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ON APPROXIMATE ISOMORPHISMS BETWEEN
BANACH ∗-ALGEBRAS OR C∗-ALGEBRAS

Chun-Yen Chou and Jez-Hung Tzeng

Abstract. In this paper, we study some problems about approximate isomor-
phisms between Banach ∗-algebras or C∗-algebras.

1. INTRODUCTION

The problem of the stability of functional equations has been first studied by
Ulam in 1940 (see [7]). He posed the following problem: “Give conditions in order
for a linear mapping near an approximately linear mapping to exist”.

In 1941, Hyers [3] showed that:
If δ > 0 and f : E1 → E2 is a mapping between Banach spaces such that

||f(x + y) − f(x) − f(y)|| ≤ δ, ∀ x, y ∈ E1

then there exists a unique T : E1 → E2 such that T (x + y) = T (x) + T (y) and

||f(x)−T (x)|| ≤ δ for all x, y ∈ E1. In fact, T (x) = lim
n→∞

f(2nx)
2n

. Furthermore,
If for any x ∈ E1, f(tx) is continuous in scalar variable t, then T is a linear
mapping.

In 1978, a generalized solution was given by Rassias [5]:
Let f : E1 → E2 be a mapping between two Banach spaces E1 and E2 such

that for any x ∈ E1, f(tx) is continuous in scalar variable t. If there exists
θ ≥ 0 and p ∈ [0, 1) such that ||f(x + y) − f(x) − f(y)|| ≤ θ(||x||p + ||y||p)
for every x, y ∈ E1, then there exists a unique mapping T : E 1 → E2 such that

||f(x)− T (x)|| ≤ 2θ

2 − 2p
||x||p, ∀ x ∈ E1. Indeed, T (x) = lim

n→∞
f(2nx)

2n
.
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The proof of Rassias [5] is also valid for p < 0.

In 1991, Gajda [1] gave a solution for p > 1:
Let f : E1 → E2 be a mapping between two Banach spaces E1 and E2 such

that for any x ∈ E1, f(tx) is continuous in scalar variable t. If there exists
θ ≥ 0 and p > 1 such that ||f(x + y) − f(x) − f(y)|| ≤ θ(||x||p + ||y||p) for
every x, y ∈ E1, then there exists a unique mapping T : E 1 → E2 such that

||f(x)− T (x)|| ≤ 2θ

2p − 2
||x||p, ∀ x ∈ E1. Indeed, T (x) = lim

n→∞ 2nf(2−nx).

For the case p = 1, Rassias and Semrl [6] gave an example of a continuous
real-valued function f : R → R satisfying |f(x + y) − f(x) − f(y)| ≤ |x| + |y|,
∀ x, y ∈ R such that lim

x→0

f(x)
x

= ∞. Hence the set { |f(x)− T (x)|
|x| | x �= 0}

is unbounded for any linear mapping T : R → R. In other words, an analogue of
Rassias’s result [5] can not be obtained for p = 1.

In 1992, Gavruta [2] genelized the result of Rassias as follows:
Let (G, +) be an abelian group and (X, || · ||) be a Banach space. ϕ : G×G →

[0,∞) is called an admissible control function if ϕ̃(x, y) :=
1
2

∞∑

k=0

2−kϕ(2kx, 2ky) <

∞ for all x, y ∈ G. If f : G → X is a mapping such that ||f(x + y) − f(x) −
f(y)|| ≤ ϕ(x, y) for all x, y ∈ G, then there exists a unique mapping T : G → X
such that T (x+y) = T (x)+T (y) and ||f(x)−T (x)|| ≤ ϕ̃(x, x) for all x, y ∈ G.

Indeed, T (x) = lim
n→∞

f(2nx)
2n

.

In 2003, Park [4] establishes the stability of algebra ∗-homomorphisms on a
Banach ∗-algebra and the stability of automorphisms on a unital C∗-algebra. His
proof actually gave the following two theorems.

Theorem 1.1. [(4)] Let A and B be two Banach ∗-algebras. Let f : A → B be
a mapping such that there exists an admissible control function ϕ : B×B → [0,∞)
such that

(i) ||f(µx + µy) − µf(x) − µf(y)|| ≤ ϕ(x, y) for all scalar |µ| = 1 and all
x, y ∈ A.

(ii) ||f(x∗)− f(x)∗|| ≤ ϕ(x, x) for all x ∈ A .

(iii) ||f(zw)− f(z)f(w)|| ≤ ϕ(z, w) for all self-adjoint z, w ∈ A.

Then there exists a unique algebra ∗-homomorphism T : A → B such that ||f(x)−
T (x)|| ≤ ϕ(x, x) for all x ∈ A.
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Theorem 1.2. [(4)] Let A and B be two unital C ∗-algebra and ϕ : A× A →
[0,∞) be an admissible control function. If f : A → B be a bijective mapping
with f(xy) = f(x)f(y), and satisfying condition

(i) of Theorem 1.1 and
(ii′) ||f(u∗) − f(u)∗|| ≤ ϕ(u, u) for all unitary elements u of A.

Assume that lim
n→∞

f(2n1A)
2n

is invertible where 1A is the identity of A. Then f is
actually an automorphism.

In this paper, we explore further variations of the above results.

2. MAIN RESULTS

We use the following notations through out this paper.
• Let A and B denote Banach ∗-algebras or C∗-algebras.
• Let T denote the unit circle.
• Let 1A denote the identity of the corresponding algebra if it exists.
• Let Asa denote the set of self-adjoint elements in A.
• Let U(A) denote the group of unitary elements in A.

We will first apply similar techniques as in [4] to get the following lemma.
Then we will use the lemma and other things to have our results.

Lemma 2.1. Let f : A → B be a mapping between two C∗-algebras A and
B. If there exists an admissible control function ϕ : A × A → [0,∞) such that

(i) ||f(µx + µy) − µf(x) − µf(y)|| ≤ ϕ(x, y), ∀ µ ∈ T, x, y ∈ A

(ii) ||f(x∗) − f(x)∗|| ≤ ϕ(x, x), ∀ x ∈ A

(iii) ||f(αβuv)− f(αu)f(βv)|| ≤ ϕ(αu, βv), ∀ α, β ∈ R, u, v ∈ U(A)

then T (x) = lim
n→∞

f(2nx)
2n

defines the unique ∗-homomorphism such that

||f(x)− T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A.

Proof. Let µ = 1 in (i), by Gavruta’s result, there exists a unique additive
function T : A → B such that ||f(x) − T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A. Indeed,

T (x) = lim
n→∞

f(2nx)
2n

.

Substitute the x, y in (i) by 2n−1x, then

||f(2nµx) − 2µf(2n−1x)|| ≤ ϕ(2n−1x, 2n−1x), ∀ µ ∈ T, x ∈ A.
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Therefore,

||µf(2nx)− 2µf(2n−1x)|| ≤ |µ|||f(2nx)− 2f(2n−1x)|| ≤ ϕ(2n−1x, 2n−1x).

We have

||f(2nµx) − µf(2nx)|| ≤ ||f(2nµx) − 2µf(2n−1x)||+ ||2µf(2n−1x) − µf(2nx)||
≤ 2ϕ(2n−1x, 2n−1x).

Hence

2−n||f(2nµx) − µf(2nx)|| ≤ 2−(n−1)ϕ(2n−1x, 2n−1x) → 0.

Thus we have

∀ µ ∈ T, x ∈ A, T (µx) = lim
n→∞

f(2nµx)
2n

= lim
n→∞

µf(2nx)
2n

= µT (x).

Now for any λ ∈ C, there exists an M ∈ N such that | λ
M | < 1

3 . Therefore,
there exist µ1, µ2, µ3 ∈ T such that 3λ

M = µ1 + µ2 + µ3 (by considering the case
3λ
M = r ∈ [0, 1) with µ1 = 1 and µ2 = µ3). Also, from additivity, T (x) =
T (3 · 1

3x) = 3T ( 1
3x), we have T (1

3x) = 1
3T (x). Hence, by the above,

T (λx) = T (
M

3
· 3
M

λx)

= MT (
1
3
· 3λ

M
x)

=
M

3
T (µ1x + µ2x + µ3x)

=
M

3
(µ1T (x) + µ2T (x) + µ3T (x))

=
M

3
· 3λ

M
T (x)

= λT (x).

That is, T is C linear.
Similaryly, by (ii), ∀x ∈ A, ||f(2nx∗) − f(2nx)∗|| ≤ ϕ(2nx, 2nx). Therefore,

2−n||f(2nx∗) − f(2nx)∗|| ≤ 2−nϕ(2nx, 2nx). Hence,

∀ x ∈ A, T (x∗) = lim
n→∞

f(2nx∗)
2n

= lim
n→∞

f(2nx)∗

2n
= T (x)∗.

In (iii), take α = β = 2n, we have

||f(4nuv)− f(2nu)f(2nv)|| ≤ ϕ(2nu, 2nv).



On Approximate Isomorphisms Between Banach ∗-Algebras or C∗-Algebras 223

Therefore,

||f(4nuv)
4n

− f(2nu)
2n

f(2nv)
2n

|| ≤ 4−nϕ(2nu, 2nv) → 0, as n → ∞.

Thus
T (uv) = lim

n→∞
f(4nuv)

4n
= lim

n→∞
f(2nu)

2n

f(2nu)
2n

= lim
n→∞

f(2nu)
2n

lim
n→∞

f(2nu)
2n

= T (u)T (v).

Since every element in C∗-algebra A can be expressed as a linear combination

of elements in U(A), ∀ x, y ∈ A, we may assume x =
n∑

i=1

αiui and y =
m∑

j=1

βjvj

for some ui, vj ∈ U(A) and α, β ∈ C.

T (xy) = T (
n∑

i=1

m∑

j=1

αiβjuivj)

=
n∑

i=1

m∑

j=1

αiβjT (uivj)

=
n∑

i=1

m∑

j=1

αiβjT (ui)T (vj)

= T (
n∑

i=1

αiui)T (
m∑

j=1

βjvj)

= T (x)T (y).

Therefore, T is indeed a ∗-homomorphism.

Our first result is as follows.

Theorem 2.2. Let f : A → B be a mapping between two C∗-algebras A, B

such that
(i) ||f(µx + µy) − µf(x) − µf(y)|| ≤ θ(||x||p + ||y||p), ∀ µ ∈ T, x, y ∈ A

(ii) ||f(x∗) − f(x)∗|| ≤ θ(||x||p + ||y||p), ∀ x ∈ A

(iii′) ||f(xy) − f(x)f(y)|| ≤ θ(||x||p + ||y||p), ∀ x, y ∈ A, where θ ≥ 0 and
p ∈ [0, 1)

then T (x) = lim
n→∞

f(2nx)
2n

defines the unique ∗-homomorphism such that

||f(x)− T (x)|| ≤ 2θ

2 − 2p
||x||p, ∀ x ∈ A.

Moreover, we have
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1 If A is unital, then T (1A) is a projection satisfing T (x) = T (1A)f(x) =
f(x)T (1A), ∀ x ∈ A.

2 If U(B) ⊂ f(U(A)), then T (1A) is a central projection in B, and T (A) is
an ideal of B. In particular, if B is simple then T is a ∗-epimorphism.

3 If the range of T contains an invertible element in B, then f = T .

Proof. Let ϕ(x, y) = θ(||x||p+||y||p), then ϕ is an admissible control function.
Conditions (i) and (ii) are exactly the conditions (i) and (ii) as in Lemma 2.1.
∀α, β ∈ R, u, v ∈ U(A), let x = αu, y = βv, then (iii′) becomes (iii) as in

Lemma 2.1. Therefore, by Lemma 2.1, T (x) = lim
n→∞

f(2nx)
2n

defines the unique
∗-homomorphism such that

||f(x)− T (x)|| ≤ ϕ̃(x, x) =
2θ

2 − 2p
||x||p, ∀ x ∈ A.

If A is unital, since T (12
A) = T (1A) and T (1A)∗ = T (1∗A) = T (1A), T (1A) is

a projection. By substituting y = 2n1A in (iii′), since n ∈ N, p ≥ 0, we have

||f(2nx) − f(x)f(2n1A)|| ≤ θ(||x||p + ||2n1A||p) ≤ θ(||2nx||p + ||2n1A||p).

Hence, by the convergence of ϕ̃(x, 1A) =
1
2

∞∑

k=0

2−kθ(||2kx||p + ||2k1A||p),

||f(2nx)
2n

− f(x)
f(2n1A)

2n
|| ≤ 2−nθ(||2nx||p + ||2n1A||p) → 0, as n → ∞.

We have
T (x) = f(x)T (1A), ∀ x ∈ A.

Similarly, we have T (x) = T (1A)f(x).
For any y ∈ B, y can be written as a linear combination of elements in U(B),

i.e., y =
k∑

i=1

αivi, ∃ αi ∈ C, vi ∈ U(B). If U(B) ⊂ f(U(A)), then y =

k∑

i=1

αif(ui), ∃ αi ∈ C, ui ∈ U(A). Therefore,

T (1A)y = T (1A)
n∑

i=1

αif(ui) =
n∑

i=1

αiT (1A)f(ui) =
n∑

i=1

αiT (ui) = T (
n∑

i=1

αiui),

yT (1A) =
n∑

i=1

αif(ui)T (1A) =
n∑

i=1

αif(ui)T (1A) =
n∑

i=1

αiT (ui) = T (
n∑

i=1

αiui).
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Hence T (1A) is central in B and ∀ y ∈ B, T (1A)y ⊂ T (A) and yT (1A) ⊂ T (A).
Thus yT (A) = yT (1A · A) = yT (1A)T (A) ⊂ T (A)T (A) ⊂ T (A). Similarly,
T (A)y ⊂ T (A).

Similarly, by substituting x by 2nx in (iii′), since n ∈ N, p ∈ [0, 1), we have

||f(2nxy) − f(2nx)f(y)|| ≤ θ(||2nx||p + ||y||p) ≤ θ(||2nx||p + ||2ny||p)

Hence, by the convergence of ϕ̃(x, y) =
1
2

∞∑

k=0

2−kθ(||2kx||p + ||2ky||p),

||f(2nxy)
2n

− f(2nx)f(y)
2n

|| ≤ 2−nθ(||2nx||p + ||2ny||p) → 0, as n → ∞.

We have
T (xy) = T (x)f(y), ∀ x, y ∈ A.

If T (A) contains an invertible element T (x0) in B, then from T (x0)T (x) =
T (x0x) = T (x0)f(x), ∀ x ∈ A, we have T (x) = f(x), ∀ x ∈ A.

Actually, the argument above can be modified to prove the following lemma.

Lemma 2.3. Let f : A → B be a mapping between two Banach ∗-algebras
A and B. If there exists an admissible control function ϕ : A × A → [0,∞) such
that

(i) ||f(µx + µy) − µf(x) − µf(y)|| ≤ ϕ(x, y), ∀ µ ∈ T, x, y ∈ A

(ii) ||f(x∗) − f(x)∗|| ≤ ϕ(x, x), ∀ x ∈ A

(iii′) ||f(xy)− f(x)f(y)|| ≤ ϕ(xy, xy), ∀ x, y ∈ A

then T (x) = lim
n→∞

f(2nx)
2n

defines the unique ∗-homomorphism such that

||f(x)− T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A.

Proof. Since conditions (i) and (ii) are exactly the conditions (i) and (ii) as

in Lemma 2.1, the proof there shows that T (x) = lim
n→∞

f(2nx)
2n

defines the unique
additive ∗-preserving function such that ||f(x) − T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A. We
only have to prove that T is also multiplicative.

Substituting x, y in (iii′′) by 2nx, 2ny, we have

||f(4nxy) − f(2nx)f(2ny)|| ≤ ϕ(4nxy, 4nxy), ∀ x, y ∈ A.
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Then, ∀ x, y ∈ A, by the convergence of ϕ̃(xy, xy) =
1
2

∞∑

k=0

2−kϕ(2kxy, 2kxy), we

have

||f(4nxy)
4n

− f(2nx)
2n

f(2ny)
2n

|| ≤ 4−nϕ(4nxy, 4nxy) → 0, as n → ∞.

Therefore, T (xy) = T (x)T (y), ∀ x, y ∈ A.

Example 2.4. Let A = C × C = B with norm ||(a, b)|| = |a|+ |b|, involution
(a, b)∗ = (a, b), and multiplication (a, b)(c, d) = (ac, bd), then A, B are both
Banach ∗-algebras. Let f : A → B be f(a, b) = (a, 1 − e|b|). Let ϕ : A × A →
[0,∞), ϕ(x, y) ≡ c. Then the corresponding

ϕ̃ =
1
2

∞∑

k=0

2−kϕ(x, y) =
1
2

∞∑

k=0

2−kc ≡ c.

If c ≥ 3, then we have as in the above lemma

(i) ∀ x = (a, b), y = (c, d) ∈ A, µ ∈ T,

||f(µx + µy) − µf(x) − µf(y)||
= ||f(µa + µc, µb + µd) − µf(a, b)− µf(c, d)||
= ||(µa + µc, 1− e−|µb+µd|) − µ(a, 1− e−|b|) − µ(c, 1− e−|d|)||
= ||(0, 1− e−|µb+µd| − 2µ + µe−|b| + µ−|d|)||
≤ ∣∣1 − e−|µb+µd| | + |2 − e−|b| − e−|d|∣∣

≤ 3 ≤ c = ϕ(x, y)

(ii) ∀ x = (a, b) ∈ A,

||f(x∗)− f(x)∗|| = ||f(a, b) − (a, 1− e−|b|)||
= ||(a, 1− e−|b|) − (a, 1− e−|b|)||
= 1 ≤ c = ϕ(x, x)

(iii′′′) ∀ x = (a, b), y = (c, d) ∈ A,

||f(xy)− f(x)f(y)||
= ||f(ac, bd)− f(a, b)f(c, d)||
= ||(ac, 1− e−|bd|) − (a, 1− e−|b|)(c, 1− e−|d|)||
= ||(ac, 1− e−|bd|) − (ac, 1− e−|b| − e−|d| + e−|b|−|d|)||
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= |e−|b| + e−|d| − e−|bd| − e−|b|−|d||
≤ 2 ≤ c = ϕ(xy, xy)

Therefore, ∀ x = (a, b) ∈ A,

T (x) = T (a, b) = lim
n→∞

f(2na, 2nb)
2n

= lim
n→∞(a,

1− e−|2nb|

2n
) = (a, 0)

is the unique ∗-homomorphism such that ∀ x = (a, b) ∈ A,

||f(x)− T (x)|| = ||(a, 1− e−|b|) − (a, 0)|| = |1− e−|b|| ≤ 1 ≤ ϕ̃(x, x).

Similarly, we can get sufficient conditions when the ∗-homomorphism is actually
an inner automorphism.

Theorem 2.5. Let f : A → A be a mapping on a Banach ∗-algebra A.
Suppose there is an invertible element f(x 0) in A. If there exists an admissible
control function ϕ : A × A → [0,∞) such that

(i) ||f(µx + µy) − µf(x) − µf(y)|| ≤ ϕ(x, y), ∀ µ ∈ T, x, y ∈ A

(ii) ||f(x∗) − f(x)∗|| ≤ ϕ(x, x), ∀ x ∈ A

(iii) ||f(x)− f(x0)xf(x0)−1|| ≤ ϕ(x, x), ∀ x ∈ A

then T (x) = lim
n→∞

f(2nx)
2n

= f(x0)xf(x0)−1 defines the unique ∗-homomorphism
such that

||f(x)− T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A.

Proof. From conditions (i) and (ii), we know T (x) = lim
n→∞

f(2nx)
2n

defines
the unique additive ∗-preserving function such that ||f(x) − T (x)|| ≤ ϕ̃(x, x),
∀ x ∈ A. We only have to prove that T (x) = f(x0)xf(x0)−1, ∀ x ∈ A.
That is T is an inner automorphism. Thus T is multiplicative since inner au-
tomorphisms must be multiplicative. (To see this, T (xy) = f(x0)xyf(x0)−1 =
f(x0)xf(x0)−1f(x0)yf(x0)−1 = T (x)T (y).)

Now, by substituting x by 2nx in (iii′′′), we have

||f(2nx − f(x0)2nxf(x0)−1|| ≤ ϕ(2nx, 2nx), ∀ x ∈ A.

Therefore, ∀ x ∈ A, by the convergence of ϕ̃(x, x) =
1
2

∞∑

k=0

2−kϕ(2kx, 2kx), we
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have

||f(2nx)
2n

− f(x0)xf(x0)−1|| ≤ 2−nϕ(2nx, 2nx) → 0, as n → ∞.

Hence T (x) = f(x0)xf(x0)−1, ∀ x ∈ A.

Example 2.6. Let A = C, f : A → A, f(x) = x+1. Let ϕ : A×A → [0,∞),
ϕ(x, y) ≡ c, a constant > 1. Then the corresponding ϕ̃(x, y) ≡ c, and f(1) = 2 is
invertible. Then, as in the above theorem,

(i) ∀ x, y ∈ A, µ ∈ T,

|f(µx+µy)−µf(x)−µf(y)|= |(µx+µy+1)−µx−1−µy−1|=1 ≤ c=ϕ(x, y).

(ii) ∀ x ∈ A,

|f(x∗)− f(x)∗| = |x + 1 − (x + 1)| = |x + 1− x − 1| = 0 ≤ c = ϕ(x, x).

(iii) Fix f(1) = 2. ∀ x ∈ A,

|f(x)− 2x2−1| = |x + 1 − x| = 1 ≤ c = ϕ(x, x)

Therefore, ∀ x = (a, b) ∈ A,

T (x) = lim
n→∞

f(2nx)
2n

= lim
n→∞

2nx + 1
2n

= x = 2x2−1

is the unique ∗-homomorphism such that ∀ x ∈ A,

|f(x)− T (x)| = |x + 1 − x| = 1 ≤ c = ϕ̃(x, x).

On the other hand, we may relax the condition (iii) in Lemma 2.1 a little bit and
consider further consider some sufficient condition for isometry and ∗-automorphism
as in the following theorem.

Theorem 2.7. Let f : A → B be a mapping between two C∗-algebras A and
B. Let ε : A → B be a function such that ∀ x ∈ A, 2−n||ε(2nx)|| → 0 as n → ∞.
If there exists an admissible control function ϕ : A × A → [0,∞) such that

(i) ||f(µx + µy) − µf(x) − µf(y)|| ≤ ϕ(x, y), ∀ µ ∈ T, x, y ∈ A

(ii) ||f(x∗)− f(x)∗|| ≤ ϕ(x, x), ∀ x ∈ A

(iii) ||f(αβuv) − [f(αu) + ε(αu)][f(βv) + ε(βv)]|| ≤ ϕ(αu, βv), ∀ α, β ∈ R,
u, v ∈ U(A)
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then T (x) = lim
n→∞

f(2nx)
2n

defines the unique ∗-homomorphism such that

||f(x)− T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A.

Furthermore, we have

1. If | ||f(x)− f(y)||− ||x− y|| | ≤ ϕ(x, y), ∀ x, y ∈ A, then T is an isometry.

2. If, in addition, A = B and ∀ v ∈ U(A), ∃ u ∈ U(A) such that ||f(2nu) −
2nv|| ≤ ϕ(2nu, 2nv), ∀ n ∈ N, then T is an automorphism.

Proof. From conditions (i) and (ii), we know T (x) = lim
n→∞

f(2nx)
2n

defines the
unique additive ∗-preserving function such that ||f(x)−T (x)|| ≤ ϕ̃(x, x), ∀ x ∈ A.

To prove T is multiplicative, substituting α = 2n = β, we have

||f(4nuv)− [f(2nu) + ε(2nu)][f(2nv)+ ε(2nv)]|| ≤ ϕ(2nu, 2nv), ∀ u, v ∈ U(A).

Then, ∀ u, v ∈ U(A), by the convergence of ϕ̃(u, v) =
1
2

∞∑

k=0

2−kϕ(2ku, 2kv), we

have

||f(4nuv)
4n

−f(2nu)+ε(2nu)
2n

f(2nv)+ε(2nv)
2n

|| ≤ 4−nϕ(2nu, 2nv) → 0, as n → ∞.

Since 2−n||ε(2nu)|| → 0 as n → ∞, and 2−n||ε(2nv)|| → 0 as n → ∞, it
follows that T (uv) = T (u)T (v), ∀ u, v ∈ U(A). Since every element in C∗-algebra
A can be expressed as a linear combination of elements in U(A), as in the proof of
Lemma 2.1, T is multiplicative. Hence T is a ∗-homomorphism.

If | ||f(x) − f(y)|| − ||x − y|| | ≤ ϕ(x, y), ∀ x, y ∈ A, then substitute x, y by
2nx, 2ny, we have

| ||f(2nx) − f(2ny)|| − ||2nx − 2ny|| | ≤ ϕ(2nx, 2ny).

Therefore, ∀ x, y ∈ A, by the convergence of ϕ̃(x, y) =
1
2

∞∑

k=0

2−kϕ(2kx, 2ky), we

have
∣∣∣∣||

f(2nx)
2n

− f(2ny)
2n

|| − ||x− y||
∣∣∣∣ ≤ 2−nϕ(2nx, 2ny) → 0, as n → ∞.

Hence, ||T (x)− T (y)|| = ||x− y||, ∀ x, y ∈ A. That is, T is an isometry.
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If, in addition, A = B and ∀ v ∈ U(A), ∃ u ∈ U(A) such that ||f(2nu)−2nv|| ≤
ϕ(2nu, 2nv), ∀ n ∈ N, then by the convergence of ϕ̃(u, v) =

1
2

∞∑

k=0

2−kϕ(2ku, 2kv),

we have
||f(2nu)

2n
− v|| ≤ 2−nϕ(2nu) →, as n → ∞.

Therefore, T (u) = v. That is, U(A) ⊂ T (U(A)). Since every element in C∗-
algebra A can be expressed as a linear combination of elements in U(A). We have
T is onto, hence a ∗-automorphism.

Example 2.8. Let A = C = B, f : A → B, f(x) = x − |x|e−|x|. Let
ϕ : A × A → [0,∞), ϕ(x, y) ≡ c. Then the corresponding

ϕ̃ =
1
2

∞∑

k=0

2−kϕ(x, y) =
1
2

∞∑

k=0

2−kc ≡ c.

Let ε : A → A, ε(x) = |x|e−|x|, then ∀ a ∈ A, we have 2−n|ε(2na)| → 0 as
n → ∞. From calculus, |te−t| ≤ e−1, ∀ t ∈ [0,∞). If c ≥ 3e−1, then as in the
above theorem,

(i) ∀ x, y ∈ A, µ ∈ T,

|f(µx + µy) − µf(x) − µf(y)|
=

∣∣µx + µy − |µx + µy|e−|µx+µy| − µx + |µx|e−|µx| − µy + |µy|e−|µy|∣∣

=
∣∣−|x + y|e−|x+y| + |x|e−|x| + |y|e−|y|∣∣

= |x + y|e−|x+y| + |x|e−|x| + |y|e−|y| ≤ 3e−1 ≤ c = ϕ(x, y)

(ii) ∀ x ∈ A,

|f(x∗) − f(x)∗| = |f(x)− (x − |x|e−|x|)|
=

∣∣(x − |x|e−|x|) − x + |x|e−|x|∣∣

= 0 ≤ c = ϕ(x, x)

(iii′′′) ∀ α, β ∈ R, ∀ u, v ∈ U(A),

|f(αuβv) − [f(αu)− ε(αu)][f(βv)− ε(βv)]|
=

∣∣(αuβv − |αuβv|e−|αuβv|)

− [(αu − |αu|e−|αu|) − |αu|e−|αu|][(βv − |βv|e−|βv|) − |βv|e−|βv|]
∣∣

=
∣∣(αuβv − |αuβv|e−|αuβv|) − αuβv

∣∣

= |αuβv|e−|αuβv| ≤ e−1 ≤ c = ϕ(αu, βv).
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Therefore, ∀ x ∈ A,

T (x) = lim
n→∞

f(2nx)
2n

= lim
n→∞

2nx − |2nx|e−|2nx|

2n
= x

is the unique ∗-homomorphism such that ∀ x ∈ A,

|f(x)− T (x)| =
∣∣∣(x − |x|e−|x|) − x

∣∣∣ = |x|e−|x| ≤ e−1 ≤ c ≤ ϕ̃(x, x).

Moreover, T is an isometry, and we check ∀ x, y ∈ A,

| |f(x) − f(y)| − |x− y| | =
∣∣ |(x− |x|e−|x|) − (y − |y|e−|y|)| − |x − y| ∣∣

=
∣∣ |(x− y) − (|x|e−|x| + |y|e−|y|)| − |(x − y)| ∣∣

≤ |x|e−|x| + |y|e−|y| ≤ 2e−1 ≤ c = ϕ(x, y).

Finally, T is automorphism. We check A = B and ∀ v ∈ U(B) = T = U(A), let
u = v, then |f(2nu)− 2nv| = 0 ≤ c = ϕ(2nu, 2nv), ∀ n ∈ N.

REFERENCES

1. Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci., 14 (1991),
431-434.

2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately
additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

3. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad.
Sci. U.S.A., 27 (1941), 222-224.

4. Chun-Gil Park, On an approximate automorphism on a C∗-algebra, Proc. Amer.
Math. Soc., 132 (2004), 1739-1745.

5. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc., 72 (1978), 297-300.

6. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy
Hyers-Ulam stability, Proc. Amer. Math. Soc., 173 (1993), 325-338.

7. S. M. Ulam, Problems in modern mathematics, Chap. VI, Wiley, New York, 1960.

Chun-Yen Chou
Department of Mathematics Education,
National Hualien University of Education,
Hualien 970, Taiwan

Jez-Hung Tzeng
Department of Applied Mathematics,
National Sun Yat-Sen University,
Kaohsiung 804, Taiwan


