ON APPROXIMATE ISOMORPHISMS BETWEEN BANACH *-ALGEBRAS OR C^{*}-ALGEBRAS

Chun-Yen Chou and Jez-Hung Tzeng

Abstract

In this paper, we study some problems about approximate isomorphisms between Banach $*$-algebras or C^{*}-algebras.

1. Introduction

The problem of the stability of functional equations has been first studied by Ulam in 1940 (see [7]). He posed the following problem: "Give conditions in order for a linear mapping near an approximately linear mapping to exist".

In 1941, Hyers [3] showed that:
If $\delta>0$ and $f: E_{1} \rightarrow E_{2}$ is a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta, \forall x, y \in E_{1}
$$

then there exists a unique $T: E_{1} \rightarrow E_{2}$ such that $T(x+y)=T(x)+T(y)$ and $\|f(x)-T(x)\| \leq \delta$ for all $x, y \in E_{1}$. In fact, $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$. Furthermore, If for any $x \in E_{1}, f(t x)$ is continuous in scalar variable t, then T is a linear mapping.

In 1978, a generalized solution was given by Rassias [5]:
Let $f: E_{1} \rightarrow E_{2}$ be a mapping between two Banach spaces E_{1} and E_{2} such that for any $x \in E_{1}, f(t x)$ is continuous in scalar variable t. If there exists $\theta \geq 0$ and $p \in[0,1)$ such that $\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for every $x, y \in E_{1}$, then there exists a unique mapping $T: E_{1} \rightarrow E_{2}$ such that $\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}, \forall x \in E_{1}$. Indeed, $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$.

[^0]The proof of Rassias [5] is also valid for $p<0$.
In 1991, Gajda [1] gave a solution for $p>1$:
Let $f: E_{1} \rightarrow E_{2}$ be a mapping between two Banach spaces E_{1} and E_{2} such that for any $x \in E_{1}, f(t x)$ is continuous in scalar variable t. If there exists $\theta \geq 0$ and $p>1$ such that $\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for every $x, y \in E_{1}$, then there exists a unique mapping $T: E_{1} \rightarrow E_{2}$ such that $\|f(x)-T(x)\| \leq \frac{2 \theta}{2^{p}-2}\|x\|^{p}, \forall x \in E_{1}$. Indeed, $T(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(2^{-n} x\right)$.

For the case $p=1$, Rassias and Semrl [6] gave an example of a continuous real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $|f(x+y)-f(x)-f(y)| \leq|x|+|y|$, $\forall x, y \in \mathbb{R}$ such that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\infty$. Hence the set $\left\{\left.\frac{|f(x)-T(x)|}{|x|} \right\rvert\, x \neq 0\right\}$ is unbounded for any linear mapping $T: \mathbb{R} \rightarrow \mathbb{R}$. In other words, an analogue of Rassias's result [5] can not be obtained for $p=1$.

In 1992, Gavruta [2] genelized the result of Rassias as follows:
Let $(G,+)$ be an abelian group and $(X,\|\cdot\|)$ be a Banach space. $\varphi: G \times G \rightarrow$ $[0, \infty)$ is called an admissible control function if $\tilde{\varphi}(x, y):=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} x, 2^{k} y\right)<$ ∞ for all $x, y \in G$. If $f: G \rightarrow X$ is a mapping such that $\| f(x+y)-f(x)-$ $f(y) \| \leq \varphi(x, y)$ for all $x, y \in G$, then there exists a unique mapping $T: G \rightarrow X$ such that $T(x+y)=T(x)+T(y)$ and $\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x)$ for all $x, y \in G$. Indeed, $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$.

In 2003, Park [4] establishes the stability of algebra $*$-homomorphisms on a Banach $*$-algebra and the stability of automorphisms on a unital C^{*}-algebra. His proof actually gave the following two theorems.

Theorem 1.1. [(4)] Let A and B be two Banach $*$-algebras. Let $f: A \rightarrow B$ be a mapping such that there exists an admissible control function $\varphi: B \times B \rightarrow[0, \infty)$ such that
(i) $\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y)$ for all scalar $|\mu|=1$ and all $x, y \in A$.
(ii) $\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \varphi(x, x)$ for all $x \in A$.
(iii) $\|f(z w)-f(z) f(w)\| \leq \varphi(z, w)$ for all self-adjoint $z, w \in A$.

Then there exists a unique algebra $*$-homomorphism $T: A \rightarrow B$ such that $\| f(x)-$ $T(x) \| \leq \varphi(x, x)$ for all $x \in A$.

Theorem 1.2. [(4)] Let A and B be two unital C^{*}-algebra and $\varphi: A \times A \rightarrow$ $[0, \infty)$ be an admissible control function. If $f: A \rightarrow B$ be a bijective mapping with $f(x y)=f(x) f(y)$, and satisfying condition
(i) of Theorem 1.1 and
$\left(i i^{\prime}\right)\left\|f\left(u^{*}\right)-f(u)^{*}\right\| \leq \varphi(u, u)$ for all unitary elements u of A.
Assume that $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} 1_{A}\right)}{2^{n}}$ is invertible where 1_{A} is the identity of A. Then f is actually an automorphism.

In this paper, we explore further variations of the above results.

2. Main Results

We use the following notations through out this paper.

- Let A and B denote Banach $*$-algebras or C^{*}-algebras.
- Let \mathbb{T} denote the unit circle.
- Let 1_{A} denote the identity of the corresponding algebra if it exists.
- Let $A_{\text {sa }}$ denote the set of self-adjoint elements in A.
- Let $\mathcal{U}(A)$ denote the group of unitary elements in A.

We will first apply similar techniques as in [4] to get the following lemma. Then we will use the lemma and other things to have our results.

Lemma 2.1. Let $f: A \rightarrow B$ be a mapping between two C^{*}-algebras A and B. If there exists an admissible control function $\varphi: A \times A \rightarrow[0, \infty)$ such that
(i) $\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$
(ii) $\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \varphi(x, x), \forall x \in A$
(iii) $\|f(\alpha \beta u v)-f(\alpha u) f(\beta v)\| \leq \varphi(\alpha u, \beta v), \forall \alpha, \beta \in \mathbb{R}, u, v \in \mathcal{U}(A)$ then $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique $*$-homomorphism such that

$$
\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A
$$

Proof. Let $\mu=1$ in (i, by Gavruta's result, there exists a unique additive function $T: A \rightarrow B$ such that $\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A$. Indeed, $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$.

Substitute the x, y in (i) by $2^{n-1} x$, then

$$
\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right), \forall \mu \in \mathbb{T}, x \in A .
$$

Therefore,

$$
\left\|\mu f\left(2^{n} x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq|\mu|\left\|f\left(2^{n} x\right)-2 f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)
$$

We have

$$
\begin{aligned}
\left\|f\left(2^{n} \mu x\right)-\mu f\left(2^{n} x\right)\right\| & \leq\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\|+\left\|2 \mu f\left(2^{n-1} x\right)-\mu f\left(2^{n} x\right)\right\| \\
& \leq 2 \varphi\left(2^{n-1} x, 2^{n-1} x\right) .
\end{aligned}
$$

Hence

$$
2^{-n}\left\|f\left(2^{n} \mu x\right)-\mu f\left(2^{n} x\right)\right\| \leq 2^{-(n-1)} \varphi\left(2^{n-1} x, 2^{n-1} x\right) \rightarrow 0
$$

Thus we have

$$
\forall \mu \in \mathbb{T}, x \in A, T(\mu x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} \mu x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mu f\left(2^{n} x\right)}{2^{n}}=\mu T(x) .
$$

Now for any $\lambda \in \mathbb{C}$, there exists an $M \in \mathbb{N}$ such that $\left|\frac{\lambda}{M}\right|<\frac{1}{3}$. Therefore, there exist $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{T}$ such that $\frac{3 \lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$ (by considering the case $\frac{3 \lambda}{M}=r \in[0,1)$ with $\mu_{1}=1$ and $\left.\overline{\mu_{2}}=\mu_{3}\right)$. Also, from additivity, $T(x)=$ $T\left(3 \cdot \frac{1}{3} x\right)=3 T\left(\frac{1}{3} x\right)$, we have $T\left(\frac{1}{3} x\right)=\frac{1}{3} T(x)$. Hence, by the above,

$$
\begin{aligned}
T(\lambda x) & =T\left(\frac{M}{3} \cdot \frac{3}{M} \lambda x\right) \\
& =M T\left(\frac{1}{3} \cdot \frac{3 \lambda}{M} x\right) \\
& =\frac{M}{3} T\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right) \\
& =\frac{M}{3}\left(\mu_{1} T(x)+\mu_{2} T(x)+\mu_{3} T(x)\right) \\
& =\frac{M}{3} \cdot \frac{3 \lambda}{M} T(x) \\
& =\lambda T(x) .
\end{aligned}
$$

That is, T is \mathbb{C} linear.
Similaryly, by (ii), $\forall x \in A,\left\|f\left(2^{n} x^{*}\right)-f\left(2^{n} x\right)^{*}\right\| \leq \varphi\left(2^{n} x, 2^{n} x\right)$. Therefore, $2^{-n}| | f\left(2^{n} x^{*}\right)-f\left(2^{n} x\right)^{*} \| \leq 2^{-n} \varphi\left(2^{n} x, 2^{n} x\right)$. Hence,

$$
\forall x \in A, T\left(x^{*}\right)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)^{*}}{2^{n}}=T(x)^{*} .
$$

In (iii), take $\alpha=\beta=2^{n}$, we have

$$
\left\|f\left(4^{n} u v\right)-f\left(2^{n} u\right) f\left(2^{n} v\right)\right\| \leq \varphi\left(2^{n} u, 2^{n} v\right)
$$

Therefore,

$$
\left\|\frac{f\left(4^{n} u v\right)}{4^{n}}-\frac{f\left(2^{n} u\right)}{2^{n}} \frac{f\left(2^{n} v\right)}{2^{n}}\right\| \leq 4^{-n} \varphi\left(2^{n} u, 2^{n} v\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Thus

$$
\begin{aligned}
T(u v) & =\lim _{n \rightarrow \infty} \frac{f\left(4^{n} u v\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)}{2^{n}} \frac{f\left(2^{n} u\right)}{2^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)}{2^{n}} \lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)}{2^{n}}=T(u) T(v)
\end{aligned}
$$

Since every element in C^{*}-algebra A can be expressed as a linear combination of elements in $\mathcal{U}(A), \forall x, y \in A$, we may assume $x=\sum_{i=1}^{n} \alpha_{i} u_{i}$ and $y=\sum_{j=1}^{m} \beta_{j} v_{j}$ for some $u_{i}, v_{j} \in \mathcal{U}(A)$ and $\alpha, \beta \in \mathbb{C}$.

$$
\begin{aligned}
T(x y) & =T\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} u_{i} v_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} T\left(u_{i} v_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} T\left(u_{i}\right) T\left(v_{j}\right) \\
& =T\left(\sum_{i=1}^{n} \alpha_{i} u_{i}\right) T\left(\sum_{j=1}^{m} \beta_{j} v_{j}\right) \\
& =T(x) T(y) .
\end{aligned}
$$

Therefore, T is indeed a $*$-homomorphism.
Our first result is as follows.
Theorem 2.2. Let $f: A \rightarrow B$ be a mapping between two C^{*}-algebras A, B such that
(i) $\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right), \forall \mu \in \mathbb{T}, x, y \in A$
(ii) $\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right), \forall x \in A$
(iii') $\|f(x y)-f(x) f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right), \forall x, y \in A$, where $\theta \geq 0$ and $p \in[0,1)$
then $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique $*$-homomorphism such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}, \forall x \in A .
$$

Moreover, we have

1 If A is unital, then $T\left(1_{A}\right)$ is a projection satisfing $T(x)=T\left(1_{A}\right) f(x)=$ $f(x) T\left(1_{A}\right), \forall x \in A$.

2 If $\mathcal{U}(B) \subset f(\mathcal{U}(A))$, then $T\left(1_{A}\right)$ is a central projection in B, and $T(A)$ is an ideal of B. In particular, if B is simple then T is $a *$-epimorphism.

3 If the range of T contains an invertible element in B, then $f=T$.
Proof. Let $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, then φ is an admissible control function. Conditions (i) and $(i i)$ are exactly the conditions (i) and (ii) as in Lemma 2.1. $\forall \alpha, \beta \in \mathbb{R}, u, v \in \mathcal{U}(A)$, let $x=\alpha u, y=\beta v$, then $\left(i i i^{\prime}\right)$ becomes (iii) as in Lemma 2.1. Therefore, by Lemma 2.1, $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique *-homomorphism such that

$$
\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x)=\frac{2 \theta}{2-2^{p}}\|x\|^{p}, \forall x \in A
$$

If A is unital, since $T\left(1_{A}^{2}\right)=T\left(1_{A}\right)$ and $T\left(1_{A}\right)^{*}=T\left(1_{A}^{*}\right)=T\left(1_{A}\right), T\left(1_{A}\right)$ is a projection. By substituting $y=2^{n} 1_{A}$ in $\left(i i i^{\prime}\right)$, since $n \in \mathbb{N}, p \geq 0$, we have

$$
\left\|f\left(2^{n} x\right)-f(x) f\left(2^{n} 1_{A}\right)\right\| \leq \theta\left(\|x\|^{p}+\left\|2^{n} 1_{A}\right\|^{p}\right) \leq \theta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} 1_{A}\right\|^{p}\right)
$$

Hence, by the convergence of $\tilde{\varphi}\left(x, 1_{A}\right)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \theta\left(\left\|2^{k} x\right\|^{p}+\left\|2^{k} 1_{A}\right\|^{p}\right)$,

$$
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x) \frac{f\left(2^{n} 1_{A}\right)}{2^{n}}\right\| \leq 2^{-n} \theta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} 1_{A}\right\|^{p}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

We have

$$
T(x)=f(x) T\left(1_{A}\right), \forall x \in A
$$

Similarly, we have $T(x)=T\left(1_{A}\right) f(x)$.
For any $y \in B, y$ can be written as a linear combination of elements in $\mathcal{U}(B)$, i.e., $y=\sum_{i=1}^{k} \alpha_{i} v_{i}, \exists \alpha_{i} \in \mathbb{C}, v_{i} \in \mathcal{U}(B)$. If $\mathcal{U}(B) \subset f(\mathcal{U}(A))$, then $y=$ $\sum_{i=1}^{k} \alpha_{i} f\left(u_{i}\right), \exists \alpha_{i} \in \mathbb{C}, u_{i} \in \mathcal{U}(A)$. Therefore,

$$
\begin{aligned}
& T\left(1_{A}\right) y=T\left(1_{A}\right) \sum_{i=1}^{n} \alpha_{i} f\left(u_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(1_{A}\right) f\left(u_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(u_{i}\right)=T\left(\sum_{i=1}^{n} \alpha_{i} u_{i}\right) \\
& y T\left(1_{A}\right)=\sum_{i=1}^{n} \alpha_{i} f\left(u_{i}\right) T\left(1_{A}\right)=\sum_{i=1}^{n} \alpha_{i} f\left(u_{i}\right) T\left(1_{A}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(u_{i}\right)=T\left(\sum_{i=1}^{n} \alpha_{i} u_{i}\right)
\end{aligned}
$$

Hence $T\left(1_{A}\right)$ is central in B and $\forall y \in B, T\left(1_{A}\right) y \subset T(A)$ and $y T\left(1_{A}\right) \subset T(A)$. Thus $y T(A)=y T\left(1_{A} \cdot A\right)=y T\left(1_{A}\right) T(A) \subset T(A) T(A) \subset T(A)$. Similarly, $T(A) y \subset T(A)$.

Similarly, by substituting x by $2^{n} x$ in (iii'), since $n \in \mathbb{N}, p \in[0,1)$, we have

$$
\left\|f\left(2^{n} x y\right)-f\left(2^{n} x\right) f(y)\right\| \leq \theta\left(\left\|2^{n} x\right\|^{p}+\|y\|^{p}\right) \leq \theta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} y\right\|^{p}\right)
$$

Hence, by the convergence of $\tilde{\varphi}(x, y)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \theta\left(\left\|2^{k} x\right\|^{p}+\left\|2^{k} y\right\|^{p}\right)$,

$$
\left\|\frac{f\left(2^{n} x y\right)}{2^{n}}-\frac{f\left(2^{n} x\right) f(y)}{2^{n}}\right\| \leq 2^{-n} \theta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} y\right\|^{p}\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

We have

$$
T(x y)=T(x) f(y), \forall x, y \in A .
$$

If $T(A)$ contains an invertible element $T\left(x_{0}\right)$ in B, then from $T\left(x_{0}\right) T(x)=$ $T\left(x_{0} x\right)=T\left(x_{0}\right) f(x), \forall x \in A$, we have $T(x)=f(x), \forall x \in A$.

Actually, the argument above can be modified to prove the following lemma.
Lemma 2.3. Let $f: A \rightarrow B$ be a mapping between two Banach $*$-algebras A and B. If there exists an admissible control function $\varphi: A \times A \rightarrow[0, \infty)$ such that
(i) $\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$
(ii) $\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \varphi(x, x), \forall x \in A$
(iii') $\|f(x y)-f(x) f(y)\| \leq \varphi(x y, x y), \forall x, y \in A$
then $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique $*$-homomorphism such that

$$
\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A
$$

Proof. Since conditions (i) and (ii) are exactly the conditions (i) and (ii) as in Lemma 2.1, the proof there shows that $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique additive $*$-preserving function such that $\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A$. We only have to prove that T is also multiplicative.

Substituting x, y in $\left(i i i^{\prime \prime}\right)$ by $2^{n} x, 2^{n} y$, we have

$$
\left\|f\left(4^{n} x y\right)-f\left(2^{n} x\right) f\left(2^{n} y\right)\right\| \leq \varphi\left(4^{n} x y, 4^{n} x y\right), \forall x, y \in A
$$

Then, $\forall x, y \in A$, by the convergence of $\tilde{\varphi}(x y, x y)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} x y, 2^{k} x y\right)$, we have

$$
\left\|\frac{f\left(4^{n} x y\right)}{4^{n}}-\frac{f\left(2^{n} x\right)}{2^{n}} \frac{f\left(2^{n} y\right)}{2^{n}}\right\| \leq 4^{-n} \varphi\left(4^{n} x y, 4^{n} x y\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Therefore, $T(x y)=T(x) T(y), \forall x, y \in A$.
Example 2.4. Let $A=\mathbb{C} \times \mathbb{C}=B$ with norm $\|(a, b)\|=|a|+|b|$, involution $(a, b)^{*}=(\bar{a}, \bar{b})$, and multiplication $(a, b)(c, d)=(a c, b d)$, then A, B are both Banach $*$-algebras. Let $f: A \rightarrow B$ be $f(a, b)=\left(a, 1-e^{|b|}\right)$. Let $\varphi: A \times A \rightarrow$ $[0, \infty), \varphi(x, y) \equiv c$. Then the corresponding

$$
\tilde{\varphi}=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi(x, y)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} c \equiv c
$$

If $c \geq 3$, then we have as in the above lemma
(i) $\forall x=(a, b), y=(c, d) \in A, \mu \in \mathbb{T}$,

$$
\begin{aligned}
& \|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \\
= & \|f(\mu a+\mu c, \mu b+\mu d)-\mu f(a, b)-\mu f(c, d)\| \\
= & \left\|\left(\mu a+\mu c, 1-e^{-|\mu b+\mu d|}\right)-\mu\left(a, 1-e^{-|b|}\right)-\mu\left(c, 1-e^{-|d|}\right)\right\| \\
= & \left\|\left(0,1-e^{-|\mu b+\mu d|}-2 \mu+\mu e^{-|b|}+\mu^{-|d|}\right)\right\| \\
\leq & \left|1-e^{-|\mu b+\mu d|}\right|+\left|2-e^{-|b|}-e^{-|d|}\right| \\
\leq & 3 \leq c=\varphi(x, y)
\end{aligned}
$$

(ii) $\forall x=(a, b) \in A$,

$$
\begin{aligned}
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| & =\left\|f(\bar{a}, \bar{b})-\left(\bar{a}, 1-e^{-|b|}\right)\right\| \\
& =\left\|\left(\bar{a}, 1-e^{-|\bar{b}|}\right)-\left(\bar{a}, 1-e^{-|b|}\right)\right\| \\
& =1 \leq c=\varphi(x, x)
\end{aligned}
$$

$\left(i i i^{\prime \prime \prime}\right) \forall x=(a, b), y=(c, d) \in A$,

$$
\begin{aligned}
& \|f(x y)-f(x) f(y)\| \\
= & \|f(a c, b d)-f(a, b) f(c, d)\| \\
= & \left\|\left(a c, 1-e^{-|b d|}\right)-\left(a, 1-e^{-|b|}\right)\left(c, 1-e^{-|d|}\right)\right\| \\
= & \left\|\left(a c, 1-e^{-|b d|}\right)-\left(a c, 1-e^{-|b|}-e^{-|d|}+e^{-|b|-|d|}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|e^{-|b|}+e^{-|d|}-e^{-|b d|}-e^{-|b|-|d|}\right| \\
& \leq 2 \leq c=\varphi(x y, x y)
\end{aligned}
$$

Therefore, $\forall x=(a, b) \in A$,

$$
T(x)=T(a, b)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} a, 2^{n} b\right)}{2^{n}}=\lim _{n \rightarrow \infty}\left(a, \frac{1-e^{-\left|2^{n} b\right|}}{2^{n}}\right)=(a, 0)
$$

is the unique $*$-homomorphism such that $\forall x=(a, b) \in A$,

$$
\|f(x)-T(x)\|=\left\|\left(a, 1-e^{-|b|}\right)-(a, 0)\right\|=\left|1-e^{-|b|}\right| \leq 1 \leq \tilde{\varphi}(x, x) .
$$

Similarly, we can get sufficient conditions when the $*$-homomorphism is actually an inner automorphism.

Theorem 2.5. Let $f: A \rightarrow A$ be a mapping on a Banach $*$-algebra A. Suppose there is an invertible element $f\left(x_{0}\right)$ in A. If there exists an admissible control function $\varphi: A \times A \rightarrow[0, \infty)$ such that
(i) $\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$
(ii) $\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \varphi(x, x), \forall x \in A$
(iii) $\left\|f(x)-f\left(x_{0}\right) x f\left(x_{0}\right)^{-1}\right\| \leq \varphi(x, x), \forall x \in A$
then $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}=f\left(x_{0}\right) x f\left(x_{0}\right)^{-1}$ defines the unique $*$-homomorphism such that

$$
\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A
$$

Proof. From conditions (i) and (ii), we know $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique additive $*$-preserving function such that $\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x)$, $\forall x \in A$. We only have to prove that $T(x)=f\left(x_{0}\right) x f\left(x_{0}\right)^{-1}, \forall x \in A$. That is T is an inner automorphism. Thus T is multiplicative since inner automorphisms must be multiplicative. (To see this, $T(x y)=f\left(x_{0}\right) x y f\left(x_{0}\right)^{-1}=$ $\left.f\left(x_{0}\right) x f\left(x_{0}\right)^{-1} f\left(x_{0}\right) y f\left(x_{0}\right)^{-1}=T(x) T(y).\right)$

Now, by substituting x by $2^{n} x$ in $\left(i i i^{\prime \prime \prime}\right)$, we have

$$
\| f\left(2^{n} x-f\left(x_{0}\right) 2^{n} x f\left(x_{0}\right)^{-1} \| \leq \varphi\left(2^{n} x, 2^{n} x\right), \forall x \in A\right.
$$

Therefore, $\forall x \in A$, by the convergence of $\tilde{\varphi}(x, x)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} x, 2^{k} x\right)$, we
have

$$
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f\left(x_{0}\right) x f\left(x_{0}\right)^{-1}\right\| \leq 2^{-n} \varphi\left(2^{n} x, 2^{n} x\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Hence $T(x)=f\left(x_{0}\right) x f\left(x_{0}\right)^{-1}, \forall x \in A$.
Example 2.6. Let $A=\mathbb{C}, f: A \rightarrow A, f(x)=x+1$. Let $\varphi: A \times A \rightarrow[0, \infty)$, $\varphi(x, y) \equiv c$, a constant >1. Then the corresponding $\tilde{\varphi}(x, y) \equiv c$, and $f(1)=2$ is invertible. Then, as in the above theorem,
(i) $\forall x, y \in A, \mu \in \mathbb{T}$,

$$
|f(\mu x+\mu y)-\mu f(x)-\mu f(y)|=|(\mu x+\mu y+1)-\mu x-1-\mu y-1|=1 \leq c=\varphi(x, y)
$$

(ii) $\forall x \in A$,

$$
\left|f\left(x^{*}\right)-f(x)^{*}\right|=|\overline{\bar{x}}+1-\overline{(\bar{x}+1)}|=|x+1-x-1|=0 \leq c=\varphi(x, x)
$$

(iii) Fix $f(1)=2 . \forall x \in A$,

$$
\left|f(x)-2 x 2^{-1}\right|=|x+1-x|=1 \leq c=\varphi(x, x)
$$

Therefore, $\forall x=(a, b) \in A$,

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n} x+1}{2^{n}}=x=2 x 2^{-1}
$$

is the unique $*$-homomorphism such that $\forall x \in A$,

$$
|f(x)-T(x)|=|x+1-x|=1 \leq c=\tilde{\varphi}(x, x)
$$

On the other hand, we may relax the condition (iii) in Lemma 2.1 a little bit and consider further consider some sufficient condition for isometry and $*$-automorphism as in the following theorem.

Theorem 2.7. Let $f: A \rightarrow B$ be a mapping between two C^{*}-algebras A and B. Let $\varepsilon: A \rightarrow B$ be a function such that $\forall x \in A, 2^{-n}\left\|\varepsilon\left(2^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$. If there exists an admissible control function $\varphi: A \times A \rightarrow[0, \infty)$ such that
(i) $\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$
(ii) $\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \varphi(x, x), \forall x \in A$
(iii) $\|f(\alpha \beta u v)-[f(\alpha u)+\varepsilon(\alpha u)][f(\beta v)+\varepsilon(\beta v)]\| \leq \varphi(\alpha u, \beta v), \forall \alpha, \beta \in \mathbb{R}$, $u, v \in \mathcal{U}(A)$
then $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique $*$-homomorphism such that

$$
\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A
$$

Furthermore, we have

1. If $|||f(x)-f(y)\|-\| x-y \|| \leq \varphi(x, y), \forall x, y \in A$, then T is an isometry.
2. If, in addition, $A=B$ and $\forall v \in \mathcal{U}(A), \exists u \in \mathcal{U}(A)$ such that $\| f\left(2^{n} u\right)-$ $2^{n} v \| \leq \varphi\left(2^{n} u, 2^{n} v\right), \forall n \in \mathbb{N}$, then T is an automorphism.

Proof. From conditions (i) and $(i i)$, we know $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ defines the unique additive $*$-preserving function such that $\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x), \forall x \in A$.

To prove T is multiplicative, substituting $\alpha=2^{n}=\beta$, we have

$$
\left\|f\left(4^{n} u v\right)-\left[f\left(2^{n} u\right)+\varepsilon\left(2^{n} u\right)\right]\left[f\left(2^{n} v\right)+\varepsilon\left(2^{n} v\right)\right]\right\| \leq \varphi\left(2^{n} u, 2^{n} v\right), \forall u, v \in \mathcal{U}(A) .
$$

Then, $\forall u, v \in \mathcal{U}(A)$, by the convergence of $\tilde{\varphi}(u, v)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} u, 2^{k} v\right)$, we have
$\left\|\frac{f\left(4^{n} u v\right)}{4^{n}} \frac{f\left(2^{n} u\right)+\varepsilon\left(2^{n} u\right)}{2^{n}} \frac{f\left(2^{n} v\right)+\varepsilon\left(2^{n} v\right)}{2^{n}}\right\| \leq 4^{-n} \varphi\left(2^{n} u, 2^{n} v\right) \rightarrow 0$, as $n \rightarrow \infty$.
Since $2^{-n}\left\|\varepsilon\left(2^{n} u\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$, and $2^{-n}\left\|\varepsilon\left(2^{n} v\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$, it follows that $T(u v)=T(u) T(v), \forall u, v \in \mathcal{U}(A)$. Since every element in C^{*}-algebra A can be expressed as a linear combination of elements in $\mathcal{U}(A)$, as in the proof of Lemma 2.1, T is multiplicative. Hence T is a $*$-homomorphism.

If | $\|f(x)-f(y)\|-\|x-y\| \mid \leq \varphi(x, y), \forall x, y \in A$, then substitute x, y by $2^{n} x, 2^{n} y$, we have

$$
\left|\left\|f\left(2^{n} x\right)-f\left(2^{n} y\right)\right\|-\left\|2^{n} x-2^{n} y\right\|\right| \leq \varphi\left(2^{n} x, 2^{n} y\right)
$$

Therefore, $\forall x, y \in A$, by the convergence of $\tilde{\varphi}(x, y)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} x, 2^{k} y\right)$, we have

$$
\left|\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n} y\right)}{2^{n}}\right\|-\|x-y\|\right| \leq 2^{-n} \varphi\left(2^{n} x, 2^{n} y\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Hence, $\|T(x)-T(y)\|=\|x-y\|, \forall x, y \in A$. That is, T is an isometry.

If, in addition, $A=B$ and $\forall v \in \mathcal{U}(A), \exists u \in \mathcal{U}(A)$ such that $\left\|f\left(2^{n} u\right)-2^{n} v\right\| \leq$ $\varphi\left(2^{n} u, 2^{n} v\right), \forall n \in \mathbb{N}$, then by the convergence of $\tilde{\varphi}(u, v)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} u, 2^{k} v\right)$, we have

$$
\left\|\frac{f\left(2^{n} u\right)}{2^{n}}-v\right\| \leq 2^{-n} \varphi\left(2^{n} u\right) \rightarrow, \text { as } n \rightarrow \infty .
$$

Therefore, $T(u)=v$. That is, $\mathcal{U}(A) \subset T(\mathcal{U}(A))$. Since every element in C^{*} algebra A can be expressed as a linear combination of elements in $\mathcal{U}(A)$. We have T is onto, hence a $*$-automorphism.

Example 2.8. Let $A=\mathbb{C}=B, f: A \rightarrow B, f(x)=x-|x| e^{-|x|}$. Let $\varphi: A \times A \rightarrow[0, \infty), \varphi(x, y) \equiv c$. Then the corresponding

$$
\tilde{\varphi}=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi(x, y)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} c \equiv c .
$$

Let $\varepsilon: A \rightarrow A, \varepsilon(x)=|x| e^{-|x|}$, then $\forall a \in A$, we have $2^{-n}\left|\varepsilon\left(2^{n} a\right)\right| \rightarrow 0$ as $n \rightarrow \infty$. From calculus, $\left|t e^{-t}\right| \leq e^{-1}, \forall t \in[0, \infty)$. If $c \geq 3 e^{-1}$, then as in the above theorem,
(i) $\forall x, y \in A, \mu \in \mathbb{T}$,
(ii) $\forall x \in A$,

$$
\begin{aligned}
\left|f\left(x^{*}\right)-f(x)^{*}\right| & =\mid f(\bar{x})-\overline{\left(x-|x| e^{-|x|}\right) \mid} \\
& =\left|\left(\bar{x}-|\bar{x}| e^{-|\bar{x}|}\right)-\bar{x}+|x| e^{-|x|}\right| \\
& =0 \leq c=\varphi(x, x)
\end{aligned}
$$

($\left.i i i^{\prime \prime \prime}\right) \forall \alpha, \beta \in \mathbb{R}, \forall u, v \in \mathcal{U}(A)$,

$$
\begin{aligned}
& |f(\alpha u \beta v)-[f(\alpha u)-\varepsilon(\alpha u)][f(\beta v)-\varepsilon(\beta v)]| \\
= & \mid\left(\alpha u \beta v-|\alpha u \beta v| e^{-|\alpha u \beta v|}\right) \\
& -\left[\left(\alpha u-|\alpha u| e^{-|\alpha u|}\right)-|\alpha u| e^{-|\alpha u|}\right]\left[\left(\beta v-|\beta v| e^{-|\beta v|}\right)-|\beta v| e^{-|\beta v|}\right] \mid \\
= & \left|\left(\alpha u \beta v-|\alpha u \beta v| e^{-|\alpha u \beta v|}\right)-\alpha u \beta v\right| \\
= & |\alpha u \beta v| e^{-|\alpha u \beta v|} \leq e^{-1} \leq c=\varphi(\alpha u, \beta v) .
\end{aligned}
$$

Therefore, $\forall x \in A$,

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n} x-\left|2^{n} x\right| e^{-\left|2^{n} x\right|}}{2^{n}}=x
$$

is the unique $*$-homomorphism such that $\forall x \in A$,

$$
|f(x)-T(x)|=\left|\left(x-|x| e^{-|x|}\right)-x\right|=|x| e^{-|x|} \leq e^{-1} \leq c \leq \tilde{\varphi}(x, x)
$$

Moreover, T is an isometry, and we check $\forall x, y \in A$,

Finally, T is automorphism. We check $A=B$ and $\forall v \in \mathcal{U}(B)=\mathbb{T}=\mathcal{U}(A)$, let $u=v$, then $\left|f\left(2^{n} u\right)-2^{n} v\right|=0 \leq c=\varphi\left(2^{n} u, 2^{n} v\right), \forall n \in \mathbb{N}$.

References

1. Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci., 14 (1991), 431-434.
2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
3. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222-224.
4. Chun-Gil Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc., 132 (2004), 1739-1745.
5. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
6. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 173 (1993), 325-338.
7. S. M. Ulam, Problems in modern mathematics, Chap. VI, Wiley, New York, 1960.

Chun-Yen Chou

Department of Mathematics Education,
National Hualien University of Education,
Hualien 970, Taiwan
Jez-Hung Tzeng
Department of Applied Mathematics, National Sun Yat-Sen University,
Kaohsiung 804, Taiwan

[^0]: Received April 10, 2005.
 Communicated by Ngai-Ching Wong.
 2000 Mathematics Subject Classification: 46L99.
 Key words and phrases: Approximate isomorphism, C^{*}-Algebra.

