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WEIGHTED QUASI-VARIATIONAL INEQUALITIES AND
CONSTRAINED NASH EQUILIBRIUM PROBLEMS

Q. H. Ansari, W. K. Chan and X. Q. Yang

Abstract. The weighted quasi-variational inequalities over product of sets
(for short, WQVIP) and system of weighted quasi-variational inequalities (for
short, SWQVI) are introduced. It is shown that these two problems are equiv-
alent. A relationship between SWQVI and system of vector quasi-variational
inequalities is given. The concept of normalized solutions of WQVIP and
SWQVI is introduced. A relationship between solution (respectively, normal-
ized solution) of SWQVI and solution of weighted constrained Nash equi-
librium problem (respectively, normalized weight Nash equilibrium) is also
given. The scalar quasi-equilibrium problem (for short, QEP), which includes
WQVIP as a particular case, is also considered. By introducing the concept of
densely pseudomonotonicity of bifunctions, the existence of a solution of QEP
is established. As a consequence, existence results for solutions of WQVIP
and constrained Nash equilibrium problems for vector valued functions are
derived.

1. INTRODUCTION

The theory of vector variational inequalities which is started in 1980 by Gian-
nessi [17], is one of the most important tools to study vector optimization problems;
See, for example [10, 13, 18, 21, 27] and references therein. Goh and Yang [19]
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applied weighted sum method (called scalarization method) to vector variational
inequalities, presented new relationships between vector variational inequalities and
vector optimization problems, and established sufficient and necessary conditions
for reducing a vector variational inequality to a scalar variational inequality. The
basic idea behind the weighted sum method is to scalarize a set of objectives into a
single objective by multiplying each objective with a user-supplied weight.

Nash equilibrium problem [23] and constrained Nash equilibrium problem [24]
also known as Debreu type equilibrium problem [14] are fundamental problems in
the study of game theory and mathematical economics. In the last three decades,
these problems have been extensively studied in the literature; See, for example [11,
29] and references therein. In the recent past, much attention has been paid on
the game theory with vector payoffs. Specially, the study of existence of Pareto
equilibria in game theory with vector payoffs has attracted much attention, for
example, see [3, 12, 25, 26, 28, 30] and references therein. In the last decade, the
weighted sum method is used to study the existence of solutions of Nash equilibrium
problems and constrained Nash equilibrium problems; see, for example [3, 15, 26,
28] and references therein.

In the recent past, Nash equilibrium and constrained Nash equilibrium problems
for vector valued functions have been studied by using systems of vector variational
inequalities (for short, SVVI) and systems of vector quasi-variational inequalities
(for short, SVQVI), respectively; See, for example [1, 4, 7, 8] and references therein.
Ansari et al. [6] applied the weighted sum method to SVVI and introduced weighted
variational inequalities over product of sets and system of weighted variational in-
equalities (for short, SWVI). It is noticed that the weighted variational inequality
problem over product of sets and the problem of system of weighted variational
inequalities are equivalent. They gave a relationship between SWVI and SVVI.
They established several existence results for solutions of above mentioned prob-
lems under several kinds of weighted monotonicities. They also introduced the
weighted generalized variational inequalities over product of sets, that is, weighted
variational inequalities for multivalued maps and system of weighted generalized
variational inequalities, and proved some existence results for their solutions. One
of the main goals of this paper is to achieve the existence results for solutions of
SVQVI and constrained Nash equilibrium problems for vector valued functions by
appying weighted sum method.

The present paper is organized as follows. In the next section, we first re-
call the formulations of SVQVI, and then we define weighted quasi-variational
inequality problem over product of sets (for short, WQVIP) and system of weighted
quasi-variational inequalities (for short, SWQVI). We also introduce the concept of
normalized solutions of WQVIP and SWQVI. We present a relationship between the
solutions (respectively, normalized solutions) of above mentioned problems. Some
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notations, definitions and results are also recalled. Section 3 deals with constrained
Nash equilibrium problems for vector valued functions. We prove that normalized
solution of SWQVI provides a sufficient condition for a weak Pareto equilibrium
/ Pareto equilibrium of constrained Nash equilibrium problem for vector valued
functions. The last section is devoted to the existence theory of above mentioned
problems. We first introduce the concept of densely pseudomonotonicity of a bifunc-
tion and then establish an existence result for a solution of (scalar) quasi-equilibrium
problem which includes WQVIP as a special case. As a consequence, we derive ex-
istence results for solutions of WQVIP and constrained Nash equilibrium problems
for vector valued functions.

2. PRELIMINARIES AND FORMULATIONS

For each given m ∈ N, we denote by R
m
+ the non-negative orthant of R

m, that
is,

R
m
+ = {u = (u1, . . . , um) ∈ R

m : uj ≥ 0, for j = 1, . . . , m},
so that Rm

+ has a nonempty interior with the topology induced in terms of conver-
gence of vectors with respect to the Euclidean metric. That is,

int R
m
+ = {u = (u1, . . . , um) ∈ R

m : uj > 0, for j = 1, . . . , m}.

We denote by T
m
+ and int T

m
+ the simplex of R

m
+ and its relative interior, respectively,

that is,

T
m
+ = {u = (u1, . . . , um) ∈ R

m
+ :

m∑
j=1

uj = 1}, and

int T
m
+ = {u = (u1, . . . , um) ∈ int R

m
+ :

m∑
j=1

uj = 1}.

Let I be a finite index set, that is, I = {1, . . . , n} and for each i ∈ I , let �i be
a positive integer. For each i ∈ I , let Xi be a real topological vector space with its
dual X∗

i , Ki a nonempty convex subset of Xi, X =
∏

i∈I Xi and K =
∏

i∈I Ki.
For each x ∈ X , xi ∈ Xi denotes the ith coordinate and we write x = (xi)i∈I . For
each i ∈ I and each j = 1, . . . , �i, let fij : K → X∗

i be a map. For each i ∈ I , let
Ai : K → 2Ki be a multivalued map with nonempty values. For each i ∈ I and
for all x, y ∈ K, we denote

Fi(x) :=
(
fi1(x), . . . , fi�i

(x)
)

and
〈Fi(x), xi − yi〉 :=

(〈fi1(x), xi − yi〉, . . . , 〈fi�i
(x), xi − yi〉

)
,
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where 〈·, ·〉 denotes the continuous pairing between X ∗
i and Xi.

We consider the following systems of vector quasi-variational inequalities:

(SVQVI)

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Ai(x̄) and

〈Fi(x̄), x̄i − yi〉 /∈ R
�i
+ \ {0}, for all yi ∈ Ai(x̄),

where x̄i is the ith component of x̄ and 0 is the zero vector of R
�i .

(SVQVI)w

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Ai(x̄) and

〈Fi(x̄), x̄i − yi〉 /∈ int R
�i
+, for all yi ∈ Ai(x̄).

It is clear that every solution of (SVQVI) is a solution of (SVQVI)w, but the converse
is not true in general. (SVQVI)w is introduced and studied by Ansari et al. [1] in a
more general setting. They proved the existence of a solution of (SVQVI)w (for the
infinite set I) by using maximal element theorems for a family of multivalued maps.
They used (SVQVI)w as a tool to prove the existence of a solution of system of
vector quasi-optimization problems which includes the constrained Nash equilibrium
problem for vector valued functions.

Of course, if for each i ∈ I and for all x ∈ K, Ai(x) = Ki, (SVQVI) and
(SVQVI)w are called systems of vector variational inequalities studied by Ansari
et al. [7]. They used these systems to prove the existence of a solution of Nash
equilibrium problem for vector valued functions.

If for each i ∈ I , �i = 1, then (SVQVI) and (SVQVI)w reduce to the problem
of system of quasi-variational inequalities (for short, SQVI) considered and studied
in [2, 29], see also references therein.

One of the main motivations of this paper is to study the existence of solutions of
(SVQVI) and (SVQVI)w so that by using the technique of Ansari et al. [1] one can
derive the existence results for a solution of constrained Nash equilibrium problem
for vector valued functions. For this purpose, we introduce the following weighted
quasi-variational inequality problem over product of sets (for short, WQVIP): find
x̄ ∈ K w.r.t. the weight vector W = (W1, . . . , Wn) ∈ ∏

i∈I

(
R

�i
+ \ {0}) such that

x̄ ∈ A(x̄) =
∏

i∈I Ai(x̄) and

∑
i∈I

Wi · 〈Fi(x̄), x̄i − yi〉 ≤ 0, for all yi ∈ Ai(x̄), i ∈ I,

where · denotes the inner product on R
�i . The solution set of (WQVIP) is denoted

by Kw .

We also introduce the following problem of system of weighted quasi-variational
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inequalities:

(SWQVI)




Find x̄ ∈ K w.r.t. the weight vector W = (W1, . . . , Wn)

such that for each i ∈ I, Wi ∈ R
�i
+ \ {0}, x̄i ∈ Ai(x̄) and

Wi · 〈Fi(x̄), x̄i − yi〉 ≤ 0, for all yi ∈ Ai(x̄).

We denote by Kw
s the solution set of (SWQVI).

If for each i ∈ I , Wi ∈ T
�i
+, then the solution of (WQVIP) and (SWQVI) are

called normalized, where T
�i
+ is the simplex of T

�i . The normalized solutions sets
of (WQVIP) and (SWQVI) are denoted by Kw

n and Kw
sn, respectively.

If for each i ∈ I and for all x ∈ K, Ai(x) = Ki then (WQVIP) and (SWQVI)
reduce to weighted variational inequality problem over product of sets (for short,
WVIP) and system of weighted variational inequalities (for short, SWVI), respec-
tively. These problems are introduced and studied by Ansari et al. [6]. They have
pointed out that (WVIP) and (SWVI) are equivalent. The concept of a normalized
solution of (SWVI) is introduced and its relationship with the solution of (SVVI)
is given. They defined several kinds of weighted monotonicities and established
several existence results for solutions of (WVIP), (SWVI), (SVVI)w and (SVVI).

The following lemma shows that the solution sets of (WQVIP) and (SWQVI)
are equal.

Lemma 2.1. For a given weight vector W = (W1, . . . , Wn) ∈ ∏
i∈I

(
R

�i
+ \

{0}) (respectively, W = (W1, . . . , Wn) ∈ ∏
i∈I T

�i
+), Kw = Kw

s (respectively,
Kw

n = Kw
sn).

Proof. Obviously, Kw
s ⊆ Kw.

The converse part can be easily proved by using the arguments as in the proof
of Lemma 1 in [9].

Next we establish the following lemma which shows that (SVQVI)w or (SVQVI)
can be solved by using (SWQVI).

Lemma 2.2. Each normalized solution x̄ ∈ K with weight vector W =
(W1, . . . , Wn) ∈ ∏n

i=1 T
�i
+ (respectively, W = (W1, . . . , Wn) ∈ ∏n

i=1(int T
�i
+)) of

(SWQVI) is a solution of (SVQVI)w (respectively, (SVQVI)).

Proof. It is similar to the proof of Lemma 2.2 in [6] and therefore we omit it.

In view of Lemmas 2.1 and 2.2, we have the following result.
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Lemma 2.3. Each normalized solution x̄ ∈ K with weight vector W =
(W1, . . . , Wn) ∈ ∏n

i=1 T
�i
+ (respectively, W = (W1, . . . , Wn) ∈ ∏n

i=1(int T
�i
+)) of

(WQVIP) is a solution of (SVQVI)w (respectively, (SVQVI)).

We close this section by recalling known definition and a result.

Definition 2.1. Let U be a nonempty subset of a topological vector space E .
A multivalued map T : U → 2U is said to be a KKM map provided co(M) ⊆
T (M) =

⋃
x∈M T (x) for each finite subset M of U , where co(M) denotes the

convex hull of M .

The following Fan-KKM theorem [16] will be used in the sequel.

Theorem 2.1. [16] Let U be a nonempty subset of a Hausdorff topological
vector space E . Assume that T : U → 2U \ {∅} is a KKM map satisfying the
following conditions:

(i) For each x ∈ U , T (x) is closed;
(ii) For at least one x ∈ U , T (x) is compact.

Then
⋂

x∈U T (x) 	= ∅.

3. CONSTRAINED NASH EQUILIBRIUM PROBLEMS

For each i ∈ I , let Φi = (φi1, φi2, . . .φi�i
) : K → R�i be a vector valued

function and let K i =
∏

j∈I, j �=i Kj and we write K = K i ×Ki. For x ∈ K , xi

denotes the projection of x onto Ki and hence we write x = (xi, xi). For each
i ∈ I , let Ai be the same as defined in the previous section.

The constrained Nash equilibrium problems for vector valued functions are
defined as follows:

(CNEP)

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Ai(x̄) and

Φi(x̄i, x̄i)− Φi(x̄i, yi) /∈ R
�i
+ \ {0}, for all yi ∈ Ai(x̄).

(CNEP)w

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Ai(x̄) and

Φi(x̄i, x̄i) − Φi(x̄i, yi) /∈ int R
�i
+, for all yi ∈ Ai(x̄).

A solution x̄ ∈ K of (CNEP) (respectively, (CNEP)w) is called a Pareto equilibrium
(respectively, a weak Pareto equilibrium).

It is clear that each Pareto equilibrium is certainly a weak Pareto equilibrium,
but converse may not be true.
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Now we define the following weighted constrained Nash equilibrium problem:

(WCNEP)




Find x̄ ∈ K w.r.t. the weight vector W = (W1, . . . , Wn)

such that for each i ∈ I, Wi ∈ R
�i
+ \ {0}, x̄i ∈ Ai(x̄) and

Wi · Φi(x̄i, x̄i) ≤Wi · Φi(x̄i, yi), for all yi ∈ Ai(x̄),

where · denotes the inner product on R�i . In particular, when Wi ∈ T
�i
+ for each

i ∈ I , the solution x̄ ∈ K of (WCNEP) is called a normalized weight Nash
equilibrium w.r.t. the weight vector W .

The following lemma of Ding [15] tells us the relationships between solutions
of (WCNEP) and (CNEP), and solutions of (WCNEP) and (CNEP)w under certain
circumstances.

Lemma 3.1. [16] Each normalized weight Nash equilibrium x̄ ∈ K w.r.t.
the weight vector W = (W1, . . . , Wn) ∈ T

�1
+ × . . . × T

�n
+ (respectively, W =

(W1, . . . , Wn) ∈ int T
�1
+ ×. . .×int T

�n
+ ) of (WCNEP) is a weak Pareto equilibrium,

that is, a solution of (CNEP)w (respectively, a Pareto equilibrium, that is, a solution
of (CNEP)).

To show that every solution of (SWQVI) is a solution of (WCNEP), we recall
the following definitions.

Definition 3.1. [31] For each i ∈ I , let Xi and Z be normed spaces. The
function ϕ : X =

∏
i∈I Xi → Z is said to be partial Gâteaux differentiable at

x = (x1, . . . , xj−1, xj, xj+1, . . . , xn) ∈ X w.r.t. the jth variable xj if

〈Dxjϕ(x), hj〉 = lim
t→0

ϕ(x1, . . . , xj−1, xj + thj, xj+1, . . . , xn) − ϕ(x)
t

exists,

for all hj ∈ Xj. Dxjϕ(x) ∈ L(Xj, Z) is called partial Gâteaux derivative of ϕ
at x ∈ X w.r.t. the jth variable xj , where L(Xj, Z) denotes the space of all
continuous linear maps from Xi to Z.

ϕ is called partial Gâteaux differentiable on X if it is partial G âteaux differen-
tiable at each point of X w.r.t. each variable.

If the partial Gâteaux derivatives Dxjϕ(x) exist for each j = 1, . . . , n and for
all x ∈ K ⊆ X , then the mapping

Dxjϕ : K ⊆ X → L(Xj, Z) defined by x 
→ Dxjϕ(x)

for each j = 1, . . . , n, is called the partial Gâteaux derivative of ϕ on K (see, pp.
135 in [31]).
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Definition 3.2. Let M a nonempty convex subset of a normed space E . A
Gâteaux differentiable function ϕ : M → R is said to be convex if and only if for
all x, y ∈M ,

ϕ(y) − ϕ(x)− 〈Dxϕ(x), y− x〉 ≥ 0,

where Dxϕ(x) denotes the Gâteaux derivative of ϕ at x.

Proposition 3.1. For each i ∈ I , let Xi be a normed space, Ki a nonempty,
open and convex subset of X i and Ai : K → 2Ki a multivalued map with nonempty
convex values. For each i ∈ I and each j = 1, . . . , �i, let φij : K → R be partial
Gâteaux differentiable on K and convex in each argument. Then x̄ ∈ K is a
solution of (SWQVI) w.r.t. the weight vector W = (W1, . . . , Wn) ∈ ∏

i∈I

(
R

�i
+ \

{0}) (respectively, normalized solution of (SWQVI) w.r.t. the weight vector W ∈∏
i∈I T

�i
+) with fij(x) = Dxiφij (x) for each i ∈ I , j = 1, . . . , �i and for all

x ∈ K if and only if it is a solution of (WCNEP) w.r.t. the same weight vector
W (respectively, normalized weight Nash equilibrium w.r.t. the same weight vector
W ∈ ∏

i∈I T
�i
+).

Proof. For the sake of simplicity, for each i ∈ I and for all x, y ∈ K, we
denote

DxiΦi(x) :=
(
Dxiφi1(x), . . . , Dxiφi�i

(x)
)

and

〈DxiΦi(x), xi − yi〉 :=
(〈Dxiφi1(x), xi − yi〉, . . . , 〈Dxiφi�i

(x), xi − yi〉
)
.

Suppose that x̄ ∈ K is a solution of (SWQVI) w.r.t. the weight vector W =
(W1, . . . , Wn) ∈ ∏

i∈I

(
R

�i
+ \ {0}) with Fi(x̄) = Dx̄iΦi(x̄). Then for each i ∈ I ,

x̄i ∈ Ai(x̄) and

Wi · 〈Dx̄iΦi(x̄), x̄i − yi〉 ≤ 0, for all yi ∈ Ai(x̄).

Since for each i ∈ I and each j = 1, . . .�i, φij is convex in each argument, we
have

Φi(x̄i, yi) − Φi(x̄i, x̄i) + 〈Dx̄iΦi(x̄), x̄i − yi〉 ∈ R
�i
+.

This implies that

Wi ·Φi(x̄i, yi)−Wi · Φi(x̄i, x̄i) +Wi · 〈Dx̄iΦi(x̄), x̄i − yi〉 ≥ 0,

that is, for each i ∈ I , x̄i ∈ Ai(x̄) and

0 ≥Wi · 〈Dx̄iΦi(x̄), x̄i − yi〉 ≥Wi · Φi(x̄i, x̄i) −Wi · Φi(x̄i, yi).

Hence x̄ ∈ K is a solution of (WCNEP).
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Conversely, let x̄ ∈ K be a solution of (WCNEP) w.r.t. the weight vector
W = (W1, . . . , Wn) ∈ ∏

i∈I

(
R

�i
+ \ {0}). Then for each i ∈ I , x̄i ∈ Ai(x̄) and

Wi · Φi(x̄i, yi) −Wi ·Φi(x̄i, x̄i) ≥ 0, for all yi ∈ Ai(x̄).

Since x̄i, yi ∈ Ai(x̄) and Ai(x̄) is convex, we have x̄i + t(yi − x̄i) ∈ Ai(x̄) for all
t ∈ [0, 1]. Therefore, we have

Wi ·Φi(x̄i, x̄i + t(yi − x̄i))−Wi · Φi(x̄i, x̄i) ≥ 0

or
Wi ·

[
Φi(x̄i, x̄i + t(yi − x̄i))− Φi(x̄i, x̄i)

] ≥ 0.

This implies that

Wi ·
[

lim
t→0

Φi(x̄i, x̄i + t(yi − x̄i)) − Φi(x̄i, x̄i)
t

]
≥ 0

and thus

Wi · 〈Dx̄iΦi(x̄), yi− x̄i〉 ≥ 0 or Wi · 〈Dx̄iΦi(x̄), x̄i−yi〉 ≤ 0, for all yi ∈ Ai(x̄),

which means that x̄ ∈ K is a solution of (SWQVI).

Remark 3.1.

(a) The convexity assumption on Ai(x) is not needed for the first part of above
proposition.

(b) Under the assumption of Proposition 3.1, it is easy to show that x̄ ∈ K is a
normalized solution of (SWQVI) w.r.t. the weight vector W ∈∏

i∈I

(
int T

�i
+

)
with Fi(x) = DxiΦi(x) if and only if it is a normalized weight Nash equi-
librium w.r.t. weight vector W ∈ ∏

i∈I

(
int T

�i
+

)
.

From Lemma 3.1, Proposition 3.1 and Remark 3.1 (b) we have the following
result.

Proposition 3.2. For each i ∈ I , let Xi be a normed space, Ki a nonempty,
open and convex subset of X i and Ai : K → 2Ki a multivalued map with nonempty
convex values. For each i ∈ I and each j = 1, . . . , �i, let φij : K → R be partial
Gâteaux differentiable on K and convex in each argument. Then every normalized
solution x̄ ∈ K of (SWQVI) w.r.t. the weight vector W ∈ ∏

i∈I T
�i
+ (respectively,

W ∈ ∏
i∈I(int T

�i
+)) with Fi(x) = DxiΦi(x) is a weak Pareto equilibrium, that

is, a solution of (CNEP)w w.r.t. the same weight vector W (respectively, a Pareto
equilibrium, that is, a solution of (CNEP) w.r.t. the same weight vector W ).
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4. EXISTENCE RESULTS

In view of Lemma 2.3 and Proposition 3.2, the existence of a solution of
(WQVIP) provides the existence of solution of (SWQVI) as well as the solution
of constrained Nash equilibrium problems. So, this section deals with the existence
of solution of (WQVIP) under densely pseudomonotonicity assumption.

Let U be a nonempty convex subset of a real Hausdorff topological vector
space E . Let B : U → 2U be a multivalued map with nonempty values and
ψ : U × U → R a bifunction. We consider the following more general problem,
known as quasi-equilibrium problem which contains (WQVIP) as a special case.

(QEP)

{
Find x̄ ∈ U such that x̄ ∈ B(x̄) and

ψ(x̄, y) ≥ 0, for all y ∈ B(x̄).

Definition 4.1. [22] A subset U 0 of U is said to be segment-dense in U if
for all x ∈ U , there can be found x0 ∈ U0 such that x is a cluster point of the set
[x, x0]∩U0, where [x, x0] denotes the line segment joining x and x0 including end
points.

Now we extend the notion of densely pseudomonotonicity introduced by Luc
[22] to bifunctions.

Definition 4.2. A bifunction ψ : U × U → R is said to be

(i) pseudomonotone on U if for all x, y ∈ U , we have

ψ(x, y) ≥ 0 implies ψ(y, x) ≤ 0;

(ii) densely pseudomonotone on U if there exists a segment-dense set U 0 in U
such that ψ is pseudomonotone on U0.

Definition 4.3. A function g : U → R is said to be hemicontinuous if for all
x, y ∈ U , the map t 
→ g(y+ t(x− y)) is continuous, that is, g is continuous along
the line segment. Upper and lower hemicontinuity are defined analogously.

Lemma 4.1. Let U be a convex subset of E and U 0 a segment-dense set in U .
Let B : U → 2U be a multivalued map with nonempty values. If ψ : U × U → R

is lower hemicontinuous in the first argument, then the following problems are
equivalent:

(DQEP)

{
Find x̄ ∈ U such that x̄ ∈ B(x̄) and

ψ(y, x̄) ≤ 0, for all y ∈ B(x̄)
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and

(DQEP)0
{

Find x̄ ∈ U such that x̄ ∈ B(x̄) and

ψ(y, x̄) ≤ 0, for all y ∈ B0(x̄),

where B0 : U → 2U0 is a multivalued map with nonempty values such thatB 0(x) =
B(x) ∩ U0 for all x ∈ U .

The solution sets of (DQEP) and (DQEP)0 are denoted by Ud and U 0
d , respec-

tively.

Proof. Obviously, Ud ⊆ U0
d .

To prove the reverse implication, let x̄ ∈ U be a solution of (DQEP)0. Then

(4.1) x̄ ∈ B(x̄) and ψ(y, x̄) ≤ 0, for all y ∈ B0(x̄).

Since for each x ∈ U , B0(x) = B(x) ∩ U0 ⊆ B(x) ∩ U and U 0 is segment-dense
set in U , we have B(x) ∩ U0 is segment-dense in B(x) ∩ U , that is, B0(x) is
segment-dense in B(x) for all x ∈ U . Then for each z ∈ B(x̄), we can find
z0 ∈ B0(x̄) and a net {zα}α∈Λ in [z, z0] ∩B0(x̄) converging to z. From (4.1), we
get

ψ(zα, x̄) ≤ 0, for all α ∈ Λ.

Since ψ(., .) is lower hemicontinuous in the first argument and zα converges to z,
we have

ψ(z, x̄) ≤ 0, for all z ∈ B(x̄).

Hence U0
d ⊆ Ud.

Now we will show that (DQEP) is equivalent to (QEP) under certain assump-
tions.

Lemma 4.2. Let U be a convex subset of E and U 0 a segment-dense set
in U . Let B : U → 2U be a multivalued map with nonempty convex values. If
ψ : U ×U → R is densely pseudomonotone, hemicontinuous in the first argument,
and semistrictly quasiconvex in the second argument such that ψ(x, x) = 0 for all
x ∈ U . Then (DQEP) is equivalent to (QEP).

Proof. Let x̄ ∈ U be a solution of (QEP). Then by densely pseudomonotonicity
of ψ, x̄ ∈ U is a solution of (DQEP)0. Lemma 4.1 implies that x̄ ∈ U is a solution
of (DQEP).

For the converse, let x̄ ∈ U be a solution of (DQEP). Then

x̄ ∈ B(x̄) and ψ(y, x̄) ≤ 0, for all y ∈ B(x̄).
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Since for all x ∈ U , B(x) is convex, we have zt = x̄ + t(y − x̄) ∈ B(x̄) for
all t ∈ [0, 1]. Then, in particular, we have ψ(zt, x̄) ≤ 0. Since ψ is semistrictly
quasiconvex in the second argument, we obtain

ψ(zt, zt) ≤ max{ψ(zt, y), ψ(zt, x̄)}.

If ψ(zt, y) < ψ(zt, x̄) then we obtain ψ(zt, x̄) = 0 and therefore ψ(zt, zt) < 0 in
view of semistrictly quasiconvexity. However, this contradicts to our assumption
that ψ(zt, zt) = 0. Hence ψ(zt, y) ≥ 0 and by hemicontinuity of ψ in the first
argument, we obtain ψ(x̄, y) ≥ 0 for all y ∈ B(x̄). Hence x̄ ∈ U is a solution of
(QEP).

Now we are ready to prove the existence of a solution of (QEP).

Theorem 4.1. Let U be a convex subset of E and U 0 a segment-dense set
in U . Let B : U → 2U be a multivalued map with nonempty convex values such
that B−1(y0) is open in U for all y 0 ∈ U0. Let the set F = {x ∈ U : x ∈ B(x)}
be nonempty and closed . Let ψ : U × U → R be densely pseudomonotone,
hemicontinuous in the first argument, and explicitly quasiconvex (i.e., semistrictly
quasiconvex and quasiconvex) and lower semicontinuous in the second argument
such that ψ(x, x) = 0 for all x ∈ U . Assume there exist a nonempty compact
subset V ⊆ U and ỹ ∈ U such that for all x ∈ U \ V , ỹ ∈ B(x) and ψ(x, ỹ) < 0.
Then (QEP) has a solution.

Proof. For all x ∈ U , we define two multivalued maps P1, P2 : U → 2U by

P1(x) = {y ∈ U : ψ(x, y) < 0} and P2(x) = {y ∈ U : ψ(y, x)> 0}.

For all x, y ∈ U and for each i = 1, 2, we also defineQi : U → 2U and Ti : U → 2U

by

Qi(x) =

{
B(x) ∩ Pi(x), if x ∈ F

B(x), if x ∈ U \ F
and

Ti(y) = U \Q−1
i (y).

For each i = 1, 2 and for all y ∈ U , we have (see, for Example [20])

Q−1
i (y) =

[
(U \ F ) ∪ P−1

i (y)
] ∩B−1(y)

and therefore
Ti(y) =

[
F ∩ (U \ P−1

i (y))
]∪ [

U \B−1(y)
]
.

Rest of the proof is divided into the following five steps.
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(a) We show that T1 is a KKM map on U .

Assume to the contrary that T1 is not a KKM map on U . Then there exist a
finite set {y1, . . . , yn} in U and t1, . . . , tn ≥ 0 with

∑n
i=1 ti = 1 such that

ŷ =
∑n

i=1 tiyi /∈ T1(yi) for all i = 1, . . . , n, that is,

ŷ ∈ Q−1
1 (yi) ⇔ yi ∈ Q1(ŷ) for all i = 1, . . . , n.

If ŷ ∈ F , then Q1(ŷ) = B(ŷ) ∩ P1(ŷ) and therefore

yi ∈ P1(ŷ) and yi ∈ B(ŷ) for all i = 1, . . . , n.

Hence
ψ(ŷ, yi) < 0 and yi ∈ B(ŷ) for all i = 1, . . . , n.

Since ψ is semistrictly quasiconvex in the second argument, it is also quasi-
convex in the second argument. Thus from the previous inequality we deduce
that

0 = ψ(ŷ, ŷ) = ψ
(
ŷ,

n∑
i=1

tiyi

)
< 0,

a contradiction.

If ŷ ∈ U \F , then ŷ /∈ B(ŷ). By the definition of T1, we have Q1(ŷ) = B(ŷ)
and therefore yi ∈ Q1(ŷ) = B(ŷ) for all i = 1, . . . , n. Since B(ŷ) is convex,
we obtain ŷ ∈ B(ŷ), again a contradiction. Hence T1 is a KKM map.

(b) We show that T1(ỹ) = U \Q−1
1 (ỹ) ⊆ V , where ỹ and V are the same as in

the hypothesis.

Indeed if x ∈ T1(ỹ) \ V , then x ∈ [
F ∩ (U \ P−1

1 (ỹ))
]∪ [

U \B−1(ỹ)
]
, that

is, either x ∈ F ∩ (U \ P−1
1 (ỹ)) or x ∈ U \B−1(ỹ).

If x ∈ F ∩ (U \P−1
1 (ỹ)) then x ∈ F and x ∈ U \P−1

1 (ỹ), that is, x ∈ B(x)
and ψ(x, ỹ) ≥ 0, a contradiction of our assumption that ψ(x, ỹ) < 0.

If x ∈ U \ B−1(ỹ), then x /∈ B−1(ỹ) if and only if ỹ /∈ B(x), again a
contradiction of our assumption that ỹ ∈ B(x). Hence T1(ỹ) ⊆ V .

(c) We claim that
⋂
y∈U

T1(y) 	= ∅.

Since V is compact, T1(ỹ) is also compact. Moreover, co{y1, . . . , yn} ⊆⋃n
i=1 T1(yi) ⊆ ⋃n

i=1 T1(yi) for each finite subset {y1, . . . , yn} of U . Then
by Theorem 2.1, we get

⋂
y∈U T1(y) 	= ∅.
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(d) Next we show that
⋂

y∈U0

T1(y) ⊆
⋂

y∈U0

T2(y). Let z ∈ ⋂
y∈U0 T1(y), then

z ∈ T1(y) for all y ∈ U0. For an arbitrary element y0 ∈ U0, we have to
show that z ∈ T2(y0).

Since z ∈ T1(y0), there exists a net {zα}α∈Λ ⊆ T1(y0) such that {zα}
converges to z. Since {zα}α∈Λ ⊆ T1(y0), we have

{zα}α∈Λ ⊆ U \Q−1
1 (y0) =

[
F ∩ (U \ P−1

1 (y0))
]∪ [

U \B−1(y0)
]
.

Then either {zα} ⊆ F ∩ (U \ P−1
1 (y0)) or {zα} ⊆ U \B−1(y0).

If {zα} ⊆ F ∩ (U \ P−1
1 (y0)), then {zα} ⊆ F and {zα} ⊆ U \ P−1

1 (y0). It
follows that {zα} ⊆ F and ψ(zα, y

0) ≥ 0. Since F is closed and zα → z,
we have z ∈ F , that is, z ∈ B(z). By densely pseudomonotonicity of ψ, we
obtain

z ∈ B(z) and ψ(y0, zα) ≤ 0.

By lower semicontinuity of ψ in the second argument, we get ψ(y0, z) ≤ 0.
This implies that z ∈ B(z) and y 0 /∈ P2(z), that is, z /∈ (U \F )∪P−1

2 (y0) and
hence z /∈ Q−1

2 (y0). Therefore, z ∈ B(z) and z ∈ U \Q−1
2 (y0) = T2(y0).

Let {zα} ⊆ U \ B−1(y0). Since B−1(y0) is open in U for all y0 ∈ U0,
U \ B−1(y0) is closed in U . Since zα → z, we have z ∈ U \ B−1(y0).
Hence z /∈ B−1(y0) ⇔ y0 /∈ B(z) which implies that

y0 /∈ Q2(z) ⇔ z /∈ Q−1
2 (y0) ⇔ z ∈ U \Q−1

2 (y0) ⇔ z ∈ T2(y0).

(e) From the above step and Lemma 4.1, we have⋂
y∈U

T1(y) ⊆
⋂

y∈U0

T1(y) ⊆
⋂

y∈U0

T2(y) =
⋂
y∈U

T2(y).

From (c), we get
⋂

y∈U T2(y) 	= ∅. Hence there exists x̄ ∈ U such that

x̄ ∈
⋂
y∈U

[
U \Q−1

2 (y)
]
= U \

⋃
y∈U

Q−1
2 (y).

This implies that Q2(x̄) = ∅. Now two possibilities are there.

If x̄ ∈ U \ F , then Q2(x̄) = B(x̄) 	= ∅, a contradiction. Otherwise, x̄ ∈ F
then ∅ = Q2(x̄) = B(x̄)∩P2(x̄). Therefore, x̄ ∈ B(x̄) such that ψ(y, x̄) ≤ 0
for all y ∈ B(x̄). From Lemma 4.2, x̄ ∈ U is a solution of (QEP).
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Remark 4.1.

(a) If B is a closed map then the set F = {x ∈ U : x ∈ B(x)} is closed.
(b) In most of the papers appeared in the literature on quasi-equilibrium problems

and their generalizations (see, for example [1-3, 9, 20, 29] and references
therein), B−1(y) is open in U for all y ∈ U is assumed. But in Theorem 4.1,
we assumed that B−1(y) is open in U only for all y ∈ U0.

Now we derive the existence results for a solution of (WQVIP).

Definition 4.4. Let W = (W1, . . . , Wn) ∈ ∏
i∈I

(
R

�i
+ \ {0}) be a weight

vector. A family {fij}�i
i∈I, j=1 of functions fij : K → X∗

i is said to be
(i) weighted monotone w.r.t. the weight vector W if for all x, y ∈ K , we have∑

i∈I

Wi · 〈Fi(x) − Fi(y), xi − yi〉 ≥ 0;

(ii) weighted pseudomonotone w.r.t. the weight vector W if for all x, y ∈ K, we
have ∑

i∈I

Wi · 〈Fi(x), yi − xi〉 ≥ 0 ⇒
∑
i∈I

Wi · 〈Fi(y), yi − xi〉 ≥ 0;

(iii) weighted densely pseudomonotone on K if there exists a segment-dense subset
K0 ⊆ K such that the family {fij}�i

i∈I, j=1 is weighted pseudomonotone on
K0.

(iv) weighted hemicontinuous w.r.t. the weight vector W if for all x, y ∈ K and
t ∈ [0, 1], the mapping t 
→ ∑

i∈I Wi ·〈Fi(y+t(x−y)), yi−xi〉 is continuous.

Theorem 4.2. Let W = (W1, . . . , Wn) ∈ ∏
i∈I

(
R

�i
+ \ {0}) be a given weight

vector. For each i ∈ I , let Ki be a nonempty convex subset of a Housdorff
topological vector space X i, K0

i a segment-dense set in K and Ai : K → 2Ki a
multivalued map with nonempty convex values such that A−1

i (y0
i ) is open for all

y0
i ∈ K0

i . Let A(x) =
∏

i∈I Ai(x) for all x ∈ K such that the set F = {x ∈
K : x ∈ A(x)} is nonempty and closed. Let the family {f ij}�i

i∈I, j=1 of functions
fij : K → X∗

i be weighted hemicontinuous and weighted densely pseudomonotone
w.r.t. the same weight vector W on K . Assume there exist a nonempty compact
subset D ⊆ K and ỹ ∈ K such that for all x ∈ K \D, ỹ ∈ A(x) and

∑
i∈I Wi ·

〈Fi(x), xi − ỹi〉 > 0. Then (WQVIP) has a solution.

Proof. For each x, y ∈ K, define ψ : K ×K → R by

ψ(x, y) =
∑
i∈I

Wi · 〈Fi(x), yi − xi〉
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and B : K → 2K by B(x) = A(x). Then the hemicontinuity, densely pseudomono-
tonicity of ψ and the coercivity condition of Theorem 4.1 follow directly from the
assumptions. Since for each i ∈ I and for all x ∈ K, Ai(x) is nonempty convex,
we have B(x) = A(x) =

∏
i∈I Ai(x) is nonempty convex. Also, since for all

y0
i ∈ K0

i , A−1(y0) =
⋂

i∈I A
−1
i (y0

i ) and A−1
i (y0

i ) is open in K for each i ∈ I and
for all y0

i ∈ K0
i , we obtain A−1(y0) is open in K. This implies that B−1(y0) is

open in K for all y0 ∈ K0. Hence all the conditions of Theorem 4.1 are satisfied
and thus the conclusion follows from Theorem 4.1.

Remark 4.2.

(a) Theorem 4.2 is an extension and generalization of Theorem 3.1 in [5] for
(WQVIP) under densely pseudomonotonicity assumption.

(b) Theorem 4.2 along with Lemma 2.3 provides the existence of solutions of
(SVQVI) and (SVQVI)w under densely pseudomonotonicity assumption.

(c) Under the hypotheses of Theorem 4.2 with the weight vector W ∈ ∏
i∈I T

�i
+,

there exists a normalized solution of (WQVIP) and hence normalized solution
of (SWQVI).

If we consider the scalar case and I is a singleton set, then we derive the fol-
lowing result for the existence of a solution of quasi-variational inequality problem.

Corollary 4.1. Let K be a nonempty convex subset of a Housdorff topological
vector space X , K0 a segment-dense set in K and A : K → 2K a multivalued map
with nonempty convex values such that A−1(y0) is open in K for all y 0 ∈ K0. Let
the set F = {x ∈ K : x ∈ A(x)} be nonempty and closed. Let f : K → X ∗ be
hemicontinuous and densely pseudomonotone on K. Assume there exist a nonempty
compact subset D ⊆ K and ỹ ∈ K such that for all x ∈ K \D, ỹ ∈ A(x) and
〈f(x), x− ỹ〉 > 0. Then there exists a solution of the quasi-variational inequality
problem, that is, x̄ ∈ K such that x̄ ∈ A(x̄) and

〈f(x̄), x̄− y〉 ≤ 0, for all y ∈ A(x̄).

Remark 4.3.

(a) Best our knowledge, there is no result on the existence of a solution of quasi-
variational inequalities under densely pseudomonotonicity assumption. So
Corollary 4.1 is a new result in the literature.

(b) Corollary 4.1 extends and generalizes Theorem 4.3 in [22] for quasi-variational
inequalities without compactness assumption on K.
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Lemma 4.3. For each i ∈ I , let Xi be a normed space, Ki a nonempty, open
and convex subset of Xi. For each i ∈ I and each j = 1, . . . , �i, let φij : K → R

be partial Gâteaux differentiable on K and convex in each argument. Then the
family {Dxiφij}�i

i∈I, j=1 of partial Gâteaux derivative functions Dxiφij : K → X∗
i

is weighted monotone w.r.t. the weight vector W ∈ ∏
i∈I

(
R

�i
+ \ {0}).

Proof. Since for each i ∈ I and each j = 1, . . . , �i, φij is convex in each
argument, we have

(4.2) Φi(y) − Φi(x)− 〈DxiΦi(x), xi − yi〉 ∈ R
�i
+ , for all x, y ∈ K.

By interchanging x and y, we obtain

(4.3) Φi(x)− Φi(y)− 〈DyiΦi(y), yi − xi〉 ∈ R
�i
+.

Adding (4.2) and (4.3), we get for each i ∈ I and each j = 1, . . . , �i,

〈DxiΦi(x) −DyiΦi(y), xi − yi〉 ∈ R
�i
+ + R

�i
+ = R

�i
+.

This implies that∑
i∈I

Wi · 〈DxiΦi(x) −DyiΦi(y), xi − yi〉 ≥ 0, for all x, y ∈ K.

Hence the family {Dxiφij}�i
i∈I, j=1 of partial Gâteaux derivative functions Dxiφij :

K → X∗
i is weighted monotone w.r.t. the weight vector W ∈ ∏

i∈I

(
R

�i
+ \ {0}).

Finally, we prove the existence of solutions of (CNEP)w and (CNEP).

Theorem 4.3. For each i ∈ I , let Xi be a normed space, Ki a nonempty,
open and convex subset of X i and K0

i a segment-dense set in K . For each i ∈ I ,
let Ai : K → 2Ki be a multivalued map with nonempty convex values such that
A−1

i (y0
i ) is open in K for all y 0

i ∈ K0
i . Let A(x) =

∏
i∈I Ai(x) for all x ∈ K

such that the set F = {x ∈ K : x ∈ A(x)} is nonempty and closed. For each
i ∈ I and each j = 1, . . . , �i, let φij : K → R be partial Gâteaux differentiable
on K and convex in each argument such that the partial G âteaux derivative map
Dxiφij : K → X∗

i is weighted hemicontinuous w.r.t. the same weight vector
W ∈ ∏

i∈I T
�i
+ (respectively, W ∈ ∏

i∈I(int T
�i
+)) on K . Assume there exist a

nonempty compact subset D ⊆ K and ỹ ∈ K such that for all x ∈ K \ D,
ỹ ∈ A(x) and

∑
i∈I Wi · 〈DxiΦi(x), xi − ỹi〉 > 0, where DxiΦi(x) is the same as

defined in Section 3. Then there exists a weak Pareto equilibrium x̄ ∈ K , that is,
a solution of (CNEP) w w.r.t. the same weight vector W (respectively, a Pareto
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equilibrium x̄ ∈ K, that is, a solution of (CNEP) w.r.t. the same weight vector
W ).

Proof. It follows from Theorem 4.2, Lemma 4.3 and Proposition 3.2.

Remark 4.4. In Theorem 4.3, we have not used any kind of continuity as-
sumption on φij for each ∈ I
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