TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 1, pp. 139-151, January 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

EXISTENCE THEOREM OF IMPLICIT QUASIVARIATIONAL INEQUALITIES WITHOUT CONTINUITIES

Shuechin Huang

Abstract. This paper is to establish an existence result (Theorem 3.1) for the implicit quasivariational inequality without continuity assumptions in infinite-dimensional normed spaces.

1. INTRODUCTION

Let X and C be nonempty subsets of \mathbb{R}^n and \mathbb{R}^m respectively, $\Gamma : X \to 2^X$ and $\Phi : X \to 2^C$ two multifunctions, $\psi : X \times C \times X \to \mathbb{R}$ a single-valued map. The *implicit quasivariational inequality* is to find $(\hat{x}, \hat{z}) \in X \times C$ such that $\hat{x} \in \Gamma(\hat{x}), \hat{z} \in \Phi(\hat{x})$ and

$$\psi(\hat{x}, \hat{z}, y) \le 0$$
, for all $y \in \Gamma(\hat{x})$.

The above implicit quasivariational inequality covers the classical variational inequality problem and most of generalized problems of the classical variational inequalities as special cases. See, e.g., [10, 15-18, and the references there]. As a special case of the implicit quasivariational inequality, the quasivariational inequality problem was first introduced by Yao in [13]. It is remarkable that a great deal of finite-dimensional results to the quasivariational inequality problem have been found under continuity assumptions (see, e.g., [9, 13, 14]). Recently, the case involving discontinuity functions has come to many authors' attention and some interesting results have been obtained (see, e.g., [2, 5, 17]).

In [5], Cubiotti and Yao studied the implicit quasivariational inequality without assuming continuity of data mappings and gave some applications to generalized

Received March 10, 2005.

Communicated by Jen-Chih Yao.

²⁰⁰⁰ Mathematics Subject Classification: Primary 58E35.

Key words and phrases: Variational inequality, Implicit quasivariational inequality, Lower semicontinuity, Hausdorff lower semicontinuity, Affine hull.

Research was supported in part by the National Science Council of Taiwan: NSC 92-2115-M-259-002.

quasivariational inequalities with discontinuous fuzzy mappings. Their main existence result is the following [5, Theorem 3.2].

Theorem 1.1. Let X be a nonempty compact convex subset of \mathbb{R}^n , C a nonempty subset of \mathbb{R}^m , $\Gamma : X \to 2^X$ and $\Phi : X \to 2^C$ two multifunctions, $\psi : X \times C \times X \to \mathbb{R}$ a single-valued map. Assume that:

(i) Γ is lower semicontinuous with nonempty convex values;

(ii) the set $E = \{x \in X : x \in \Gamma(x)\}$ is closed;

(iii) $\operatorname{aff}(\Gamma(x)) = \operatorname{aff}(X)$, for all $x \in E$;

(iv) $\Phi(x)$ is nonempty and compact for $x \in X$ and convex for $x \in E$;

(v) for each $y \in X$ the set $\{x \in E : \inf_{z \in \Phi(x)} \psi(x, z, y) \le 0\}$ is closed;

- (vi) for each $x \in E$ the set $\{y \in X : \inf_{z \in \Phi(x)} \psi(x, z, y) \leq 0\}$ is closed;
- (vii) for each $x \in E$ one has $\inf_{z \in \Phi(x)} \psi(x, z, x) \leq 0$;
- (viii) for each $x \in E$ and each $z \in \Phi(x)$ the function $\psi(x, z, \cdot)$ is concave on $\Gamma(x)$;
- (ix) for each $x \in E$ and each $y \in \Gamma(x)$ the function $\psi(x, \cdot, y)$ is lower semicontinuous (in the sense of single-valued maps) and convex on $\Phi(x)$.

Then there exists $(\hat{x}, \hat{z}) \in X \times C$ such that $\hat{x} \in \Gamma(\hat{x}), \hat{z} \in \Phi(\hat{x})$ and

$$\psi(\hat{x}, \hat{z}, y) \le 0$$
 for all $y \in \Gamma(\hat{x})$.

The purpose of this paper is to establish an existence result for the implicit quasivariational inequality without continuity assumptions in infinite-dimensional normed spaces. The approach is based on Theorem 1.1 and the proof of Theorem 1.2 in [7].

2. Preliminaries

We recall that if S and V are topological spaces and if $\Phi : S \to 2^V$ is a multifunction, then Φ is said to be *lower semicontinuous* at $x \in S$ if for each open set $\Omega \subset V$ with $\Phi(x) \cap \Omega \neq \emptyset$, the set

$$\Phi^{-}(\Omega) := \{ y \in S : \Phi(y) \cap \Omega \neq \emptyset \}$$

is a neighborhood of x in S. We say that Φ is *lower semicontinuous in* S if it is lower semicontinuous at each point of S. We say that Φ has *open lower sections* if for each $y \in V$, the set $\Phi^-(\{y\})$ is open in S. If Φ has open lower sections and A is any subset of V, then the multifunction $\Phi_A : S \to 2^V$ defined by $\Phi_A(x) = \Phi(x) \cap A$ is lower semicontinuous in S. Let $(N, \|\cdot\|_N)$ be a real normed space. A multifunction $\Phi : S \to 2^N$ is said to be *Hausdorff lower semicontinuous* at $x \in S$ if given $\epsilon > 0$ there exists a neighborhood U of x in S such that

$$\Phi(x) \subset \Phi(y) + B(0, \epsilon), \text{ for all } y \in U,$$

where $B(0, \epsilon)$ denotes an open ball in N centered at 0 with radius ϵ . We say that Φ is *Hausdorff lower semicontinuous in* S if it is Hausdorff lower semicontinuous at each point of S. In particular, Hausdorff lower semicontinuity implies lower semicontinuity and the converse is true if each set $\Phi(x)$ is nonempty and compact; see [11, Theorem 7.1.14].

For $x \in N$ and r > 0, let

$$B(x, r) = \{ y \in N : ||y - x|| < r \},\$$

$$\overline{B}(x, r) = \{ y \in N : ||y - x|| \le r \}.$$

Let $A \subset N$ be nonempty. The *closed convex hull* of A is denoted by $\overline{co}(A)$ and the *affine hull* of A is denoted by aff(A), i.e.,

A subset $M \subset N$ is called an *affine manifold* if there exist $x \in N$ and a linear subspace H of N such that M = x + H. It is known that the set $\operatorname{aff}(A)$ is the smallest affine manifold containing A. If $A \subset E \subset N$, we will denote the interior of A in E by $\operatorname{int}_E(A)$. Recall that if A is a nonempty finite-dimensional convex set, then $\operatorname{int}_{\operatorname{aff}(A)}(A) \neq \emptyset$.

The following results will be used in the proof of Theorem 3.1.

Proposition 2.1. Let X be a topological space, $(E, \|\cdot\|)$ a real normed space, and $\phi: X \to 2^E$ a multifunction. If ϕ is Hausdorff lower semicontinuous, then its closure $\overline{\phi}$, defined by $\overline{\phi}(x) = \overline{\phi(x)}$, is Hausdorff lower semicontinuous.

Proof. Let $x_0 \in X$. Given $\epsilon > 0$ there exists a neighborhood U of x_0 in X such that

$$\phi(x_0) \subset \phi(x) + B(0, \epsilon/2),$$
 for all $x \in U$.

Let $y \in \overline{\phi(x) + B(0, \epsilon/2)}$. Then there exists $z \in \phi(x) + B(0, \epsilon/2)$ such that $||y-z|| < \epsilon/2$. Hence $y-z \in B(0, \epsilon/2)$, and so $y \in \phi(x) + B(0, \epsilon/2) + B(0, \epsilon/2) = \phi(x) + B(0, \epsilon)$. We have

$$\overline{\phi(x) + B(0, \epsilon/2)} \subset \phi(x) + B(0, \epsilon)$$

from which it follows that

$$\overline{\phi(x_0)} \subset \overline{\phi(x)} + B(0, \epsilon/2) \subset \phi(x) + B(0, \epsilon) \subset \overline{\phi(x)} + B(0, \epsilon), \quad \text{ for all } x \in U.$$

Hence $\overline{\phi}$ is Hausdorff lower semicontinuous.

Proposition 2.2. Let X be a topological space, $(E, \|\cdot\|)$ a real normed space, and M an affine manifold of E. Suppose that $\phi: X \to 2^M$ is a Hausdorff lower semicontinuous multifunction such that $\phi(x)$ is a convex set with nonempty interior, for all $x \in X$. Then for any $x_0 \in X$ and $y_0 \in \text{int}_M \phi(x_0)$, there exists a neighborhood U of x_0 in X such that

$$y_0 \in \operatorname{int}_M \phi(x), \quad \text{ for all } x \in U.$$

Proof. Since ϕ is Hausdorff lower semicontinuous, it follows from Proposition 2.1 that $\overline{\phi}$ is also Hausdorff lower semicontinuous. Notice that for each $x \in X$, $\phi(x)$ is convex with nonempty interior; hence

$$\operatorname{int}_M \phi(x) = \operatorname{int}_M \phi(x), \quad \text{for all } x \in X,$$

by [12, p.38, Ch.II, Theorem 1.3]. For any $x_0 \in X$ and $y_0 \in \operatorname{int}_M \overline{\phi(x_0)}$, apply Proposition 2.4 [3] to $\overline{\phi}$ to choose a neighborhood U of x_0 in X such that

$$y_0 \in \operatorname{int}_M\left(\bigcap_{x \in U} \overline{\phi(x)}\right)$$

Therefore $y_0 \in \operatorname{int}_M \phi(x)$, for all $x \in U$.

3. The Existence Result

The main result is stated and proved as follows.

Theorem 3.1. Let M and N be real normed spaces. Let X be a nonempty closed convex subset of M, C a nonempty subset of N, $\Gamma : X \to 2^X$ and $\Phi :$ $X \to 2^C$ two multifunctions, $\psi : X \times C \times X \to \mathbf{R}$ a single-valued map. Let K_1 and K_2 be two nonempty compact subsets of X such that $K_1 \subset K_2$, K_1 is finite-dimensional and $\overline{\operatorname{co}} K_2$ is compact. Suppose that the following conditions hold:

- (i) Γ is Hausdorff lower semicontinuous with nonempty convex values.
- (ii) The set $E = \{x \in X : x \in \Gamma(x)\}$ is closed.
- (iii) $\Gamma(x) \cap K_1 \neq \emptyset$, for all $x \in X$.
- (iv) $\operatorname{int}_{\operatorname{aff}(X)}\Gamma(x) \neq \emptyset$, for all $x \in X$.
- (v) $\Phi(x)$ is nonempty and compact for $x \in X$ and convex for $x \in E$.

142

143

- (vi) For any finite-dimensional subset A of X, there is a finite-dimensional linear subspace T of N with the projection map $p: N \to T$ such that $p(C) \subset C$ and $\psi(x, p(z), y) = \psi(x, z, y)$, for all $x, y \in A$ and $z \in \Phi(x)$.
- (vii) For each $y \in X$ the set $\{x \in E : \inf_{z \in \Phi(x)} \psi(x, z, y) \le 0\}$ is closed.
- (viii) For each $x \in E$ the set $\{y \in X : \inf_{z \in \Phi(x)} \psi(x, z, y) \leq 0\}$ is closed.
- (ix) For each $x \in E$ one has $\inf_{z \in \Phi(x)} \psi(x, z, x) = 0$.
- (x) For each $x \in E$ and each $z \in \Phi(x)$ the function $\psi(x, z, \cdot)$ is concave on $\Gamma(x)$.
- (xi) For each $x \in E$ and each $y \in \Gamma(x)$ the function $\psi(x, \cdot, y)$ is lower semicontinuous (in the sense of single-valued maps) and convex on $\Phi(x)$.
- (xii) For each $x \in X \setminus K_2$ and each $z \in \Phi(x)$, one has $\sup_{y \in \Gamma(x) \cap K_1} \psi(x, z, y) > 0$.

Then there exists $(\hat{x}, \hat{z}) \in X \times C$ such that $\hat{x} \in \Gamma(\hat{x}), \hat{z} \in \Phi(\hat{x})$ and

$$\psi(\hat{x}, \hat{z}, y) \le 0$$
 for all $y \in \Gamma(\hat{x})$.

Proof. First observe that the set E is nonempty from part (c) of this proof. Let $H = \operatorname{aff}(X)$ be the affine hull of X and let H_0 be the linear subspace of M corresponding to H. Assumption (iv) implies that $\operatorname{int}_H\Gamma(x) \neq \emptyset$, for all $x \in X$. For each $a \in \overline{\operatorname{co}}K_2$, choose any point $u_a \in \operatorname{int}_H\Gamma(a)$. It follows from Proposition 2.2 that there exists an open ball V_a centered at a in M such that

(3.1)
$$u_a \in \operatorname{int}_H \Gamma(x), \quad \text{for all } x \in V_a \cap X.$$

Since $\overline{\operatorname{co}}K_2$ is compact, there exist $a_1, a_2, \ldots, a_n \in \overline{\operatorname{co}}K_2$ such that

(3.2)
$$\overline{\operatorname{co}} K_2 \subset \bigcup_{i=1}^n (V_{a_i} \cap H).$$

Let $W_1 = \bigcup_{i=1}^n (V_{a_i} \cap H)$ so that W_1 is bounded and hence $H \setminus W_1$ is nonempty and closed in H. From (3.2) we have

(3.3)
$$r = \inf\{d(x, H \setminus W_1) : x \in \overline{\operatorname{co}}K_2\} > 0.$$

Let

(3.4)
$$W_2 = \overline{\operatorname{co}} K_2 + [\overline{B}(0, r/2) \cap H_0].$$

Then W_2 is convex and closed in H and $W_2 \subset W_1$.

We assume without loss of generality that $K_1 \cup \{u_{a_1}, \ldots, u_{a_n}\} \subset B(0, k)$, for all $k \in \mathbb{N}$. Let \mathcal{F} be the family of all finite-dimensional linear subspaces of M containing the set $K_1 \cup \{u_{a_1}, \ldots, u_{a_n}\}$. Fix $k \in \mathbb{N}$ and $S \in \mathcal{F}$. Let $Y_k = X \cap B(0,k)$ and consider the set $\overline{Y_k \cap S \cap W_2}$ which is nonempty since $K_1 \subset Y_k \cap S \cap W_2 \subset \overline{Y_k \cap S \cap W_2}$. Define the multifunction $\Gamma_S : \overline{Y_k \cap S \cap W_2} \to 2^{\overline{Y_k \cap S \cap W_2}}$ by

$$\Gamma_S(x) = \Gamma(x) \cap \overline{Y_k \cap S \cap W_2}$$

Assumption (vi) states that there is a finite-dimensional linear subspace T_S of N with the projection map $p: N \to T_S$ such that $p(C) \subset C$ and $\psi(x, p(z), y) = \psi(x, z, y)$, for all $x, y \in Y_k \cap S$ and $z \in \Phi(x)$. Note that $\overline{Y_k \cap S \cap W_2} \subset Y_k \cap S$. Let the multifunction $\Phi_S: \overline{Y_k \cap S \cap W_2} \to 2^{C \cap T_S}$ be defined by

$$\Phi_S(x) = p(\Phi(x)), \quad \text{for } x \in \overline{Y_k \cap S \cap W_2}.$$

We now consider the finite-dimensional implicit quasivariational inequality problem corresponding to $(\overline{Y_k \cap S \cap W_2}, C \cap T_S, \Gamma_S, \Phi_S, \psi)$ and prove conditions (i) through (ix) in Theorem 1.1 are satisfied.

(a) The set $\overline{Y_k \cap S \cap W_2}$ is a nonempty compact convex subset of S.

(b) To prove the multifunction $\Gamma_S: \overline{Y_k \cap S \cap W_2} \to 2^{\overline{Y_k \cap S \cap W_2}}$ is lower semicontinuous, observe that

(3.5)
$$\operatorname{int}_{H}\Gamma(x) \cap Y_{k} \cap S \cap W_{2} \neq \emptyset$$
, for all $x \in \overline{Y_{k} \cap S \cap W_{2}}$;

hence Γ_S has nonempty convex values. In fact, let $x \in \overline{Y_k \cap S \cap W_2}$ and choose $c \in Y_k \cap S \cap W_2$ such that $||x - c|| \leq r/4$. Then $x - c \in \overline{B}(0, r/4) \cap H_0$. We obtain from (3.4) that

$$c \in \overline{\operatorname{co}}K_2 + [\overline{B}(0, r/2) \cap H_0],$$

so (3.3) implies that

$$x \in \overline{\operatorname{co}}K_2 + [\overline{B}(0, 3r/4) \cap H_0] \subset W_1.$$

Thus $x \in V_{a_i}$, for some $1 \le i \le n$. Especially (3.1) shows that $u_{a_i} \in \operatorname{int}_H \Gamma(x)$ and hence

$$u_{a_i} \in \operatorname{int}_H \Gamma(x) \cap Y_k \cap S \neq \emptyset.$$

By assumption (iii), $\Gamma(x) \cap K_1 \neq \emptyset$, for all $x \in X$. Fix $v \in \Gamma(x) \cap K_1$. By the convexity of $\Gamma(x)$ we have

(3.6)
$$v + t(u_{a_i} - v) \in \operatorname{int}_H \Gamma(x) \cap Y_k \cap S$$
, for all $t \in (0, 1]$.

On the other hand, it follows from (3.4) that

$$v + [\overline{B}(0, r/2) \cap H_0] \subset W_2,$$

and so there exists $\sigma \in (0, 1]$ such that

(3.7)
$$v + t(u_{a_i} - v) \in W_2, \quad \text{for all } t \in (0, \sigma].$$

Hence we obtain from (3.6) and (3.7) that

$$\mathrm{int}_H\Gamma(x)\cap Y_k\cap S\cap W_2\neq\emptyset$$

as claimed.

Next let $x_0 \in \overline{Y_k \cap S \cap W_2}$ and let U be an open set in H such that

$$\Gamma_S(x_0) \cap U \neq \emptyset.$$

By (3.5) we can choose a point $v_0 \in \operatorname{int}_H \Gamma(x) \cap Y_k \cap S \cap W_2 \subset \Gamma_S(x_0)$. Fix $v_1 \in \Gamma_S(x_0) \cap U$. The convexity of $\Gamma(x_0)$ assures that

(3.8)
$$v_1 + t(v_0 - v_1) \in \operatorname{int}_H \Gamma(x_0) \cap \overline{Y_k \cap S \cap W_2}, \quad \text{for all } t \in (0, 1].$$

Since U is open in H, there exists $\rho > 0$ such that

(3.9)
$$v_1 + [\overline{B}(0,\rho) \cap H_0] \subset U.$$

By (3.8) and (3.9), there exists $\mu \in (0, 1]$ such that

(3.10)
$$v_1 + \mu(v_0 - v_1) \in \operatorname{int}_H \Gamma(x_0) \cap \overline{Y_k \cap S \cap W_2} \cap U.$$

Proposition 2.2 implies that there is an open neighborhood D_{x_0} of x_0 in X such that

(3.11)
$$v_1 + \mu(v_0 - v_1) \in \operatorname{int}_H \Gamma(x), \quad \text{for all } x \in D_{x_0}.$$

We obtain from (3.10) and (3.11) that

$$v_1 + \mu(v_0 - v_1) \in \operatorname{int}_H \Gamma(x) \cap \overline{Y_k \cap S \cap W_2} \cap U$$
, for all $x \in D_{x_0}$.

In particular, $\Gamma_S(x) \cap U \neq \emptyset$, for all $x \in D_{x_0} \cap \overline{Y_k \cap S \cap W_2}$.

(c) Let $E_S = \{x \in \overline{Y_k \cap S \cap W_2} : x \in \Gamma_S(x)\}$ so that it is nonempty by [5, Proposition 3.1]. Also

$$E_S = \{x \in \overline{Y_k \cap S \cap W_2} : x \in \Gamma_S(x)\} = \{x \in X : x \in \Gamma(x)\} \cap \overline{Y_k \cap S \cap W_2}$$
$$= E \cap \overline{Y_k \cap S \cap W_2}$$

is closed by assumption (ii).

Shuechin Huang

(d) To prove

$$\operatorname{aff}(\Gamma_S(x)) = \operatorname{aff}(\overline{Y_k \cap S \cap W_2}), \quad \text{for all } x \in E_S,$$

fix $x \in E_S$. Since the set $\operatorname{int}_H \Gamma(x) \cap S$ is open in S, and since, by (3.5),

$$\emptyset \neq \operatorname{int}_{H}\Gamma(x) \cap Y_{k} \cap S \cap W_{2}$$
$$\subset (\operatorname{int}_{H}\Gamma(x) \cap S) \cap \overline{Y_{k} \cap S \cap W_{2}} = \operatorname{int}_{H}\Gamma(x) \cap \overline{Y_{k} \cap S \cap W_{2}}$$
$$\subset \Gamma_{S}(x) \subset \overline{Y_{k} \cap S \cap W_{2}},$$

it follows from [4, Proposition 2.1] that

$$\operatorname{aff}(\overline{Y_k \cap S \cap W_2}) = \operatorname{aff}(\operatorname{int}_H \Gamma(x) \cap \overline{Y_k \cap S \cap W_2}) \subset \operatorname{aff}(\Gamma_S(x)) \subset \operatorname{aff}(\overline{Y_k \cap S \cap W_2})$$

Therefore

$$\operatorname{aff}(\Gamma_S(x)) = \operatorname{aff}(\overline{Y_k \cap S \cap W_2}).$$

(e) It follows directly from assumption (v) and the definition of E_S that $\Phi_S(x)$ is nonempty and compact for $x \in \overline{Y_k \cap S \cap W_2}$ and convex for $x \in E_S$. Moreover, assumption (vi) implies that each $\Phi_S(x)$ is a finite-dimensional subset of C, for all $x \in \overline{Y_k \cap S \cap W_2}$.

(f) For each $y \in \overline{Y_k \cap S \cap W_2}$, assumption (vii) shows that the set

$$\{x \in E_S : \inf_{\bar{z} \in \Phi_S(x)} \psi(x, \bar{z}, y) \le 0\} = \{x \in \overline{Y_k \cap S \cap W_2} : \inf_{\bar{z} \in \Phi_S(x)} \psi(x, \bar{z}, y) \le 0\} \cap E$$
$$= \{x \in \overline{Y_k \cap S \cap W_2} : \inf_{z \in \Phi(x)} \psi(x, z, y) \le 0\} \cap E$$
$$= \{x \in E : \inf_{z \in \Phi(x)} \psi(x, z, y) \le 0\} \cap \overline{Y_k \cap S \cap W_2}$$

is closed.

(g) For each $x \in E_S$, assumption (viii) implies that the set

$$\{y \in \overline{Y_k \cap S \cap W_2} : \inf_{\overline{z} \in \Phi_S(x)} \psi(x, \overline{z}, y) \le 0\}$$

=
$$\{y \in \overline{Y_k \cap S \cap W_2} : \inf_{z \in \Phi(x)} \psi(x, z, y) \le 0\}$$

=
$$\{y \in X : \inf_{z \in \Phi(x)} \psi(x, z, y) \le 0\} \cap \overline{Y_k \cap S \cap W_2}$$

is closed.

146

(h) For each $x \in E_S$, assumption (ix) implies that

$$\inf_{\bar{z}\in\Phi_S(x)}\psi(x,\bar{z},x)=\inf_{z\in\Phi(x)}\psi(x,z,x)\leq 0.$$

(i) Let $x \in E_S$ and $\overline{z} = p(z) \in \Phi_S(x)$. For any $y_1, y_2 \in \Gamma_S(x) = \Gamma(x) \cap \overline{Y_k \cap S \cap W_2}$ and $t \in [0, 1]$, assumption (x) implies that

$$\psi(x, \bar{z}, ty_1 + (1-t)y_2) = \psi(x, z, ty_1 + (1-t)y_2)$$

$$\geq t\psi(x, z, y_1) + (1-t)\psi(x, z, y_2)$$

$$= t\psi(x, \bar{z}, y_1) + (1-t)\psi(x, \bar{z}, y_2).$$

Hence the function $\psi(x, \overline{z}, \cdot)$ is concave on $\Gamma_S(x)$.

(j) For each $x \in E_S$ and each $y \in \Gamma_S(x)$, assumption (xi) implies that the function $\psi(x, \cdot, y)$ is lower semicontinuous and convex on $\Phi(x)$. Thus it follows from the definition of Φ_S that the function $\psi(x, \cdot, y)$ is lower semicontinuous and convex on $\Phi_S(x)$.

Therefore, by Theorem 1.1 there exists $(x_S, \overline{z}_S) \in (\overline{Y_k \cap S \cap W_2}) \times (C \cap T_S)$ such that $x_S \in \Gamma_S(x_S), \overline{z}_S \in \Phi_S(x_S)$ and

$$\psi(x_S, \bar{z}_S, y) \le 0$$
, for all $y \in \Gamma_S(x_S)$.

Let $z_S \in \Phi(x_S)$ such that $\bar{z}_S = p(z_S)$. Then we conclude that $x_S \in E$ and

(3.12)
$$\psi(x_S, z_S, y) \le 0$$
, for all $y \in \Gamma_S(x_S)$.

It is also immediate from assumption (ix) that $\psi(x_S, z_S, x_S) \ge 0$ and hence $\psi(x_S, z_S, x_S) = 0$ by (3.12). Moreover, $x_S \in K_2$ for all $S \in \mathcal{F}$ by assumption (xii). We shall prove that

$$\psi(x_S, z_S, y) \le 0$$
, for all $y \in \Gamma(x_S) \cap Y_k \cap S$.

Let $y \in \Gamma(x_S) \cap Y_k \cap S$. Notice that

$$x_S \in K_2 \cap Y_k \subset \overline{\operatorname{co}} K_2 \cap Y_k \subset Y_k \subset H$$

and

$$y \in \Gamma(x_S) \cap Y_k \subset Y_k \subset H.$$

Since Y_k is convex and $H - H \subset H_0$, there is a sufficiently small number $t \in (0, 1)$ such that

$$x_S + t(y - x_S) \in Y_k \cap \left[\overline{\operatorname{co}} K_2 + \left(\overline{B}(0, r/2) \cap H_0\right)\right] = Y_k \cap W_2.$$

Shuechin Huang

Moreover, since $x_S \in \Gamma(x_S) \cap Y_k \cap S$ and $\Gamma(x_S)$ is convex, we have

$$x_S + t(y - x_S) \in \Gamma(x_S) \cap Y_k \cap S \cap W_2 \subset \Gamma(x_S) \cap \overline{Y_k \cap S \cap W_2} = \Gamma_S(x_S).$$

We obtain from (3.12) and assumptions (ix), (x) that

$$0 \geq \psi(x_S, z_S, x_S + t(y - x_S))$$

$$\geq t\psi(x_S, z_S, y) + (1 - t)\psi(x_S, z_S, x_S) = t\psi(x_S, z_S, y),$$

so $\psi(x_S, z_S, y) \leq 0$ as desired. Consequently, given any fixed $k \in \mathbf{N}$, for each $S \in \mathcal{F}$, there exist $x_S \in \overline{Y_k \cap S \cap W_2}$ and $z_S \in \Phi(x_S)$ such that $x_S \in \Gamma_S(x_S)$ and

(3.13)
$$\psi(x_S, z_S, y) \le 0$$
, for all $y \in \Gamma(x_S) \cap Y_k \cap S$.

Now we fix $k \in \mathbb{N}$ and consider the net $\{x_S : S \in \mathcal{F}\}$ with \mathcal{F} ordered by the set inclusion \subset . It follows from the compactness of K_2 that the net $\{x_S : S \in \mathcal{F}\}$ has a cluster point $\hat{x}_k \in K_2$. Since the set E is closed, we have $\hat{x}_k \in E$ and thus $\hat{x}_k \in \Gamma(\hat{x})$. Assumption (iv) states that $\operatorname{int}_H \Gamma(\hat{x}_k) \neq \emptyset$. We next claim that

(3.14)
$$\inf_{z \in \Phi(\hat{x}_k)} \psi(\hat{x}_k, z, y) \le 0, \quad \text{ for all } y \in \text{int}_H \Gamma(\hat{x}_k) \cap Y_k.$$

On the contrary, assume that there exists $y_0 \in \operatorname{int}_H \Gamma(\hat{x}_k) \cap Y_k$ such that

(3.15)
$$\inf_{z \in \Phi(\hat{x}_k)} \psi(\hat{x}_k, z, y_0) > 0.$$

By Proposition 2.2 there exists $\epsilon > 0$ such that

(3.16)
$$y_0 \in \operatorname{int}_H \Gamma(x), \quad \text{for all } x \in B(\hat{x}_k, \epsilon) \cap X.$$

It is seen from (3.15) and assumption (vii) that there exists a positive number $\alpha < \epsilon$ such that

(3.17)
$$B(\hat{x}_k, \alpha) \cap X \subset \{x \in E : \inf_{z \in \Phi(x)} \psi(x, z, y_0) > 0\}.$$

By construction there exists $S_0 \in \mathcal{F}$ such that $y_0 \in S_0$ and $x_{S_0} \in B(\hat{x}_k, \alpha)$. Then we have $y_0 \in \operatorname{int}_H \Gamma(x_{S_0}) \cap Y_k \cap S_0$ by (3.16). Therefore (3.13) implies that

$$(3.18) \qquad \qquad \psi(x_{S_0}, z_{S_0}, y_0) \le 0$$

However, (3.17) shows that

$$\inf_{z \in \Phi(x_{S_0})} \psi(x_{S_0}, z, y_0) > 0.$$

In particular,

$$\psi(x_{S_0}, z_{S_0}, y_0) > 0$$

148

which contradicts (3.18). Hence (3.14) holds.

Next consider the sequence $\{\hat{x}_k\}$ of points in K_2 . By the compactness of K_2 there exists a subsequence of $\{\hat{x}_k\}$, still denoted by $\{\hat{x}_k\}$, which converges to a point \hat{x} of K_2 . We will prove that

(3.19)
$$\inf_{z \in \Phi(\hat{x})} \psi(\hat{x}, z, y) \le 0, \quad \text{ for all } y \in \operatorname{int}_{H} \Gamma(\hat{x}).$$

Suppose on the contrary that there exists $y_1 \in int_H \Gamma(\hat{x})$ such that

(3.20)
$$\inf_{z \in \Phi(\hat{x})} \psi(\hat{x}, z, y_1) > 0.$$

Again, by Proposition 2.2 there exists $\delta > 0$ such that

(3.21)
$$y_1 \in \operatorname{int}_H \Gamma(x), \quad \text{for all } x \in B(\hat{x}, \delta) \cap X.$$

By (3.20) and assumption (vii) there exists a positive number $\beta < \delta$ such that

(3.22)
$$B(\hat{x},\beta) \cap X \subset \{x \in E : \inf_{z \in \Phi(x)} \psi(x,z,y_1) > 0\}.$$

Choose an integer k such that $\hat{x}_k \in B(\hat{x}, \beta)$ and $y_1 \in Y_k$. It follows from (3.21) that

$$y_1 \in \operatorname{int}_H \Gamma(\hat{x}_k) \cap Y_k;$$

hence by (3.14) we have

$$\inf_{z \in \Phi(\hat{x}_k)} \psi(\hat{x}_k, z, y_1) \le 0.$$

However, (3.22) implies that

$$\inf_{z\in\Phi(\hat{x}_k)}\psi(\hat{x}_k,z,y_1)>0,$$

a contradiction. Consequently, (3.19) holds. Therefore

$$\sup_{y \in \operatorname{int}_{H} \Gamma(\hat{x})} \inf_{z \in \Phi(\hat{x})} \psi(\hat{x}, z, y) \leq 0.$$

As the supremum of a family of lower semicontinuous functions on $\Phi(\hat{x})$, the function $z \to \sup_{y \in \operatorname{int}_H \Gamma(\hat{x})} \psi(\hat{x}, z, y)$ is lower semicontinuous on the compact set $\Phi(\hat{x})$, so there exists $\hat{z} \in \Phi(\hat{x})$ such that

(3.23)
$$\sup_{y \in \operatorname{int}_{H} \Gamma(\hat{x})} \psi(\hat{x}, \hat{z}, y) = \inf_{z \in \Phi(\hat{x})} \sup_{y \in \operatorname{int}_{H} \Gamma(\hat{x})} \psi(\hat{x}, z, y).$$

Applying [8, Theorem 2]fan and assumptions (v), (x) and (xi), it follows that

(3.24)
$$\inf_{z \in \Phi(\hat{x})} \sup_{y \in \operatorname{int}_H \Gamma(\hat{x})} \psi(\hat{x}, z, y) = \sup_{y \in \operatorname{int}_H \Gamma(\hat{x})} \inf_{z \in \Phi(\hat{x})} \psi(\hat{x}, z, y).$$

Hence (3.23) and (3.24) imply that

$$\sup_{y \in \operatorname{int}_{H} \Gamma(\hat{x})} \psi(\hat{x}, \hat{z}, y) \le 0.$$

Let $y \in \Gamma(\hat{x})$. Choose a point $w \in \operatorname{int}_H \Gamma(\hat{x})$. We infer from the convexity of $\Gamma(\hat{x})$ that

 $tw + (1-t)y \in \operatorname{int}_H \Gamma(\hat{x}), \quad \text{ for all } t \in (0,1].$

Since the function $\psi(\hat{x}, \hat{z}, \cdot)$ is concave on $\Gamma(\hat{x})$, we have

$$t\psi(\hat{x},\hat{z},w) + (1-t)\psi(\hat{x},\hat{z},y) \le \psi(\hat{x},\hat{z},tw + (1-t)y) \le 0, \quad \text{ for all } t \in (0,1];$$

hence $\psi(\hat{x}, \hat{z}, y) \leq 0$ by letting t approach 0. Therefore

$$\sup_{y\in\Gamma(\hat{x})}\psi(\hat{x},\hat{z},y)\leq 0.$$

This completes the proof.

Remark. (a) The reader may notice that the set $\overline{co}(K_2)$ is compact when M is a Banach space; see [1, Theorem, p. 174].

(b) If N is a finite-dimensional space, then condition (vi) of Theorem 3.1 is satisfied by letting T = N and p the identity map.

ACKNOWLEDGMENT

I am deeply grateful to Professor J. C. Yao for guiding me to this work, providing detailed comments on the proofs, and suggesting to relax the condition of boundedness on X in Theorem 3.1.

REFERENCES

- C. D. Aliprantis and K. C. Border, *Infinite Dimensional Analysis*, 2nd ed., Springer-Verlag, New York, 1999.
- 2. P. Cubiotti, Discontinuous quasivariational-like inequalities, *Computers Math. Applic.*, **29** (1995), 9-12.
- P. Cubiotti, Generalized quasi-variational inequalities in infinite-dimensional normed spaces, J. Optim. Theory Appl., 92 (1997), 457-475.

Existence Theorem of Implicit Quasivariational Inequalities Without Continuities

151

- 4. P. Cubiotti, Generalized quasi-variational inequalities without continuities, *J. Optim. Theory Appl.*, **92** (1997), 477-495.
- 5. P. Cubiotti, and J. C. Yao, Discontinuous implicit quasi-variational inequalities with applications to fuzzy mappings, *Math. Methods Operat. Res.*, **46** (1997), 213-228.
- 6. P. Cubiotti, On the discontinuous infinite-dimensional generalized quasivariational inequality problem, *J. Optim. Theory Appl.*, **115** (2002), 97-111.
- 7. P. Cubiotti, Existence theorem for the discontinuous generalized quasivariational inequality problem, *J. Optim. Theory Appl.*, **119** (2003), 623-633.
- 8. K. Fan, Minimax theorems, Proc. Nat. Acad. Sci., 39 (1953), 42-47.
- P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, *Math. Programming*, 48 (1990), 161-220.
- 10. D. Kinderlehrer and G. Stampacchia, *An introduction to variational inequalities and their applications*, Academic Press, New York, 1980.
- E. Klein and A. C. Thompson, *Theorey of Correspondences*, John Wiley and Sons, New York, 1984.
- H. H. Schaefer and M. P. Wolff, *Topological Vector Spaces*, 2nd ed., Springer-Verlag, New York, 1999.
- 13. J. C. Yao, The generalized quasi-variational inequality problem with applications, *J. Math. Anal. Appl.*, **158** (1991), 139-160.
- 14. J. C. Yao, On the general variational inequality, J. Math. Anal. Appl., 174 (1993), 550-555.
- 15. J. C. Yao, Variational inequalities with generalized monotone operators, *Math. Operations Res.*, **19** (1994), 691-705.
- 16. J. C. Yao, Multi-valued variational inequalities with *K*-pseudomonotone operators, *J. Optim. Theory Appl.*, **83** (1994), 391-403.
- 17. J. C. Yao, and J. S. Guo, Variational and generalized variational inequalities with discontinuous mappings, *J. Math. Anal. Appl.* 182, 371-392(1994).
- 18. J. C. Yao, Generalized quasi-variational inequality problems with discontinuous mappings, *Math. Operations Res.*, **20** (1995), 465-478.

Shuechin Huang Department of Applied Mathematics, Dong-Hwa University, Hualien 974, Taiwan. E-mail: shuang@math.ndhu.edu.tw