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EXISTENCE THEOREM OF IMPLICIT QUASIVARIATIONAL
INEQUALITIES WITHOUT CONTINUITIES

Shuechin Huang

Abstract. This paper is to establish an existence result (Theorem 3.1) for the
implicit quasivariational inequality without continuity assumptions in infinite-
dimensional normed spaces.

1. INTRODUCTION

Let X and C be nonempty subsets of Rn and Rm respectively, Γ : X → 2X

and Φ : X → 2C two multifunctions, ψ : X × C × X → R a single-valued
map. The implicit quasivariational inequality is to find (x̂, ẑ) ∈ X × C such that
x̂ ∈ Γ(x̂), ẑ ∈ Φ(x̂) and

ψ(x̂, ẑ, y) ≤ 0, for all y ∈ Γ(x̂).

The above implicit quasivariational inequality covers the classical variational in-
equality problem and most of generalized problems of the classical variational in-
equalities as special cases. See, e.g., [10, 15-18, and the references there]. As a
special case of the implicit quasivariational inequality, the quasivariational inequal-
ity problem was first introduced by Yao in [13]. It is remarkable that a great deal of
finite-dimensional results to the quasivariational inequality problem have been found
under continuity assumptions (see, e.g., [9, 13, 14]). Recently, the case involving
discontinuity functions has come to many authors’ attention and some interesting
results have been obtained (see, e.g., [2, 5, 17]).

In [5], Cubiotti and Yao studied the implicit quasivariational inequality without
assuming continuity of data mappings and gave some applications to generalized
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quasivariational inequalities with discontinuous fuzzy mappings. Their main exis-
tence result is the following [5, Theorem 3.2].

Theorem 1.1. Let X be a nonempty compact convex subset of Rn, C a
nonempty subset of Rm, Γ : X → 2X and Φ : X → 2C two multifunctions,
ψ : X ×C ×X → R a single-valued map. Assume that:

(i) Γ is lower semicontinuous with nonempty convex values;
(ii) the set E = {x ∈ X : x ∈ Γ(x)} is closed;
(iii) aff(Γ(x)) = aff(X), for all x ∈ E;
(iv) Φ(x) is nonempty and compact for x ∈ X and convex for x ∈ E;
(v) for each y ∈ X the set {x ∈ E : inf z∈Φ(x) ψ(x, z, y) ≤ 0} is closed;
(vi) for each x ∈ E the set {y ∈ X : inf z∈Φ(x) ψ(x, z, y) ≤ 0} is closed;
(vii) for each x ∈ E one has inf z∈Φ(x) ψ(x, z, x) ≤ 0;
(viii) for each x∈E and each z∈Φ(x) the function ψ(x, z,·) is concave on Γ(x);
(ix) for each x ∈ E and each y ∈ Γ(x) the function ψ(x, ·, y) is lower semicon-

tinuous (in the sense of single-valued maps) and convex on Φ(x).

Then there exists (x̂, ẑ) ∈ X × C such that x̂ ∈ Γ(x̂), ẑ ∈ Φ(x̂) and

ψ(x̂, ẑ, y) ≤ 0 for all y ∈ Γ(x̂).

The purpose of this paper is to establish an existence result for the implicit
quasivariational inequality without continuity assumptions in infinite-dimensional
normed spaces. The approach is based on Theorem 1.1 and the proof of Theorem
1.2 in [7].

2. PRELIMINARIES

We recall that if S and V are topological spaces and if Φ : S → 2V is a
multifunction, then Φ is said to be lower semicontinuous at x ∈ S if for each open
set Ω ⊂ V with Φ(x) ∩ Ω �= ∅, the set

Φ−(Ω) := {y ∈ S : Φ(y) ∩ Ω �= ∅}

is a neighborhood of x in S. We say that Φ is lower semicontinuous in S if it is
lower semicontinuous at each point of S. We say that Φ has open lower sections if
for each y ∈ V , the set Φ−({y}) is open in S. If Φ has open lower sections and A is
any subset of V , then the multifunction ΦA : S → 2V defined by ΦA(x) = Φ(x)∩A
is lower semicontinuous in S.
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Let (N, ‖ · ‖N) be a real normed space. A multifunction Φ : S → 2N is
said to be Hausdorff lower semicontinuous at x ∈ S if given ε > 0 there exists a
neighborhood U of x in S such that

Φ(x) ⊂ Φ(y) +B(0, ε), for all y ∈ U,

where B(0, ε) denotes an open ball in N centered at 0 with radius ε. We say that
Φ is Hausdorff lower semicontinuous in S if it is Hausdorff lower semicontinuous
at each point of S. In particular, Hausdorff lower semicontinuity implies lower
semicontinuity and the converse is true if each set Φ(x) is nonempty and compact;
see [11, Theorem 7.1.14].

For x ∈ N and r > 0, let

B(x, r) = {y ∈ N : ‖y − x‖ < r},
B(x, r) = {y ∈ N : ‖y − x‖ ≤ r}.

Let A ⊂ N be nonempty. The closed convex hull of A is denoted by co(A) and
the affine hull of A is denoted by aff(A), i.e.,

aff(A) =

{
k∑

i=1

λixi : k ∈ N, xi ∈ A, λi ∈ R,
k∑

i=1

λi = 1

}
.

A subset M ⊂ N is called an affine manifold if there exist x ∈ N and a linear
subspace H of N such that M = x + H . It is known that the set aff(A) is the
smallest affine manifold containing A. If A ⊂ E ⊂ N , we will denote the interior
of A in E by intE(A). Recall that if A is a nonempty finite-dimensional convex
set, then intaff(A)(A) �= ∅.

The following results will be used in the proof of Theorem 3.1.

Proposition 2.1. Let X be a topological space, (E, ‖·‖ ) a real normed space,
and φ : X → 2E a multifunction. If φ is Hausdorff lower semicontinuous, then its
closure φ, defined by φ(x) = φ(x), is Hausdorff lower semicontinuous.

Proof. Let x0 ∈ X . Given ε > 0 there exists a neighborhood U of x0 in X
such that

φ(x0) ⊂ φ(x) + B(0, ε/2), for all x ∈ U.

Let y ∈ φ(x) + B(0, ε/2). Then there exists z ∈ φ(x) + B(0, ε/2) such that
‖y−z‖ < ε/2. Hence y−z ∈ B(0, ε/2), and so y ∈ φ(x)+B(0, ε/2)+B(0, ε/2) =
φ(x) +B(0, ε). We have

φ(x) + B(0, ε/2) ⊂ φ(x) +B(0, ε)
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from which it follows that

φ(x0) ⊂ φ(x) +B(0, ε/2) ⊂ φ(x) + B(0, ε) ⊂ φ(x) +B(0, ε), for all x ∈ U.

Hence φ is Hausdorff lower semicontinuous.

Proposition 2.2. Let X be a topological space, (E, ‖ · ‖ ) a real normed
space, and M an affine manifold of E . Suppose that φ : X → 2 M is a Hausdorff
lower semicontinuous multifunction such that φ(x) is a convex set with nonempty
interior, for all x ∈ X . Then for any x0 ∈ X and y0 ∈ intMφ(x0), there exists a
neighborhood U of x0 in X such that

y0 ∈ intMφ(x), for all x ∈ U.

Proof. Since φ is Hausdorff lower semicontinuous, it follows from Proposition
2.1 that φ is also Hausdorff lower semicontinuous. Notice that for each x ∈ X ,
φ(x) is convex with nonempty interior; hence

intMφ(x) = intMφ(x), for all x ∈ X,

by [12, p.38, Ch.II, Theorem 1.3]. For any x0 ∈ X and y0 ∈ intMφ(x0), apply
Proposition 2.4 [3] to φ to choose a neighborhood U of x0 in X such that

y0 ∈ intM

(⋂
x∈U

φ(x)

)
.

Therefore y0 ∈ intMφ(x), for all x ∈ U .

3. THE EXISTENCE RESULT

The main result is stated and proved as follows.

Theorem 3.1. Let M and N be real normed spaces. Let X be a nonempty
closed convex subset of M , C a nonempty subset of N , Γ : X → 2X and Φ :
X → 2C two multifunctions, ψ : X × C × X → R a single-valued map. Let
K1 and K2 be two nonempty compact subsets of X such that K 1 ⊂ K2, K1 is
finite-dimensional and coK 2 is compact. Suppose that the following conditions
hold:

(i) Γ is Hausdorff lower semicontinuous with nonempty convex values.
(ii) The set E = {x ∈ X : x ∈ Γ(x)} is closed.
(iii) Γ(x) ∩K1 �= ∅, for all x ∈ X .
(iv) intaff(X)Γ(x) �= ∅, for all x ∈ X .
(v) Φ(x) is nonempty and compact for x ∈ X and convex for x ∈ E .
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(vi) For any finite-dimensional subset A of X , there is a finite-dimensional linear
subspace T of N with the projection map p : N → T such that p(C) ⊂ C
and ψ(x, p(z), y) = ψ(x, z, y), for all x, y ∈ A and z ∈ Φ(x).

(vii) For each y ∈ X the set {x ∈ E : inf z∈Φ(x) ψ(x, z, y)≤ 0} is closed.
(viii) For each x ∈ E the set {y ∈ X : inf z∈Φ(x) ψ(x, z, y)≤ 0} is closed.
(ix) For each x ∈ E one has inf z∈Φ(x) ψ(x, z, x) = 0.
(x) For each x ∈ E and each z ∈ Φ(x) the function ψ(x, z, ·) is concave on

Γ(x).
(xi) For each x ∈ E and each y ∈ Γ(x) the function ψ(x, ·, y) is lower semicon-

tinuous (in the sense of single-valued maps) and convex on Φ(x).
(xii) For each x ∈ X \K2 and each z ∈ Φ(x), one has sup

y∈Γ(x)∩K1

ψ(x, z, y)> 0.

Then there exists (x̂, ẑ) ∈ X ×C such that x̂ ∈ Γ(x̂), ẑ ∈ Φ(x̂) and

ψ(x̂, ẑ, y) ≤ 0 for all y ∈ Γ(x̂).

Proof. First observe that the set E is nonempty from part (c) of this proof.
Let H = aff(X) be the affine hull of X and let H0 be the linear subspace of M
corresponding to H . Assumption (iv) implies that intHΓ(x) �= ∅, for all x ∈ X .
For each a ∈ coK2, choose any point ua ∈ intHΓ(a). It follows from Proposition
2.2 that there exists an open ball Va centered at a in M such that

ua ∈ intHΓ(x), for all x ∈ Va ∩X.(3.1)

Since coK2 is compact, there exist a1, a2, . . . , an ∈ coK2 such that

coK2 ⊂
n⋃

i=1

(Vai ∩H).(3.2)

Let W1 = ∪n
i=1(Vai ∩H) so that W1 is bounded and hence H \W1 is nonempty

and closed in H . From (3.2) we have

r = inf{d(x,H \W1) : x ∈ coK2} > 0.(3.3)

Let
W2 = coK2 + [B(0, r/2)∩H0].(3.4)

Then W2 is convex and closed in H and W2 ⊂W1.
We assume without loss of generality that K1 ∪ {ua1, . . . , uan} ⊂ B(0, k),

for all k ∈ N. Let F be the family of all finite-dimensional linear subspaces
of M containing the set K1 ∪ {ua1, . . . , uan}. Fix k ∈ N and S ∈ F . Let
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Yk = X ∩ B(0, k) and consider the set Yk ∩ S ∩W2 which is nonempty since
K1 ⊂ Yk ∩S ∩W2 ⊂ Yk ∩ S ∩W2. Define the multifunction ΓS : Yk ∩ S ∩W2 →
2Yk∩S∩W2 by

ΓS(x) = Γ(x) ∩ Yk ∩ S ∩W2.

Assumption (vi) states that there is a finite-dimensional linear subspace T S of N with
the projection map p : N → TS such that p(C) ⊂ C and ψ(x, p(z), y) = ψ(x, z, y),
for all x, y ∈ Yk ∩ S and z ∈ Φ(x). Note that Yk ∩ S ∩W2 ⊂ Yk ∩ S. Let the
multifunction ΦS : Yk ∩ S ∩W2 → 2C∩TS be defined by

ΦS(x) = p(Φ(x)), for x ∈ Yk ∩ S ∩W2.

We now consider the finite-dimensional implicit quasivariational inequality prob-
lem corresponding to (Yk ∩ S ∩W2, C ∩ TS,ΓS,ΦS, ψ) and prove conditions (i)
through (ix) in Theorem 1.1 are satisfied.

(a) The set Yk ∩ S ∩W2 is a nonempty compact convex subset of S.

(b) To prove the multifunction ΓS : Yk ∩ S ∩W2 → 2Yk∩S∩W2 is lower semi-
continuous, observe that

intHΓ(x) ∩ Yk ∩ S ∩W2 �= ∅, for all x ∈ Yk ∩ S ∩W2;(3.5)

hence ΓS has nonempty convex values. In fact, let x ∈ Yk ∩ S ∩W2 and choose
c ∈ Yk ∩ S ∩W2 such that ‖x − c‖ ≤ r/4. Then x − c ∈ B(0, r/4) ∩ H0. We
obtain from (3.4) that

c ∈ coK2 + [B(0, r/2)∩H0],

so (3.3) implies that

x ∈ coK2 + [B(0, 3r/4)∩H0] ⊂W1.

Thus x ∈ Vai , for some 1 ≤ i ≤ n. Especially (3.1) shows that uai ∈ intHΓ(x)
and hence

uai ∈ intHΓ(x) ∩ Yk ∩ S �= ∅.
By assumption (iii), Γ(x) ∩K1 �= ∅, for all x ∈ X . Fix v ∈ Γ(x) ∩ K1. By the
convexity of Γ(x) we have

v + t(uai − v) ∈ intHΓ(x) ∩ Yk ∩ S, for all t ∈ (0, 1].(3.6)

On the other hand, it follows from (3.4) that

v + [B(0, r/2)∩H0] ⊂W2,
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and so there exists σ ∈ (0, 1] such that

v + t(uai − v) ∈W2, for all t ∈ (0, σ].(3.7)

Hence we obtain from (3.6) and (3.7) that

intHΓ(x) ∩ Yk ∩ S ∩W2 �= ∅

as claimed.
Next let x0 ∈ Yk ∩ S ∩W2 and let U be an open set in H such that

ΓS(x0) ∩ U �= ∅.

By (3.5) we can choose a point v0 ∈ intHΓ(x) ∩ Yk ∩ S ∩W2 ⊂ ΓS(x0). Fix
v1 ∈ ΓS(x0) ∩ U . The convexity of Γ(x0) assures that

v1 + t(v0 − v1) ∈ intHΓ(x0) ∩ Yk ∩ S ∩W2, for all t ∈ (0, 1].(3.8)

Since U is open in H , there exists ρ > 0 such that

v1 + [B(0, ρ)∩H0] ⊂ U.(3.9)

By (3.8) and (3.9), there exists µ ∈ (0, 1] such that

v1 + µ(v0 − v1) ∈ intHΓ(x0) ∩ Yk ∩ S ∩W2 ∩ U.(3.10)

Proposition 2.2 implies that there is an open neighborhood Dx0 of x0 in X such
that

v1 + µ(v0 − v1) ∈ intHΓ(x), for all x ∈ Dx0.(3.11)

We obtain from (3.10) and (3.11) that

v1 + µ(v0 − v1) ∈ intHΓ(x) ∩ Yk ∩ S ∩W2 ∩ U, for all x ∈ Dx0.

In particular, ΓS(x) ∩ U �= ∅, for all x ∈ Dx0 ∩ Yk ∩ S ∩W2.

(c) Let ES = {x ∈ Yk ∩ S ∩W2 : x ∈ ΓS(x)} so that it is nonempty by [5,
Proposition 3.1]. Also

ES = {x ∈ Yk ∩ S ∩W2 : x ∈ ΓS(x)} = {x ∈ X : x ∈ Γ(x)} ∩ Yk ∩ S ∩W2

= E ∩ Yk ∩ S ∩W2

is closed by assumption (ii).
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(d) To prove

aff(ΓS(x)) = aff(Yk ∩ S ∩W2), for all x ∈ ES,

fix x ∈ ES . Since the set intHΓ(x) ∩ S is open in S, and since, by (3.5),

∅ �= intHΓ(x) ∩ Yk ∩ S ∩W2

⊂ (intHΓ(x) ∩ S) ∩ Yk ∩ S ∩W2 = intHΓ(x) ∩ Yk ∩ S ∩W2

⊂ ΓS(x) ⊂ Yk ∩ S ∩W2,

it follows from [4, Proposition 2.1] that

aff(Yk ∩ S ∩W2) = aff(intHΓ(x)∩Yk ∩ S ∩W2) ⊂ aff(ΓS(x)) ⊂ aff(Yk ∩ S ∩W2).

Therefore
aff(ΓS(x)) = aff(Yk ∩ S ∩W2).

(e) It follows directly from assumption (v) and the definition of ES that ΦS(x)
is nonempty and compact for x ∈ Yk ∩ S ∩W2 and convex for x ∈ ES . Moreover,
assumption (vi) implies that each ΦS(x) is a finite-dimensional subset of C, for all
x ∈ Yk ∩ S ∩W2.

(f) For each y ∈ Yk ∩ S ∩W2, assumption (vii) shows that the set

{x ∈ ES : inf
z̄∈ΦS(x)

ψ(x, z̄, y)≤0} ={x∈Yk ∩ S ∩W2 : inf
z̄∈ΦS(x)

ψ(x, z̄, y)≤0} ∩E
={x∈Yk ∩ S ∩W2 : inf

z∈Φ(x)
ψ(x, z, y)≤0}∩E

={x∈E : inf
z∈Φ(x)

ψ(x, z, y)≤0}∩ Yk ∩ S ∩W2

is closed.

(g) For each x ∈ ES , assumption (viii) implies that the set

{y ∈ Yk ∩ S ∩W2 : inf
z̄∈ΦS (x)

ψ(x, z̄, y) ≤ 0}
= {y ∈ Yk ∩ S ∩W2 : inf

z∈Φ(x)
ψ(x, z, y) ≤ 0}

= {y ∈ X : inf
z∈Φ(x)

ψ(x, z, y)≤ 0} ∩ Yk ∩ S ∩W2

is closed.
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(h) For each x ∈ ES , assumption (ix) implies that

inf
z̄∈ΦS(x)

ψ(x, z̄, x) = inf
z∈Φ(x)

ψ(x, z, x) ≤ 0.

(i) Let x ∈ ES and z̄ = p(z) ∈ ΦS(x). For any y1, y2 ∈ ΓS(x) = Γ(x) ∩
Yk ∩ S ∩W2 and t ∈ [0, 1], assumption (x) implies that

ψ(x, z̄, ty1 + (1 − t)y2) = ψ(x, z, ty1 + (1− t)y2)

≥ tψ(x, z, y1) + (1− t)ψ(x, z, y2)

= tψ(x, z̄, y1) + (1− t)ψ(x, z̄, y2).

Hence the function ψ(x, z̄, ·) is concave on ΓS(x).

(j) For each x ∈ ES and each y ∈ ΓS(x), assumption (xi) implies that the
function ψ(x, ·, y) is lower semicontinuous and convex on Φ(x). Thus it follows
from the definition of ΦS that the function ψ(x, ·, y) is lower semicontinuous and
convex on ΦS(x).

Therefore, by Theorem 1.1 there exists (xS, z̄S) ∈ (Yk ∩ S ∩W2

)× (C ∩ TS)
such that xS ∈ ΓS(xS), z̄S ∈ ΦS(xS) and

ψ(xS, z̄S, y) ≤ 0, for all y ∈ ΓS(xS).

Let zS ∈ Φ(xS) such that z̄S = p(zS). Then we conclude that xS ∈ E and

ψ(xS, zS, y) ≤ 0, for all y ∈ ΓS(xS).(3.12)

It is also immediate from assumption (ix) that ψ(xS, zS, xS) ≥ 0 and hence ψ(xS, zS,
xS) = 0 by (3.12). Moreover, xS ∈ K2 for all S ∈ F by assumption (xii). We
shall prove that

ψ(xS, zS, y) ≤ 0, for all y ∈ Γ(xS) ∩ Yk ∩ S.
Let y ∈ Γ(xS) ∩ Yk ∩ S. Notice that

xS ∈ K2 ∩ Yk ⊂ coK2 ∩ Yk ⊂ Yk ⊂ H

and
y ∈ Γ(xS) ∩ Yk ⊂ Yk ⊂ H.

Since Yk is convex and H−H ⊂ H0, there is a sufficiently small number t ∈ (0, 1)
such that

xS + t(y − xS) ∈ Yk ∩ [coK2 +
(
B(0, r/2)∩H0

)]
= Yk ∩W2.
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Moreover, since xS ∈ Γ(xS) ∩ Yk ∩ S and Γ(xS) is convex, we have

xS + t(y − xS) ∈ Γ(xS) ∩ Yk ∩ S ∩W2 ⊂ Γ(xS) ∩ Yk ∩ S ∩W2 = ΓS(xS).

We obtain from (3.12) and assumptions (ix), (x) that

0 ≥ ψ(xS, zS, xS + t(y − xS))

≥ tψ(xS, zS, y) + (1− t)ψ(xS, zS, xS) = tψ(xS, zS, y),

so ψ(xS, zS, y) ≤ 0 as desired. Consequently, given any fixed k ∈ N, for each
S ∈ F , there exist xS ∈ Yk ∩ S ∩W2 and zS ∈ Φ(xS) such that xS ∈ ΓS(xS)
and

ψ(xS, zS, y) ≤ 0, for all y ∈ Γ(xS) ∩ Yk ∩ S.(3.13)

Now we fix k ∈ N and consider the net {xS : S ∈ F} with F ordered by the
set inclusion ⊂. It follows from the compactness of K2 that the net {xS : S ∈ F}
has a cluster point x̂k ∈ K2. Since the set E is closed, we have x̂k ∈ E and thus
x̂k ∈ Γ(x̂). Assumption (iv) states that intHΓ(x̂k) �= ∅. We next claim that

inf
z∈Φ(x̂k)

ψ(x̂k, z, y) ≤ 0, for all y ∈ intHΓ(x̂k) ∩ Yk.(3.14)

On the contrary, assume that there exists y0 ∈ intHΓ(x̂k) ∩ Yk such that

inf
z∈Φ(x̂k)

ψ(x̂k, z, y0) > 0.(3.15)

By Proposition 2.2 there exists ε > 0 such that

y0 ∈ intHΓ(x), for all x ∈ B(x̂k, ε) ∩X.(3.16)

It is seen from (3.15) and assumption (vii) that there exists a positive number α < ε

such that
B(x̂k, α) ∩X ⊂ {x ∈ E : inf

z∈Φ(x)
ψ(x, z, y0) > 0}.(3.17)

By construction there exists S0 ∈ F such that y0 ∈ S0 and xS0 ∈ B(x̂k, α). Then
we have y0 ∈ intHΓ(xS0) ∩ Yk ∩ S0 by (3.16). Therefore (3.13) implies that

ψ(xS0, zS0, y0) ≤ 0.(3.18)

However, (3.17) shows that

inf
z∈Φ(xS0

)
ψ(xS0, z, y0) > 0.

In particular,
ψ(xS0, zS0, y0) > 0
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which contradicts (3.18). Hence (3.14) holds.
Next consider the sequence {x̂k} of points in K2. By the compactness of K2

there exists a subsequence of {x̂k}, still denoted by {x̂k}, which converges to a
point x̂ of K2. We will prove that

inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0, for all y ∈ intHΓ(x̂).(3.19)

Suppose on the contrary that there exists y1 ∈ intHΓ(x̂) such that

inf
z∈Φ(x̂)

ψ(x̂, z, y1) > 0.(3.20)

Again, by Proposition 2.2 there exists δ > 0 such that

y1 ∈ intHΓ(x), for all x ∈ B(x̂, δ)∩X.(3.21)

By (3.20) and assumption (vii) there exists a positive number β < δ such that

B(x̂, β) ∩X ⊂ {x ∈ E : inf
z∈Φ(x)

ψ(x, z, y1) > 0}.(3.22)

Choose an integer k such that x̂k ∈ B(x̂, β) and y1 ∈ Yk. It follows from (3.21)
that

y1 ∈ intHΓ(x̂k) ∩ Yk;

hence by (3.14) we have

inf
z∈Φ(x̂k)

ψ(x̂k, z, y1) ≤ 0.

However, (3.22) implies that

inf
z∈Φ(x̂k)

ψ(x̂k, z, y1) > 0,

a contradiction. Consequently, (3.19) holds. Therefore

sup
y∈intHΓ(x̂)

inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0.

As the supremum of a family of lower semicontinuous functions on Φ(x̂), the
function z → supy∈intHΓ(x̂) ψ(x̂, z, y) is lower semicontinuous on the compact set
Φ(x̂), so there exists ẑ ∈ Φ(x̂) such that

sup
y∈intHΓ(x̂)

ψ(x̂, ẑ, y) = inf
z∈Φ(x̂)

sup
y∈intHΓ(x̂)

ψ(x̂, z, y).(3.23)



150 Shuechin Huang

Applying [8, Theorem 2]fan and assumptions (v), (x) and (xi), it follows that

inf
z∈Φ(x̂)

sup
y∈intHΓ(x̂)

ψ(x̂, z, y) = sup
y∈intHΓ(x̂)

inf
z∈Φ(x̂)

ψ(x̂, z, y).(3.24)

Hence (3.23) and (3.24) imply that

sup
y∈intHΓ(x̂)

ψ(x̂, ẑ, y) ≤ 0.

Let y ∈ Γ(x̂). Choose a point w ∈ intHΓ(x̂). We infer from the convexity of Γ(x̂)
that

tw + (1 − t)y ∈ intHΓ(x̂), for all t ∈ (0, 1].

Since the function ψ(x̂, ẑ, ·) is concave on Γ(x̂), we have

tψ(x̂, ẑ, w) + (1− t)ψ(x̂, ẑ, y) ≤ ψ(x̂, ẑ, tw+ (1− t)y) ≤ 0, for all t ∈ (0, 1];

hence ψ(x̂, ẑ, y) ≤ 0 by letting t approach 0. Therefore

sup
y∈Γ(x̂)

ψ(x̂, ẑ, y) ≤ 0.

This completes the proof.

Remark. (a) The reader may notice that the set co(K2) is compact when M
is a Banach space; see [1, Theorem,p. 174].

(b) If N is a finite-dimensional space, then condition (vi) of Theorem 3.1 is
satisfied by letting T = N and p the identity map.
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