
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 1, pp. 117-128, January 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ELLIPTIC NUMERICAL RANGES OF 4 × 4 MATRICES

Hwa-Long Gau

Abstract. Let A be an n × n (complex) matrix. Recall that the numerical
range W (A) of A is the set {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} in the plane, where
〈·, ·〉 denotes the usual inner product in Cn. In this paper a series of tests is
given, allowing one to determine when the numerical range of a 4 × 4 matrix
A is an elliptic disc.

1. INTRODUCTION

Let A be an n-by-n (complex) matrix. Recall that the numerical range W (A)
of A is the set {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} in the plane, where 〈·, ·〉 denotes the
usual inner product in C

n. It is well known that W (A) is a convex compact subset
of C, which contains all the eigenvalues of A. For properties of numerical ranges,
a good reference is [6, Chapter 1].

For 2 × 2 matrices A a complete description of the numerical range W (A) is
well known. Namely, W (A) is the (closed) elliptic disc with foci the eigenvalues
λ1 and λ2 of A and the minor axis of length (tr (A∗A) − |λ1|2 − |λ2|2)1/2 [10].
Here, for a n × n matrix B, trB denotes its trace.

In [8] R. Kippenhahn studied the numerical range of 3×3 matrices. He showed
that there are four classes of shapes which the numerical range of a 3 × 3 matrix
A can assume. His classification is based on the factorability of the associated
polynomial PA(x, y, z) ≡ det(xRe A + yIm A + zI), where Re A = (A + A∗)/2
and Im A = (A−A∗)/(2i) are the real and imaginary parts of A, respectively, and
In denotes the n-by-n identity matrix. This was improved in [7] by expressing the
conditions in terms of the eigenvalues and entries of A, which are easier to apply.

For general n, the following Kippenhahn’s result is useful: For any n-by-n ma-
trix A, consider the homogeneous degree-n polynomial PA(x, y, z)=det(xRe A+

Received February 27, 2005.
Communicated by Ngai-Ching Wong.
2000 Mathematics Subject Classification: 15A18, 15A60.
Key words and phrases: Numerical range, Kippenhahn curve.
Research partially supported by the National Science Council of the Republic of China.

117



118 Hwa-Long Gau

yIm A+zIn) and the algebraic curve C(A) which is dual to the algebraic curve
determined by PA(x, y, z)=0 in the complex projective plane CP

2, that is, C(A)
consists of all points [u, v, w] in CP2 such that ux+vy+wz = 0 is a tangent line
to PA(x, y, z) = 0. As usual, we identify the point (x, y) in C

2 with [x, y, 1] in
CP

2 and identify any point [x, y, z] in CP
2 such that z �= 0 with (x/z, y/z) in

C
2. Thus, in particular, the plane R

2 (identified with C) sits in CP
2 by way of

the identification of the point (a, b) of R2 (or a+bi of C) with [a, b, 1] in CP
2.

The algebraic curve p(x, y, z)=0 in CP
2, where p is a homogeneous polynomial,

can be dehomogenized to yield the curve p(x, y, 1)= 0 in C2 and, conversely, an
algebraic curve q(x, y) = 0 in C

2 can be homogenized to a curve in CP
2 with

equation obtained by simplifying q(x/z, y/z) = 0. A result of Kippenhahn says
that the numerical range W (A) is the convex hull of the real points of C(A) (cf.
[8, p. 199]). The real part of the curve C(A) in the complex plane, namely, the
set {a+bi ∈ C ; a, b ∈ R and ax + by + z = 0 is tangent to PA(x, y, z) = 0},
will be denoted by CR(A) and is called the Kippenhahn curve of A. Note that, as
proved in [3, Theorem 1.3]3, if x0u + y0v + z0w=0 is a supporting line of W (A),
then det (x0Re A+y0Im A+z0In) = 0. Since the dual of C(A) is the original
curve PA(x, y, z)=0, we infer, in particular, that every supporting line of W (A) is
tangent to C(A).

There have been some attempts to classify the numerical range of 4×4 matrices
using an analogous strategy as [7]. A complete solution seems rather difficult. The
aim of this paper is to offer a series of tests, in terms of a 4× 4 matrix A itself or
its canonical unitarily equivalent forms, to determine when the numerical range of
A is an elliptic disc. We will also express the conditions in terms of the eigenvalues
and entries of A. These characterizations will be useful to construct a 4× 4 matrix
with an elliptic numerical range.

2. THE MAIN RESULT

In this section, we want to formulate a necessary and sufficient condition for a
4 × 4 matrix A to have an elliptic disc as its numerical range.

Let A be a 4× 4 matrix. We have known that if W (A) is an elliptic disc, then
C(A) has a factor of order 2. By duality, it follows that the homogeneous polynomial
PA also has a factor of degree 2. Note that PA is of degree 4. Therefore, if W (A)
is an elliptic disc, then PA can be decomposed either by two factors of degree 2 or
by one factor of degree 2 and two factors of degree 1. Therefore, we will discuss
these two cases of CR(A), respectively. Now, let

(2.1) A =




λ1 a d f

0 λ2 b e
0 0 λ3 c

0 0 0 λ4


 ,
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and λj = αj + iβj , where αj and βj are real for j = 1, 2, 3, 4. Then

PA(x, y, z) ≡ det(xRe A+yImA+zI4)

= det




α1x+β1y+z a
2(x−iy) d

2 (x−iy) f
2 (x−iy)

ā
2 (x+iy) α2x+β2y+z b

2(x−iy) e
2 (x−iy)

d̄
2 (x+iy) b̄

2 (x+iy) α3x+β3y+z c
2 (x−iy)

f̄
2 (x+iy) ē

2 (x+iy) c̄
2(x+iy) α4x+β4y+z




= (α1x+β1y+z)(α2x+β2y+z)(α3x+β3y+z)(α4x+β4y+z)

−x2+y2

4
Q(x, y, z),

where

Q(x, y, z) ≡ |a|2(α3x + β3y + z)(α4x + β4y + z)

+|b|2(α1x + β1y + z)(α4x + β4y + z)

+|c|2(α1x + β1y + z)(α2x + β2y + z)

+|d|2(α2x + β2y + z)(α4x + β4y + z)

+|e|2(α1x + β1y + z)(α3x + β3y + z)

+|f |2(α2x + β2y + z)(α3x + β3y + z)

+
Re (abcf̄)

2
(x2 − y2) + Im (abcf̄)xy

−(α1x + β1y + z)(Re (bcē)x + Im (bcē)y)

−(α2x + β2y + z)(Re (cdf̄)x + Im(cdf̄)y)

−(α3x + β3y + z)(Re (aef̄)x + Im (aef̄)y)

−(α4x + β4y + z)(Re (abd̄)x + Im (abd̄)y)

−x2 + y2

4
(|a|2|c|2 + |d|2|e|2 + |b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf)).

Let the polynomial

(∗)
PA(x, y, z) = (α1x + β1y + z)(α2x + β2y + z)(α3x + β3y + z)

·(α4x + β4y + z) − x2 + y2

4
Q(x, y, z)
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be denoted by (∗).
We now state and prove our main result. Firstly, we prove some lemmas which

will be needed.

Lemma 1. Let A be a 4× 4 matrix with eigenvalues λ1, λ2, λ3 and λ4. Then
the Kippenhahn curve CR(A) consists of two points and one ellipse if and only if

PA(x, y, z) = (α1x + β1y + z)(α2x + β2y + z)

·[(α3x + β3y + z)(α4x + β4y + z) − r2

4
(x2 + y2)],

where λj = αj + iβj for all j and the αj
,s and βj

,s are real. In this case, the
Kippenhahn curve CR(A) is the union of these two points λ 1, λ2 and the ellipse
with foci λ3, λ4 and the minor axis of length r.

Proof. Let

B =




λ1 0 0 0
0 λ2 0 0
0 0 λ3 r
0 0 0 λ4


 .

Since CR(A) = CR(B), the polynomials PA and PB have to be the same. Hence

PA(x, y, z) = (α1x + β1y + z)(α2x + β2y + z)

·[(α3x + β3y + z)(α4x + β4y + z)− r2

4
(x2 + y2)].

The converse is clear.

Lemma 2. Let A be a 4 × 4 matrix. Then the Kippenhahn curve CR(A)
consists of two ellipses, one with foci λ 1, λ2 and minor axis of length s, and the
other with foci λ3, λ4 and minor axis of length r if and only if

PA(x, y, z) = [(α1x + β1y + z)(α2x + β2y + z) − s2

4
(x2 + y2)]

·[(α3x + β3y + z)(α4x + β4y + z) − r2

4
(x2 + y2)],

where λj = αj + iβj, j = 1, 2, 3, 4, and the αj
,s and βj

,s are real.

Proof. The proof is similar to Lemma 1. Let

B =




λ1 s 0 0
0 λ2 0 0
0 0 λ3 r

0 0 0 λ4


 .
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Since CR(A) = CR(B), the polynomials PA and PB have to be the same. Hence

PA(x, y, z) = [(α1x + β1y + z)(α2x + β2y + z)− s2

4
(x2 + y2)]

·[(α3x + β3y + z)(α4x + β4y + z) − r2

4
(x2 + y2)].

The converse is clear

With the above lemmas, we have the following theorems.

Theorem 3. Let A be in upper-triangular form (2.1). Then CR(A) consists of
two points and one ellipse if and only if

(a) r2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

(b) r2λiλj = |a|2λ3λ4 + |b|2λ1λ4 + |c|2λ1λ2 + |d|2λ2λ4 + |e|2λ1λ3 + |f |2λ2λ3−
(λ1bcē + λ2cdf̄ + λ3aef̄ + λ4abd̄) + abcf̄ ,

(c) r2(λi + λj) = (|b|2 + |c|2 + |e|2)λ1 + (|c|2 + |d|2 + |f |2)λ2 + (|a|2 + |e|2 +

|f |2)λ3 + (|a|2 + |b|2 + |d|2)λ4 − (bcē + cdf̄ + aef̄ + abd̄), and

(d) r2αiαj = |a|2α3α4+|b|2α1α4+|c|2α1α2+|d|2α2α4+|e|2α1α3+|f |2α2α3−
[α1Re (bcē)+α2Re (cdf̄)+α3Re (aef̄)+α4Re (abd̄)]− 1

4 (|a|2|c|2+|d|2|e|2+
|b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf)− 2Re (abcf̄)).

If these conditions are satisfied, then CR(A) is the union of two points λ i,λj with
the ellipse having its foci at two other eigenvalues ofAandminor axis of length r.

Proof. By Lemma 1,

PA(x, y, z) = (αix + βiy + z)(αjx + βjy + z)

·[(αkx + βky + z)(αlx + βly + z) − r2

4
(x2 + y2)].

Comparing this with polynomial (∗), we have

Q(x, y, z) = r2(αix + βiy + z)(αjx + βjy + z)

and then obtain the following equalities by computing the coefficients of x2, y2, z2, xy, xz
and yz, respectively. Therefore,

(1) r2αiαj = |a|2α3α4+|b|2α1α4+|c|2α1α2+|d|2α2α4+|e|2α1α3+|f |2α2α3−
[α1Re (bcē)+α2Re (cdf̄)+α3Re (aef̄)+α4Re (abd̄)]− 1

4 (|a|2|c|2+|d|2|e|2+
|b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf)− 2Re (abcf̄)),



122 Hwa-Long Gau

(2) r2βiβj = |a|2β3β4 + |b|2β1β4 + |c|2β1β2 + |d|2β2β4 + |e|2β1β3 + |f |2β2β3−
[β1Im (bcē)+β2Im (cdf̄)+β3Im (aef̄)+β4Im (abd̄)]− 1

4 (|a|2|c|2+|d|2|e|2+

|b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf) + 2Re (abcf̄)),

(3) r2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

(4) r2(αiβj + αjβi) = |a|2(α3β4 + α4β3) + |b|2(α1β4 + α4β1) + |c|2(α1β2 +

α2β1) + |d|2(α2β4 + α4β2) + |e|2(α1β3 + α3β1) + |f |2(α2β3 + α3β2) −
(α1Im (bcē) + β1Re (bcē)) − [α2Im (cdf̄) + β2Re (cdf̄)] − [α3Im (aef̄) +

β3Re (aef̄)] − [α4Im (abd̄) + β4Re (abd̄)] + Im (abcf̄),

(5) r2(αi+αj)=(|b|2+|c|2+|e|2)α1+(|c|2+|d|2+|f |2)α2+(|a|2+|e|2+|f |2)α3+

(|a|2+|b|2+|d|2)α4−[Re (bcē)+Re (cdf̄)+Re (aef̄)+Re (abd̄)], and

(6) r2(βi + βj) = (|b|2 + |c|2 + |e|2)β1 + (|c|2 + |d|2 + |f |2)β2 + (|a|2 + |e|2 +

|f |2)β3+(|a|2+|b|2+|d|2)β4−[Im (bcē)+Im (cdf̄)+Im (aef̄)+Im (abd̄)].

Note that the combination of (1), (2) and (4) is equivalent to the one of (b) and
(d) since (1) − (2) + i(4) yields (b). Moreover, the combination of (5) and (6) is
equivalent to (c) since (5) + i(6) yields (c). This completes the proof.

A similar argument shows the following theorem.

Theorem 4. Let A be in upper-triangular form (2.1). Then CR(A) consists
of two ellipses, one with foci λk, λl and minor axis of length r, the other with foci
λi, λj and minor axis of length s if and only if

(a) r2 + s2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

(b) r2λiλj + s2λkλl = |a|2λ3λ4 + |b|2λ1λ4 + |c|2λ1λ2 + |d|2λ2λ4 + |e|2λ1λ3 +

|f |2λ2λ3 − (λ1bcē + λ2cdf̄ + λ3aef̄ + λ4abd̄) + abcf̄ ,

(c) r2(λi + λj) + s2(λk + λl) = (|b|2 + |c|2 + |e|2)λ1 + (|c|2 + |d|2 + |f |2)λ2 +

(|a|2 + |e|2 + |f |2)λ3 +(|a|2 + |b|2 + |d|2)λ4− (bcē+ cdf̄ +aef̄ +abd̄), and

(d) r2αiαj + s2αkαl − 1
4r2s2 = |a|2α3α4 + |b|2α1α4 + |c|2α1α2 + |d|2α2α4 +

|e|2α1α3+|f |2α2α3−[α1Re (bcē)+α2Re (cdf̄)+α3Re (aef̄)+α4Re (abd̄)]−
1
4(|a|2|c|2 + |d|2|e|2 + |b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf) − 2Re (abcf̄)).

Proof. By Lemma 2,

PA(x, y, z) = [(αix + βiy + z)(αjx + βjy + z) − s2

4
(x2 + y2)]

·[(αkx + βky + z)(αlx + βly + z) − r2

4
(x2 + y2)].
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Comparing this with polynomial (∗), we have

Q(x, y, z) = r2(αix + βiy + z)(αjx + βjy + z)

+s2(αkx + βky + z)(αlx + βly + z) − r2s2

4
(x2 + y2)

and then obtain the following equalities by computing the coefficients of x2, y2,

z2, xy, xz, and yz, respectively. Therefore,
(1) r2αiαj + s2αkαl − r2s2

4 = |a|2α3α4 + |b|2α1α4 + |c|2α1α2 + |d|2α2α4 +

|e|2α1α3+|f |2α2α3−[α1Re (bcē)+α2Re (cdf̄)+α3Re (aef̄)+α4Re (abd̄)]−
1
4 (|a|2|c|2 + |d|2|e|2 + |b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf) − 2Re (abcf̄)),

(2) r2βiβj + s2βkβl − r2s2

4 = |a|2β3β4 + |b|2β1β4 + |c|2β1β2 + |d|2β2β4 +

|e|2β1β3+|f |2β2β3−[β1Im (bcē)+β2Im (cdf̄)+β3Im (aef̄)+β4Im (abd̄)]−
1
4 (|a|2|c|2 + |d|2|e|2 + |b|2|f |2 − 2Re (ac̄d̄e) − 2Re (bd̄ēf) + 2Re (abcf̄)),

(3) r2 + s2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

(4) r2(αiβj + αjβi) + s2(αkβl + αlβk) = |a|2(α3β4 + α4β3) + |b|2(α1β4 +

α4β1) + |c|2(α1β2 + α2β1) + |d|2(α2β4 + α4β2) + |e|2(α1β3 + α3β1) +

|f |2(α2β3+α3β2)−(α1Im (bcē)+β1Re (bcē))−[α2Im (cdf̄)+β2Re (cdf̄)]−
[α3Im (aef̄) + β3Re (aef̄)] − [α4Im (abd̄) + β4Re (abd̄)] + Im (abcf̄),

(5) r2(αi + αj) + s2(αk + αl) = (|b|2 + |c|2 + |e|2)α1 + (|c|2 + |d|2 + |f |2)α2 +

(|a|2+|e|2+|f |2)α3+(|a|2+|b|2+|d|2)α4−[Re (bcē)+Re (cdf̄)+Re (aef̄)+

Re (abd̄)], and

(6) r2(βi+βj)+s2(βk+βl) = (|b|2+|c|2+|e|2)β1+(|c|2+|d|2+|f |2)β2+(|a|2+
|e|2 + |f |2)β3 + (|a|2 + |b|2 + |d|2)β4 − [Im (bcē) + Im (cdf̄) + Im (aef̄) +

Im (abd̄)].

Note that the combination of (1), (2) and (4) is equivalent to the one of (b) and
(d) since (1) − (2) + i(4) yields (b). Moreover, the combination of (5) and (6) is
equivalent to (c) since (5) + i(6) yields (c). This completes the proof.

Although every matrix is unitarily equivalent to an upper-triangular matrix, it is
not easy to obtain the upper-triangular form of a matrix. For generality, we obtain
the unitary invariant forms of Theorems 3 and 4.

Corollary 5. Let A be a 4×4 matrix with eigenvalues λ 1, λ2, λ3 and λ4. Then
CR(A) consists of two points λ i, λj and one ellipse having its foci at two other
eigenvalues of A and minor axis of length r if and only if
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(a) r2 = tr (A∗A) − ∑4
i=1 |λi|2,

(b) r2λiλj =
∑

1≤i<j≤4(r
2+|λi|2+|λj|2)λiλj+tr (A∗A3)−tr (A)tr (A∗A2),

(c) r2(λi + λj) = r2tr (A)− tr (A∗A2) +
∑4

i=1 |λi|2λi, and
(d) r2αiαj = 4α1α2α3α4 − 4 det(Re A).

Proof. Let B be in upper-triangular form (2.1) which is unitarily equivalent to
A. After a little computation, we obtain

tr (B∗B) =
4∑

i=1

|λi|2 + |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

tr (B∗B2) =
4∑

i=1

|λi|2λi + (|a|2 + |d|2 + |f |2)λ1 + (|a|2 + |b|2 + |e|2)λ2

+(|b|2 + |c|2 + |d|2)λ3 + (|c|2 + |e|2 + |f |2)λ4

+(abd̄ + aef̄ + cdf̄ + bcē),

tr (B∗B3) =
4∑

i=1

|λi|2λi
2 + (|a|2 + |d|2 + |f |2)λ1

2 + (|a|2 + |b|2 + |e|2)λ2
2

+(|b|2+|c|2+|d|2)λ3
2+(|c|2+|e|2+|f |2)λ4

2+|a|2λ1λ2+|b|2λ2λ3

+|c|2λ3λ4+ |d|2λ1λ3+ |e|2λ2λ4+ |f |2λ1λ4+abd̄(λ1+λ2+λ3)

+aef̄(λ1+λ2+λ4)+cdf̄(λ1+λ3+λ4)+bcē(λ2+λ3+λ4) + abcf̄,

and

det(Re B) = α1α2α3α4 − 1
4
Q(1, 0, 0).

By the condition (a) in Theorem 3, we have

tr (B∗B) −
4∑

i=1

|λi|2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2 = r2.

By the condition (b) in Theorem 3, we have∑
1≤i<j≤4

(r2 + |λi|2 + |λj|2)λiλj + tr (B∗B3) − tr (B)tr (B∗B2)

= |a|2λ3λ4 + |b|2λ1λ4 + |c|2λ1λ2 + |d|2λ2λ4 + |e|2λ1λ3 + |f |2λ2λ3

−(λ1bcē + λ2cdf̄ + λ3aef̄ + λ4abd̄) + abcf̄.
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By the condition (c) in Theorem 3, we have

r2tr (B) − tr (B∗B2) +
4∑

i=1

|λi|2λi

= (|b|2 + |c|2 + |e|2)λ1 + (|c|2 + |d|2 + |f |2)λ2 + (|a|2 + |e|2 + |f |2)λ3

+(|a|2 + |b|2 + |d|2)λ4 − (bcē + cdf̄ + aef̄ + abd̄).

By the condition (d) in Theorem 3, we have

4α1α2α3α4 − 4 det(Re B) = Q(1, 0, 0)

= |a|2α3α4 + |b|2α1α4 + |c|2α1α2

+|d|2α2α4 + |e|2α1α3 + |f |2α2α3

−[α1Re (bcē) + α2Re (cdf̄)

+α3Re (aef̄) + α4Re (abd̄)]

−1
4
(|a|2|c|2 + |d|2|e|2 + |b|2|f |2

−2Re (ac̄d̄e) − 2Re (bd̄ēf) − 2Re (abcf̄)).

Since trace and determinant are unitary invariant, completing the proof.

Corollary 6. Let A be a 4 × 4 matrix with eigenvalues λ 1, λ2, λ3 and λ4.
Then CR(A) consists of two ellipses, one with foci λ k, λl and minor axis of length
r, the other with foci λi, λj and minor axis of length s if and only if

(a) r2 + s2 = tr (A∗A) − ∑4
i=1 |λi|2 ≡ γ2,

(b) r2λiλj+s2λkλl =
∑

1≤i<j≤4(γ2+|λi|2+|λj|2)λiλj+tr (A∗A3)−tr (A)tr (A∗A2),

(c) r2(λi + λj) + s2(λk + λl) = γ2tr (A) − tr (A∗A2) +
∑4

i=1 |λi|2λi, and

(d) r2αiαj + s2αkαl − 1
4r2s2 = 4α1α2α3α4 − 4 det(Re A).

Proof. Let B be in upper-triangular form (2.1) which is unitarily equivalent to
A. A direct computation yields that

tr (B∗B) =
4∑

i=1

|λi|2 + |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2,

tr (B∗B2) =
4∑

i=1

|λi|2λi + (|a|2 + |d|2 + |f |2)λ1 + (|a|2 + |b|2 + |e|2)λ2
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+(|b|2 + |c|2 + |d|2)λ3 + (|c|2 + |e|2 + |f |2)λ4

+(abd̄ + aef̄ + cdf̄ + bcē),

tr (B∗B3) =
4∑

i=1

|λi|2λi
2 + (|a|2 + |d|2 + |f |2)λ1

2 + (|a|2 + |b|2 + |e|2)λ2
2

+(|b|2 + |c|2 + |d|2)λ3
2 + (|c|2 + |e|2 + |f |2)λ4

2 + |a|2λ1λ2 + |b|2λ2λ3

+|c|2λ3λ4 + |d|2λ1λ3 + |e|2λ2λ4 + |f |2λ1λ4 + abd̄(λ1 + λ2 + λ3)

+aef̄ (λ1 + λ2 + λ4) + cdf̄(λ1 + λ3 + λ4) + bcē(λ2 + λ3 + λ4) + abcf̄,

and

det(Re B) = α1α2α3α4 − 1
4
Q(1, 0, 0).

By the condition (a) in Theorem 4, we have

tr (B∗B) −
4∑

i=1

|λi|2 = |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2 = r2.

By the condition (b) in Theorem 4, we have
∑

1≤i<j≤4

(r2 + |λi|2 + |λj|2)λiλj + tr (B∗B3)− tr (B)tr (B∗B2)

= |a|2λ3λ4 + |b|2λ1λ4 + |c|2λ1λ2 + |d|2λ2λ4 + |e|2λ1λ3 + |f |2λ2λ3

−(λ1bcē + λ2cdf̄ + λ3aef̄ + λ4abd̄) + abcf̄.

By the condition (c) in Theorem 4, we have

r2tr (B) − tr (B∗B2) +
4∑

i=1

|λi|2λi

= (|b|2 + |c|2 + |e|2)λ1 + (|c|2 + |d|2 + |f |2)λ2 + (|a|2 + |e|2 + |f |2)λ3

+(|a|2 + |b|2 + |d|2)λ4 − (bcē + cdf̄ + aef̄ + abd̄).

By the condition (d) in Theorem 4, we have

4α1α2α3α4 − 4 det(Re B) = Q(1, 0, 0)
= |a|2α3α4 + |b|2α1α4 + |c|2α1α2

+|d|2α2α4 + |e|2α1α3 + |f |2α2α3
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−[α1Re (bcē) + α2Re (cdf̄)

+α3Re (aef̄) + α4Re (abd̄)]

−1
4
(|a|2|c|2 + |d|2|e|2 + |b|2|f |2

−2Re (ac̄d̄e) − 2Re (bd̄ēf) − 2Re (abcf̄)).

Since trace and determinant are unitary invariant, the results follow obviously.

Now we are ready to formulate a sufficient condition for a 4 × 4 matrix A to
have an elliptic disc as its numerical range.

Corollary 7. Let A be a 4 × 4 matrix with eigenvalues λ 1, λ2, λ3 and λ4

which satisfies the following conditions:

(a) r2 = tr (A∗A) − ∑4
i=1 |λi|2,

(b) r2λiλj =
∑

1≤i<j≤4(r2+|λi|2+|λj|2)λiλj +tr (A∗A3)−tr (A)tr (A∗A2),

(c) r2(λi + λj) = γ2tr (A) − tr (A∗A2) +
∑4

i=1 |λi|2λi,

(d) r2αiαj = 4α1α2α3α4 − 4 det(ReA), and

(e) (|λ − λk| + |λ − λl|)2 − |λk − λl|2 ≤ r2, where λ = λi, λj and λk, λl are
other two eigenvalues of A.

Then W (A) is an elliptic disc with foci λ k, λl and the minor axis of length r.

Proof. By Corollary 5, CR(A) consists of two points λi, λj and one ellipse
whose foci are λk, λl and whose minor axis has length r. Moreover, condition (e)
means that these two points λi, λj lie inside the ellipse. Hence W (A) is an elliptic
with foci λk, λl and the minor axis of length r.

Corollary 8. Let A be a 4 × 4 matrix with eigenvalues λ 1, λ2, λ3 and λ4. If
conditions (a)-(d) of Corollary 6 hold and, in addition,

(e)
√|λk − λl|2 + r2 + |λk − λi|+ |λl − λj| ≤

√|λi − λj|2 + s2.

Then W (A) is an elliptic disc with foci λ i, λj and the minor axis of length s.

Proof. By Corollary 6, CR(A) consists of two ellipses, one with foci λk, λl

and the minor axis of length r and the other with foci λi, λj and the minor axis of
length s. Moreover, for λ in C such that

|λ − λk| + |λ − λl| ≤
√
|λk − λl|+ r2,
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we have

|λ − λi| + |λ − λj| ≤ |λ − λk| + |λ − λl|+ |λk − λi| + |λl − λj|

≤
√
|λk − λl|+ r2 + |λk − λi|+ |λl − λj|

≤
√
|λi − λj|2 + s2

by condition (e). Thus we conclude that W (A) is an elliptic disc with foci λ i, λj

and the minor axis of length s.
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