{(x^{\frac{1}{k}})^{1-k}}{\zeta(h)(1-k)} + \frac{\zeta(k)}{\zeta(kh)} + O((x^{\frac{1}{k}})^{\frac{1}{h}-k}) \right) + \sum_{n \le x^{\frac{1}{k}}} g_h(n) R_k(\frac{x}{n^k}).$$

On the other hand,

$$\sum_{n \le x} g_{kh}(n) = \frac{x}{\zeta(kh)} + O(x^{\frac{1}{kh}}).$$

Equating the previous both equalities, we obtain (1.1).

Choosing h large enough such that $2^h > x^{\frac{1}{k}}$, we have on the left-hand side of (1.1)

$$\sum_{n \le x^{\frac{1}{k}}} g_h(n) R_k(\frac{x}{n^k}) = \sum_{n \le x^{\frac{1}{k}}} R_k(\frac{x}{n^k})$$

and on the right-hand side

$$\frac{x^{\frac{1}{k}}}{(k-1)\zeta(k)\zeta(h)} + O(x^{\frac{1}{kh}}) = \frac{x^{\frac{1}{k}}}{(k-1)\zeta(k)} (1 + \frac{\mu(2)}{2^h} + \frac{\mu(3)}{3^h} + \cdots) + O((2^h)^{\frac{1}{h}})$$

$$= \frac{x^{\frac{1}{k}}}{(k-1)\zeta(k)} + O(\frac{2^h}{2^h} + \frac{2^h}{3^h} + \frac{2^h}{5^h} + \cdots) + O(1)$$

$$= \frac{x^{\frac{1}{k}}}{(k-1)\zeta(k)} + O(1).$$

Thus we obtain (1.2).

Furthermore, by lemma 2.4 and the fact

$$\sum_{t=1}^{\infty} \frac{\mu(d) \log d}{d^s} = \frac{\zeta'(s)}{\zeta^2(s)} \qquad \text{ for } \Re(s) > 1,$$

(1.3) can be proved straightforwardly. We have

$$\sum_{n \le x} \frac{g_k(n)}{n} = \sum_{n \le x} \frac{1}{n} \sum_{d^k \mid n} \mu(d)$$

$$= \sum_{d \le x^{\frac{1}{k}}} \frac{\mu(d)}{d^k} \sum_{m \le \frac{x}{d^k}} \frac{1}{m}$$

$$= \sum_{d \le x^{\frac{1}{k}}} \frac{\mu(d)}{d^k} \left(\log \frac{x}{d^k} + \gamma + O\left(\frac{d^k}{x}\right) \right)$$

$$= \frac{\log x}{\zeta(k)} - \frac{k\zeta'(k)}{\zeta^2(k)} + \frac{\gamma}{\zeta(k)} + O\left(x^{\frac{1}{k}-1}\log x\right).$$

Now we are ready to prove (1.4). Applying (1.3) to the following iterated sum, we get

$$S = \sum_{n \le x} \sum_{m \le \frac{x}{n}} g_k(n) g_k(m)$$

$$= \sum_{n \le x} g_k(n) \left(\frac{x}{\zeta(k)n} + R_k \left(\frac{x}{n} \right) \right)$$

$$= \frac{x}{\zeta(k)} \left(\frac{\log x}{\zeta(k)} + c_k + O(x^{\frac{1}{k} - 1} \log x) \right) + \sum_{n \le x} g_k(n) R_k \left(\frac{x}{n} \right).$$

Note that the iterated sum S may be counted in another way by its symmetry of summation with respect to the line y=f(x)=x. Let $u=x^{\frac{1}{2}}$, we have

$$S = 2 \sum_{n \le u} \sum_{m \le \frac{x}{n}} g_k(n) g_k(m) - \left(\sum_{n \le u} g_k(n) \right)^2$$

$$= 2 \sum_{n \le u} g_k(n) \left(\frac{x}{\zeta(k)n} + O\left(\left(\frac{x}{n} \right)^{\frac{1}{k}} \right) \right) - \left(\frac{u}{\zeta(k)} + O(u^{\frac{1}{k}}) \right)^2$$

$$= \frac{2x}{\zeta(k)} \left(\frac{\log u}{\zeta(k)} + c_k + O(u^{\frac{1}{k} - 1} \log x) \right) + O\left(x^{\frac{1}{k}} u^{1 - \frac{1}{k}} \right) - \frac{u^2}{\zeta^2(k)} + O\left(u^{1 + \frac{1}{k}} \right).$$

Equating both of previous equations, we acquire (1.4).

REFERENCES

- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- 2. C. J. A. Evelyn and E. H. Linfoot, On a problem in the additive theory of numbers IV. *Ann. Math.* **32** (1931), 261-270.

- 3. H. M. Stark, On the asymptotic density of the k-free integers. *Proc. A. M. S.*, **17** (1966), 1211-1214.
- 4. Walfisz, A. Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.

Jong-Yi Chen Department of Mathematical Education, National Hualien University of Education, Hualien 970, Taiwan. E-mail: jongyi@mail.nhlue.edu.tw