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SOLUTIONS TO NONAUTONOMOUS ABSTRACT FUNCTIONAL
EQUATIONS WITH INFINITE DELAY

Jin Liang and Ti-Jun Xiao

Abstract. In this paper, we obtain two new existence theorems for mild
solutions and classical solutions to nonautonomous functional equations with
infinite delay in Banach spaces.

1. INTRODUCTION

The Cauchy problem for various delay equations in Banach spaces has been
receiving more and more attention in recent years (cf, e.g., [3-11,13,15,16,19] and
references therein). In this paper, we are concerned with the following nonau-
tonomous abstract functional equation with infinite delay in a Banach space X

(1.1)

{
u′(t) = A(t)u(t) + f(t, u(t), ut), σ ≤ t ≤ T,

uσ = φ,

where φ ∈ P (P is an admissible phase space), 0 ≤ σ < T , {A(t)}t∈[σ,T ] is a
family of linear operators in a Banach space X , and f ∈ C([σ, T ] × X × P , X)
is a given function. We obtain two new existence theorems for mild solutions
and classical solutions to nonautonomous functional equations with infinite delay
in Banach spaces. One will see that Theorem 2.1 below extends essentially [9,
Theorem 3.1], as far as the mild solution of (1.1) is concerned, by dropping the
uniform continuity of nonlinear term f from the hypotheses.

For the reader’s convenience, we recall here some basic concepts (cf., e.g., [1,
2, 9, 14]).
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Definition 1.1. Let S be a bounded subset of a semi-normed linear space Z.
The Kuratowski measure of noncompactness of S is defined as

α(S) := inf{γ > 0; S has a finite cover by sets of diameter ≤ γ}.

Definition 1.2. Let a < b. A real nonnegative function K(t, µ, ν) on [a, b]×
R+ × R+ is called a Kamke-type function if

(i) it is Lebesgue measurable in t for every (µ, ν) ∈ R+ × R+ and continuous
in (µ, ν) for a.e. t ∈ [a, b], and K(·, 0, 0) = 0;

(ii) for all 0 ≤ µ ≤ µ, 0 ≤ ν ≤ ν and for a.e. t ∈ [a, b],

K(t, µ, ν) ≤ K(t, µ, ν) ≤ k(µ,ν)(t),

where k(µ,ν)(t) is a locally integrable function on (a, b) for each µ, ν.

Definition 1.3. A linear space P consisting of functions from R− into X ,
with semi-norm ‖ · ‖P , is called an admissible phase space if P has the following
properties.
(H1) For any t0 ∈ R and a > 0, if x : (−∞, t0 + a] → X is continuous on

[t0, t0 +a] and xt0 ∈ P , then xt ∈ P and xt is continuous in t ∈ [t0, t0 +a].
(H2) There exists a continuous function K(t) > 0 and a locally bounded function

M(t) ≥ 0 in t ≥ 0 such that

‖xt‖P ≤ K(t − t0) max
s∈[t0,t]

‖x(s)‖ + M(t − t0)‖xt0‖P

for t ∈ [t0, t0 + a] and x as in (H1).
(H3) The quotient space P/‖ · ‖P is a Banach space.

Samples of Kamke-type function and admissible phase space can be found in
many papers, for example, in [1, 2, 9].

Definition 1.4. An operator family {U(t, s)}0≤s≤t≤T ⊂ L(X) is called a
(strongly continuous) evolution system if

(1) U(s, s) = I , U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T .
(2) (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

“Evolution system” is also called evolution family, evolution operator, evolution
process, propagator, or fundamental solution (cf., e.g., [4, 12, 14, 18, 19]).

Parabolicity Assumption (cf., e.g., [14, 19]):

(A1) For all t ∈ [0, T ], D(A(t)) = D being dense in X .
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(A2) For every t ∈ [0, T ] and complex number λ with Reλ ≤ 0, (λ + A(t))−1

exists and satisfies∥∥(λ + A(t))−1
∥∥ ≤ W

1 + |λ|, Reλ ≤ 0, t ∈ [0, T ],

for a constant W .

(A3) There are constants α ∈ (0, 1] and W such that∥∥(A(t) − A(s))A(r)−1
∥∥ ≤ W |t − s|α, t, s, r ∈ [0, T ].

2. MAIN RESULTS

Theorem 2.1. Let 0 ≤ σ < T , {U(t, s)}0≤s≤t≤T ⊂ L(X) being an evolution
system, P an admissible phase space, and f ∈ C([σ, T ] × X × P , X). Suppose
that there is a Kamke function K(·, ·, ·) on [σ, T ]× R+ × R+ such that

(i) for every t ∈ [σ, T ] and for every bounded set B ⊂ X and Ω ⊂ P ,

α(F ({t} × {s} × B × Ω)) ≤ K(s, α(B), α(Ω)), a.e. s ∈ [σ, t],

where F (t, s, ·, ·) = U(t, s)f(s, ·, ·).
(ii) �(t) ≡ 0 is the unique nonnegative absolutely continuous solution to the

differential equation

�′(t) = 2MK(t, �(t), K(t)�(t)), a.e. t ∈ (σ, T ]

satisfying

(2.1) limt→σ+
�(t)
t−σ = �(σ) = 0;

(iii)

(2.2) limt→σ+ K(t, ς(t), K(t− σ)ς(t)) = 0,

for every nonnegative absolutely continuous function ς(t) on [σ, T ] satisfying
(2.1); where M = supσ≤s≤t≤T ‖U(t, s)‖ and K(·) is the function as in (H2).
Then for each φ ∈ P , there exists a real number T sup(φ, U(·, ·), f) and a

u : (−∞, Tsup(φ, U(·, ·), f))→ X

such that
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(2.3) u(t) =

 U(t, σ)φ(0) +
∫ t

σ

U(t, s)f(s, u(s), us)ds, t ∈ [σ, Tsup(φ, U(·, ·), f)),

φ(t − σ), t ∈ (−∞, σ].

Proof. For φ ∈ P , write

M := M

[
max

s∈[σ,T ]
‖f(s, φ(0), φ)‖+ 1

]
.

From the proof of [9, Theorem 3.1], we know that for each φ ∈ P , there exists a
δ ∈ (0, 1

2 ), a τ > σ and a sequence u[n](·)n∈N in the following set

P [σ,τ ]
φ,δ : =

{
u : (−∞, τ ] → X ; u

∣∣∣
[σ,τ ]

∈ C([σ, τ ], X), uσ = φ,

max
s∈[σ,t]

‖u(s) − U(s, σ)φ(0)‖ ≤ (t − σ)M and

max {‖u(t) − φ(0)‖, ‖ut − φ‖P} ≤ δ(φ) for all t ∈ [σ, τ ]

}
,

such that

(2.4) u[n](t) :=

 U(t, σ)φ(0) +
∫ t

σ

U(t, s)f(s, u[n](s), u[n]s)ds, t ∈ [σ, τ ],

φ(t − σ), t ∈ (−∞, σ]

is in P [σ,τ ]
φ,δ ,

‖f(s, u[n](s), u[n]s) − f(s, φ(0), φ)‖ ≤ 1, s ∈ [σ, τ ],

and
lim

n→∞ ‖u[n](t)− u[n](t)‖ = 0 uniformly for t ∈ [σ, τ ].

So,

(2.5) α
({u[n](s)}n∈N

)
= α

({u[n](s)}n∈N

)
, for each s ∈ [σ, τ ],

(2.6) α

({
u[n](·)

∣∣∣
[σ,t]

}
n∈N

)
=α

({
u[n](·)

∣∣∣
[σ,t]

}
n∈N

)
, for every t ∈ [σ, τ ].

Since for every t ∈ [σ, τ) and ε > 0, there are subsets C1(t), . . . , Cl(t) (l ∈ N

depends on t) of
{∫ t

σ U(t, s)f(s, u[n](s), u[n]s)ds
}

n∈N
such that
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diam(Ck(t))

≤ α

({∫ t

σ

U(t, s)f(s, u[n](s), u[n]s)ds

}
n∈N

)
+ ε, k = 1, . . . , l,

{∫ t

σ
U(t, s)f(s, u[n](s), u[n]s)ds

}
n∈N

=
l⋃

k=1

Ck(t),

where diam(Ck(t)) means the diameter of the set Ck(t). Thus, if we define for
every η ∈ [t, τ ],

C̃k(t, η) :=


∫ ·

σ
U(·, s)f(s, u[n](s), u[n]s)ds

∣∣∣∣∣
[t,η]

;

∫ t

σ

U(t, s)f(s, u[n](s), u[n]s)ds ∈ Ck(η)
}

,k = 1, . . . , l,

then 
∫ ·

σ
U(·, s)f(s, u[n](s), u[n]s)ds

∣∣∣∣∣
[t,η]


n∈N

=
l⋃

k=1

C̃k(t, η).

For each k = 1, . . . , l, we choose arbitrarily two elements∫ ·

σ

U(·, s)f(s, u[ik](s), u[ik]s)ds
∣∣∣
[t,η]

,

∫ ·

σ

U(·, s)f(s, u[jk](s), u[jk]s)ds
∣∣∣
[t,η]

from C̃k(t, η). Then∥∥∥∥∫ ·

σ

U(·, s)f(s, u[ik](s), u[ik]s)ds
∣∣∣
[t,η]

−
∫ ·

σ

U(·, s)f(s, u[jk](s), u[jk]s)ds
∣∣∣
[t,η]

∥∥∥∥
C[t,η]

= max
ν∈[t,η]

∥∥∥∥∫ ν

σ

U(ν, s)f(s, u[ik](s), u[ik]s)ds−
∫ ν

σ

U(ν, s)f(s, u[jk](s), u[jk]s)ds

∥∥∥∥
≤ max

ν∈[t,η]

∥∥∥∥∫ t

σ

U(ν, s)f(s, u[ik](s), u[ik]s)ds−
∫ t

σ

U(ν, s)f(s, u[jk](s), u[jk]s)ds

∥∥∥∥
+ max

ν∈[t,η]

∥∥∥∥∫ ν

t

U(ν, s)f(s, u[ik](s), u[ik]s)ds−
∫ ν

t

U(ν, s)f(s, u[jk](s), u[jk]s)ds

∥∥∥∥
≤ max

ν∈[t,η]
‖U(ν, t)‖

∥∥∥∥∫ t

σ

U(t, s) [f(s, u[ik](s), u[ik]s)ds−f(s, u[jk](s), u[jk]s)] ds

∥∥∥∥
+2(η − t)M, k = 1, . . . , l, i, j ∈ N.
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Therefore, if η − t is small enough, then

α


∫ ·

σ
U(·, s)f(s, u[n](s), u[n]s)ds

∣∣∣∣∣
[t,η]


n∈N


≤ diam(C̃k(t, η))

≤ Mα

({∫ t

σ
U(t, s)f(s, u[n](s), u[n]s)ds

}
n∈N

)
+ 2ε.

Thus, by the properties of Kuratowski measure of noncompactness, we obtain, for
each t ∈ [σ, τ),

(2.7)

α


∫ ·

σ
U(·, s)f(s, u[n](s), u[n]s)ds

∣∣∣∣∣
[σ,t]


n∈N


≤ sup

t∈[σ,t]

lim
η↑t

α


∫ ·

σ
U(·, s)f(s, u[n](s), u[n]s)ds

∣∣∣∣∣
[t,η]


n∈N


≤ M sup

t∈[σ,t]

α

({∫ t

σ
U(t, s)f(s, u[n](s), u[n]s)ds

}
n∈N

)

≤ 2M2

∫ t

σ

α
({f(s, u[n](s), u[n]s)}n∈N

)
ds.

Following the arguments in the proof of [9 Theorem 3.1], we can get the desired
conclusion. For the reader’s convenience, we give here a sketch of this proof.

Actually, by (H2) we have

max
ν∈[σ,s]

‖u[n](ν) − u[0](ν)‖ = max
ν∈[σ,s]

‖u[n](ν) − U(t, σ)z‖ ≤ (s − σ)M,

s ∈ [σ, τ ], n ∈ N,

max
ν∈[σ,s]

‖u[n]ν − u[0]ν‖P ≤ (s − σ)M max
t∈[0,T−σ]

K(t), s ∈ [σ, τ ], n ∈ N.

So the continuity of f implies that for each ε > 0, there is 0 < η ≤ τ −σ such that

α
(
{f(s, u[n](s), u[n]s)}s∈[σ,σ+η], n∈N

)
≤ ε

2
.

Set

ς(t) :=


2M2

∫ τ

σ
α
({f(s, u[n](s), u[n]s)}n∈N

)
ds, t ∈ [τ, T ],

2M2

∫ t

σ
α
({f(s, u[n](s), u[n]s)}n∈N

)
ds, t ∈ [σ, τ ].
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Then ς(t) is a nonnegative absolutely continuous function ς(t) on [σ, T ], ς(σ) = 0,
and

(2.8) lim
t→σ+

ς(t)
t − σ

= 0.

On the other hand, it follows from (2.4)-(2.7) and (H2) that

ς(t) ≤ 2
∫ t

σ
K (s, α ({u[n](s)}n∈N

)
, α
({u[n]s}n∈N

))
ds

≤ 2
∫ t

σ
K
(

s, α
({u[n](s)}n∈N

)
, K(s− σ)α

({
u[n](·)

∣∣∣
[σ,s]

}
n∈N

))
ds

≤ 2
∫ t

σ
K (s, ς(s), K(s− σ)ς(s)) ds, a.e. t ∈ (σ, τ ].

Put

ς(t) :=


∫ τ

σ
K (s, ς(s), K(s− σ)ς(s))ds, t ∈ [τ, T ],∫ t

σ
K (s, ς(s), K(s− σ)ς(s))ds, t ∈ [σ, τ ].

Then, ς(t) is also a nonnegative absolutely continuous function on [σ, T ], ς(σ) = 0,
and

lim
t→σ+

ς(t)
t − σ

= 0

by (2.2) and (2.8). Clearly,

ς ′(t) ≤ 2K (t, ς(t), K(t − σ)ς(t)) , a.e. t ∈ [σ, T ].

This implies that ς(t) ≡ 0, and so ς(t) ≡ 0. Therefore, by (2.4) and (2.6),

α

({
u[n](·)

∣∣∣
[σ,τ ]

}
n∈N

)
= 0,

i.e., there exists an increasing subsequence {nk}k∈N ⊂ N and a function u :
(−∞, τ ] → X with u(·)

∣∣∣
[σ,τ ]

∈ C([σ, τ ], X) and uσ = φ such that

lim
k→∞

max
t∈[σ,τ ]

‖u[nk](t)− u(t)‖ = 0.

From (H2), it follows that limk→∞ maxt∈[σ,τ ] ‖u[nk]t − ut‖P = 0. Consequently,
u(t) is a mild solution to (1.1) on [σ, τ ].
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Theorem 2.2. Let the “Parabolicity Assumption” hold and {U(t, s)} 0≤s≤t≤T

be the evolution system associated with the family {A(t)} t∈[0,T ]. Let P be an
admissible phase space, f ∈ C([0, T ] × X × P , X) satisfying the hypotheses of
Theorem 2.1, and for all

u(·) ∈ P [0,T ] :=

{
u : (−∞, T ] → X ; u

∣∣∣
[0,T ]

∈ C([0, T ], X), u0 ∈ P
}

,

f(s, u(s), us) ∈ D (s ∈ [0, T ]) and

(2.9)
∫ T

0
‖A(t0)f(s, u(s), us)‖ds < ∞

for some t0 ∈ [0, T ]. Then for each φ ∈ P , there exists a real number T sup(φ, U(·, ·), f)
such that (1.1) has a classical solution u(t) on [0, T sup(φ, U(·, ·), f)).

Proof. From [14, 19] we know that the evolution system {U(t, s)}0≤s≤t≤T

satisfies

(i)′ For all 0 ≤ s < t ≤ T , U(t, s) : X → D := D(A(t)), t → U(t, s) is
strongly differentiable, and ∂

∂tU(t, s) ∈ L(X) being strongly continuous on
0 ≤ s < t ≤ T .

(ii)′ For all 0 ≤ s < t ≤ T ,

(2.10)


∂

∂t
U(t, s) = A(t)U(t, s),

‖A(t)U(t, s)A−1(s)‖ ≤ M̃,

where M̃ is a constant.

(iii)′ For every z ∈ D and t ∈ (0, T ], U(t, s)z is differentiable in s on 0 ≤ s ≤
t ≤ T , and

(2.11)
∂

∂s
U(t, s)z = −U(t, s)A(s)z.

Thus from Theorem 2.1 it follows that for each φ ∈ P , there exists a real number
Tsup(φ, U(·, ·), f) such that (2.3) has a solution u(t) on [0, Tsup(φ, U(·, ·), f)). We
have by (2.10),

∂

∂t
U(t, s)f(s, u(s), us) = A(t)U(t, s)A(s)−1A(s)A(t0)−1A(t0)f(s, u(s), us),

0 ≤ s < t ≤ Tsup(φ, U(·, ·), f),
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and by “Parabolic Assumption”, there is a constant M such that

‖A(t)A(t0)−1‖ ≤ M, for each t ∈ [0, Tsup(φ, U(·, ·), f)).

Therefore, by (2.9), we get∫ t

0

∥∥∥∥ ∂

∂t
U(t, s)f(s, u(s), us)

∥∥∥∥ds ≤
∫ T

0

∥∥∥∥ ∂

∂t
U(t, s)f(s, ut(s), ut

s)
∥∥∥∥ds

< ∞, t ∈ [0, Tsup(φ, U(·, ·), f)),

where

ut(s) =

{
u(t), s ∈ [t, T ],

u(s), s ∈ (−∞, t].

Hence,

u′(t) = A(t)U(t, 0)φ(0) + f(t, u(t), ut) +
∫ t

0
A(t)U(t, s)f(s, u(s), us)ds

= A(t)u(t) + f(t, u(t), ut), t ∈ [0, Tsup(φ, U(·, ·), f)),

i.e., u(t) is a classical solution of (1.1) on [0, Tsup(φ, U(·, ·), f)).
Moreover, (i)′ and (2.11) imply that a classical solution of (1.1) is also a mild

solution of (2.3). This means (1.1) has a unique classical solution for each φ∈P .
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