ELLIPTIC NUMERICAL RANGES OF 4×4 MATRICES

Hwa-Long Gau

Abstract

Let A be an $n \times n$ (complex) matrix. Recall that the numerical range $W(A)$ of A is the set $\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}$ in the plane, where $\langle\cdot, \cdot\rangle$ denotes the usual inner product in \mathbb{C}^{n}. In this paper a series of tests is given, allowing one to determine when the numerical range of a 4×4 matrix A is an elliptic disc.

1. Introduction

Let A be an n-by- n (complex) matrix. Recall that the numerical range $W(A)$ of A is the set $\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}$ in the plane, where $\langle\cdot, \cdot\rangle$ denotes the usual inner product in \mathbb{C}^{n}. It is well known that $W(A)$ is a convex compact subset of \mathbb{C}, which contains all the eigenvalues of A. For properties of numerical ranges, a good reference is [6, Chapter 1].

For 2×2 matrices A a complete description of the numerical range $W(A)$ is well known. Namely, $W(A)$ is the (closed) elliptic disc with foci the eigenvalues λ_{1} and λ_{2} of A and the minor axis of length $\left(\operatorname{tr}\left(A^{*} A\right)-\left|\lambda_{1}\right|^{2}-\left|\lambda_{2}\right|^{2}\right)^{1 / 2}[10]$. Here, for a $n \times n$ matrix $B, \operatorname{tr} B$ denotes its trace.

In [8] R. Kippenhahn studied the numerical range of 3×3 matrices. He showed that there are four classes of shapes which the numerical range of a 3×3 matrix A can assume. His classification is based on the factorability of the associated polynomial $P_{A}(x, y, z) \equiv \operatorname{det}(x \operatorname{Re} A+y \operatorname{Im} A+z I)$, where $\operatorname{Re} A=\left(A+A^{*}\right) / 2$ and $\operatorname{Im} A=\left(A-A^{*}\right) /(2 i)$ are the real and imaginary parts of A, respectively, and I_{n} denotes the n-by- n identity matrix. This was improved in [7] by expressing the conditions in terms of the eigenvalues and entries of A, which are easier to apply.

For general n, the following Kippenhahn's result is useful: For any n-by- n matrix A, consider the homogeneous degree- n polynomial $P_{A}(x, y, z)=\operatorname{det}(x \operatorname{Re} A+$

[^0]$\left.y \operatorname{Im} A+z I_{n}\right)$ and the algebraic curve $C(A)$ which is dual to the algebraic curve determined by $P_{A}(x, y, z)=0$ in the complex projective plane $\mathbb{C P}^{2}$, that is, $C(A)$ consists of all points $[u, v, w]$ in $\mathbb{C P}^{2}$ such that $u x+v y+w z=0$ is a tangent line to $P_{A}(x, y, z)=0$. As usual, we identify the point (x, y) in \mathbb{C}^{2} with $[x, y, 1]$ in $\mathbb{C P}^{2}$ and identify any point $[x, y, z]$ in $\mathbb{C P}^{2}$ such that $z \neq 0$ with $(x / z, y / z)$ in \mathbb{C}^{2}. Thus, in particular, the plane \mathbb{R}^{2} (identified with \mathbb{C}) sits in $\mathbb{C P}^{2}$ by way of the identification of the point (a, b) of \mathbb{R}^{2} (or $a+b i$ of \mathbb{C}) with $[a, b, 1]$ in $\mathbb{C P}^{2}$. The algebraic curve $p(x, y, z)=0$ in $\mathbb{C P}^{2}$, where p is a homogeneous polynomial, can be dehomogenized to yield the curve $p(x, y, 1)=0$ in \mathbb{C}^{2} and, conversely, an algebraic curve $q(x, y)=0$ in \mathbb{C}^{2} can be homogenized to a curve in $\mathbb{C P}^{2}$ with equation obtained by simplifying $q(x / z, y / z)=0$. A result of Kippenhahn says that the numerical range $W(A)$ is the convex hull of the real points of $C(A)$ (cf. [8, p. 199]). The real part of the curve $C(A)$ in the complex plane, namely, the set $\left\{a+b i \in \mathbb{C} ; a, b \in \mathbb{R}\right.$ and $a x+b y+z=0$ is tangent to $\left.P_{A}(x, y, z)=0\right\}$, will be denoted by $C_{R}(A)$ and is called the Kippenhahn curve of A. Note that, as proved in [3, Theorem 1.3]3, if $x_{0} u+y_{0} v+z_{0} w=0$ is a supporting line of $W(A)$, then $\operatorname{det}\left(x_{0} \operatorname{Re} A+y_{0} \operatorname{Im} A+z_{0} I_{n}\right)=0$. Since the dual of $C(A)$ is the original curve $P_{A}(x, y, z)=0$, we infer, in particular, that every supporting line of $W(A)$ is tangent to $C(A)$.

There have been some attempts to classify the numerical range of 4×4 matrices using an analogous strategy as [7]. A complete solution seems rather difficult. The aim of this paper is to offer a series of tests, in terms of a 4×4 matrix A itself or its canonical unitarily equivalent forms, to determine when the numerical range of A is an elliptic disc. We will also express the conditions in terms of the eigenvalues and entries of A. These characterizations will be useful to construct a 4×4 matrix with an elliptic numerical range.

2. The Main Result

In this section, we want to formulate a necessary and sufficient condition for a 4×4 matrix A to have an elliptic disc as its numerical range.

Let A be a 4×4 matrix. We have known that if $W(A)$ is an elliptic disc, then $C(A)$ has a factor of order 2. By duality, it follows that the homogeneous polynomial P_{A} also has a factor of degree 2 . Note that P_{A} is of degree 4. Therefore, if $W(A)$ is an elliptic disc, then P_{A} can be decomposed either by two factors of degree 2 or by one factor of degree 2 and two factors of degree 1 . Therefore, we will discuss these two cases of $C_{R}(A)$, respectively. Now, let

$$
A=\left[\begin{array}{cccc}
\lambda_{1} & a & d & f \tag{2.1}\\
0 & \lambda_{2} & b & e \\
0 & 0 & \lambda_{3} & c \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right],
$$

and $\lambda_{j}=\alpha_{j}+i \beta_{j}$, where α_{j} and β_{j} are real for $j=1,2,3,4$. Then

$$
\begin{aligned}
P_{A}(x, y, z) \equiv & \operatorname{det}\left(x \operatorname{Re} A+y \operatorname{Im} A+z I_{4}\right) \\
= & \operatorname{det}\left[\begin{array}{cccc}
\alpha_{1} x+\beta_{1} y+z & \frac{a}{2}(x-i y) & \frac{d}{2}(x-i y) & \frac{f}{2}(x-i y) \\
\frac{\bar{a}}{2}(x+i y) & \alpha_{2} x+\beta_{2} y+z & \frac{b}{2}(x-i y) & \frac{e}{2}(x-i y) \\
\frac{\bar{d}}{2}(x+i y) & \bar{b} \\
\overline{\frac{b}{2}}(x+i y) & \alpha_{3} x+\beta_{3} y+z & \frac{c}{2}(x-i y) \\
\frac{\bar{f}}{2}(x+i y) & \frac{\bar{e}}{2}(x+i y) & \frac{\bar{c}}{2}(x+i y) & \alpha_{4} x+\beta_{4} y+z
\end{array}\right] \\
= & \left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right)\left(\alpha_{3} x+\beta_{3} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right) \\
& -\frac{x^{2}+y^{2}}{4} Q(x, y, z)
\end{aligned}
$$

where

$$
\begin{aligned}
Q(x, y, z) \equiv & |a|^{2}\left(\alpha_{3} x+\beta_{3} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right) \\
& +|b|^{2}\left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right) \\
& +|c|^{2}\left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right) \\
& +|d|^{2}\left(\alpha_{2} x+\beta_{2} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right) \\
& +|e|^{2}\left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{3} x+\beta_{3} y+z\right) \\
& +|f|^{2}\left(\alpha_{2} x+\beta_{2} y+z\right)\left(\alpha_{3} x+\beta_{3} y+z\right) \\
& +\frac{\operatorname{Re}(a b c \bar{f})}{2}\left(x^{2}-y^{2}\right)+\operatorname{Im}(a b c \bar{f}) x y \\
& -\left(\alpha_{1} x+\beta_{1} y+z\right)(\operatorname{Re}(b c \bar{e}) x+\operatorname{Im}(b c \bar{e}) y) \\
& -\left(\alpha_{2} x+\beta_{2} y+z\right)(\operatorname{Re}(c d \bar{f}) x+\operatorname{Im}(c d \bar{f}) y) \\
& -\left(\alpha_{3} x+\beta_{3} y+z\right)(\operatorname{Re}(a e \bar{f}) x+\operatorname{Im}(a e \bar{f}) y) \\
& -\left(\alpha_{4} x+\beta_{4} y+z\right)(\operatorname{Re}(a b \bar{d}) x+\operatorname{Im}(a b \bar{d}) y) \\
& -\frac{x^{2}+y^{2}}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)\right) .
\end{aligned}
$$

Let the polynomial
(*)

$$
P_{A}(x, y, z)=\left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right)\left(\alpha_{3} x+\beta_{3} y+z\right)
$$

$$
\cdot\left(\alpha_{4} x+\beta_{4} y+z\right)-\frac{x^{2}+y^{2}}{4} Q(x, y, z)
$$

be denoted by $(*)$.
We now state and prove our main result. Firstly, we prove some lemmas which will be needed.

Lemma 1. Let A be a 4×4 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4}. Then the Kippenhahn curve $C_{R}(A)$ consists of two points and one ellipse if and only if

$$
\begin{aligned}
P_{A}(x, y, z)= & \left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right) \\
& \cdot\left[\left(\alpha_{3} x+\beta_{3} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right)-\frac{r^{2}}{4}\left(x^{2}+y^{2}\right)\right]
\end{aligned}
$$

where $\lambda_{j}=\alpha_{j}+i \beta_{j}$ for all j and the α_{j} 's and β_{j} 's are real. In this case, the Kippenhahn curve $C_{R}(A)$ is the union of these two points λ_{1}, λ_{2} and the ellipse with foci λ_{3}, λ_{4} and the minor axis of length r.

Proof. Let

$$
B=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & r \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right]
$$

Since $C_{R}(A)=C_{R}(B)$, the polynomials P_{A} and P_{B} have to be the same. Hence

$$
\begin{aligned}
P_{A}(x, y, z)= & \left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right) \\
& \cdot\left[\left(\alpha_{3} x+\beta_{3} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right)-\frac{r^{2}}{4}\left(x^{2}+y^{2}\right)\right]
\end{aligned}
$$

The converse is clear.
Lemma 2. Let A be a 4×4 matrix. Then the Kippenhahn curve $C_{R}(A)$ consists of two ellipses, one with foci λ_{1}, λ_{2} and minor axis of length s, and the other with foci λ_{3}, λ_{4} and minor axis of length r if and only if

$$
\begin{aligned}
P_{A}(x, y, z)= & {\left[\left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right)-\frac{s^{2}}{4}\left(x^{2}+y^{2}\right)\right] } \\
& \cdot\left[\left(\alpha_{3} x+\beta_{3} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right)-\frac{r^{2}}{4}\left(x^{2}+y^{2}\right)\right]
\end{aligned}
$$

where $\lambda_{j}=\alpha_{j}+i \beta_{j}, j=1,2,3,4$, and the α_{j} 's and β_{j} 's are real.
Proof. The proof is similar to Lemma 1. Let

$$
B=\left[\begin{array}{cccc}
\lambda_{1} & s & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & r \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right]
$$

Since $C_{R}(A)=C_{R}(B)$, the polynomials P_{A} and P_{B} have to be the same. Hence

$$
\begin{aligned}
P_{A}(x, y, z)= & {\left[\left(\alpha_{1} x+\beta_{1} y+z\right)\left(\alpha_{2} x+\beta_{2} y+z\right)-\frac{s^{2}}{4}\left(x^{2}+y^{2}\right)\right] } \\
& \cdot\left[\left(\alpha_{3} x+\beta_{3} y+z\right)\left(\alpha_{4} x+\beta_{4} y+z\right)-\frac{r^{2}}{4}\left(x^{2}+y^{2}\right)\right] .
\end{aligned}
$$

The converse is clear
With the above lemmas, we have the following theorems.
Theorem 3. Let A be in upper-triangular form (2.1). Then $C_{R}(A)$ consists of two points and one ellipse if and only if
(a) $r^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}$,
(b) $r^{2} \lambda_{i} \lambda_{j}=|a|^{2} \lambda_{3} \lambda_{4}+|b|^{2} \lambda_{1} \lambda_{4}+|c|^{2} \lambda_{1} \lambda_{2}+|d|^{2} \lambda_{2} \lambda_{4}+|e|^{2} \lambda_{1} \lambda_{3}+|f|^{2} \lambda_{2} \lambda_{3}-$ $\left(\lambda_{1} b c \bar{e}+\lambda_{2} c d \bar{f}+\lambda_{3} a e \bar{f}+\lambda_{4} a b \bar{d}\right)+a b c \bar{f}$,
(c) $r^{2}\left(\lambda_{i}+\lambda_{j}\right)=\left(|b|^{2}+|c|^{2}+|e|^{2}\right) \lambda_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{2}+\left(|a|^{2}+|e|^{2}+\right.$ $\left.|f|^{2}\right) \lambda_{3}+\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \lambda_{4}-(b c \bar{e}+c d \bar{f}+a e \bar{f}+a b \bar{d})$, and
(d) $r^{2} \alpha_{i} \alpha_{j}=|a|^{2} \alpha_{3} \alpha_{4}+|b|^{2} \alpha_{1} \alpha_{4}+|c|^{2} \alpha_{1} \alpha_{2}+|d|^{2} \alpha_{2} \alpha_{4}+|e|^{2} \alpha_{1} \alpha_{3}+|f|^{2} \alpha_{2} \alpha_{3}-$ $\left[\alpha_{1} \operatorname{Re}(b c \bar{e})+\alpha_{2} \operatorname{Re}(c d \bar{f})+\alpha_{3} \operatorname{Re}(a e \bar{f})+\alpha_{4} \operatorname{Re}(a b \bar{d})\right]-\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+\right.$ $\left.|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)-2 \operatorname{Re}(a b c \bar{f})\right)$.

If these conditions are satisfied, then $C_{R}(A)$ is the union of two points λ_{i}, λ_{j} with the ellipse having its foci at two other eigenvalues of A and minor axis of length r.

Proof. By Lemma 1,

$$
\begin{aligned}
P_{A}(x, y, z)= & \left(\alpha_{i} x+\beta_{i} y+z\right)\left(\alpha_{j} x+\beta_{j} y+z\right) \\
& \cdot\left[\left(\alpha_{k} x+\beta_{k} y+z\right)\left(\alpha_{l} x+\beta_{l} y+z\right)-\frac{r^{2}}{4}\left(x^{2}+y^{2}\right)\right] .
\end{aligned}
$$

Comparing this with polynomial (*), we have

$$
Q(x, y, z)=r^{2}\left(\alpha_{i} x+\beta_{i} y+z\right)\left(\alpha_{j} x+\beta_{j} y+z\right)
$$

and then obtain the following equalities by computing the coefficients of $x^{2}, y^{2}, z^{2}, x y, x z$ and $y z$, respectively. Therefore,
(1) $r^{2} \alpha_{i} \alpha_{j}=|a|^{2} \alpha_{3} \alpha_{4}+|b|^{2} \alpha_{1} \alpha_{4}+|c|^{2} \alpha_{1} \alpha_{2}+|d|^{2} \alpha_{2} \alpha_{4}+|e|^{2} \alpha_{1} \alpha_{3}+|f|^{2} \alpha_{2} \alpha_{3}-$ $\left[\alpha_{1} \operatorname{Re}(b c \bar{e})+\alpha_{2} \operatorname{Re}(c d \bar{f})+\alpha_{3} \operatorname{Re}(a e \bar{f})+\alpha_{4} \operatorname{Re}(a b \bar{d})\right]-\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+\right.$ $\left.|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)-2 \operatorname{Re}(a b c \bar{f})\right)$,
(2) $r^{2} \beta_{i} \beta_{j}=|a|^{2} \beta_{3} \beta_{4}+|b|^{2} \beta_{1} \beta_{4}+|c|^{2} \beta_{1} \beta_{2}+|d|^{2} \beta_{2} \beta_{4}+|e|^{2} \beta_{1} \beta_{3}+|f|^{2} \beta_{2} \beta_{3}-$ $\left[\beta_{1} \operatorname{Im}(b c \bar{e})+\beta_{2} \operatorname{Im}(c d \bar{f})+\beta_{3} \operatorname{Im}(a e \bar{f})+\beta_{4} \operatorname{Im}(a b \bar{d})\right]-\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+\right.$ $\left.|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)+2 \operatorname{Re}(a b c \bar{f})\right)$,
(3) $r^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}$,
(4) $r^{2}\left(\alpha_{i} \beta_{j}+\alpha_{j} \beta_{i}\right)=|a|^{2}\left(\alpha_{3} \beta_{4}+\alpha_{4} \beta_{3}\right)+|b|^{2}\left(\alpha_{1} \beta_{4}+\alpha_{4} \beta_{1}\right)+|c|^{2}\left(\alpha_{1} \beta_{2}+\right.$ $\left.\alpha_{2} \beta_{1}\right)+|d|^{2}\left(\alpha_{2} \beta_{4}+\alpha_{4} \beta_{2}\right)+|e|^{2}\left(\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}\right)+|f|^{2}\left(\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}\right)-$ $\left(\alpha_{1} \operatorname{Im}(b c \bar{e})+\beta_{1} \operatorname{Re}(b c \bar{e})\right)-\left[\alpha_{2} \operatorname{Im}(c d \bar{f})+\beta_{2} \operatorname{Re}(c d \bar{f})\right]-\left[\alpha_{3} \operatorname{Im}(a e \bar{f})+\right.$ $\left.\beta_{3} \operatorname{Re}(a e \bar{f})\right]-\left[\alpha_{4} \operatorname{Im}(a b \bar{d})+\beta_{4} \operatorname{Re}(a b \bar{d})\right]+\operatorname{Im}(a b c \bar{f})$,
(5) $r^{2}\left(\alpha_{i}+\alpha_{j}\right)=\left(|b|^{2}+|c|^{2}+|e|^{2}\right) \alpha_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \alpha_{2}+\left(|a|^{2}+|e|^{2}+|f|^{2}\right) \alpha_{3}+$ $\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \alpha_{4}-[\operatorname{Re}(b c \bar{e})+\operatorname{Re}(c d \bar{f})+\operatorname{Re}(a e \bar{f})+\operatorname{Re}(a b \bar{d})]$, and
(6) $r^{2}\left(\beta_{i}+\beta_{j}\right)=\left(|b|^{2}+|c|^{2}+|e|^{2}\right) \beta_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \beta_{2}+\left(|a|^{2}+|e|^{2}+\right.$ $\left.|f|^{2}\right) \beta_{3}+\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \beta_{4}-[\operatorname{Im}(b c \bar{e})+\operatorname{Im}(c d \bar{f})+\operatorname{Im}(a e \bar{f})+\operatorname{Im}(a b \bar{d})]$.

Note that the combination of (1), (2) and (4) is equivalent to the one of (b) and (d) since (1) $-(2)+i(4)$ yields (b). Moreover, the combination of (5) and (6) is equivalent to (c) since (5) $+i(6)$ yields (c). This completes the proof.

A similar argument shows the following theorem.
Theorem 4. Let A be in upper-triangular form (2.1). Then $C_{R}(A)$ consists of two ellipses, one with foci λ_{k}, λ_{l} and minor axis of length r, the other with foci λ_{i}, λ_{j} and minor axis of length s if and only if
(a) $r^{2}+s^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}$,
(b) $r^{2} \lambda_{i} \lambda_{j}+s^{2} \lambda_{k} \lambda_{l}=|a|^{2} \lambda_{3} \lambda_{4}+|b|^{2} \lambda_{1} \lambda_{4}+|c|^{2} \lambda_{1} \lambda_{2}+|d|^{2} \lambda_{2} \lambda_{4}+|e|^{2} \lambda_{1} \lambda_{3}+$ $|f|^{2} \lambda_{2} \lambda_{3}-\left(\lambda_{1} b c \bar{e}+\lambda_{2} c d \bar{f}+\lambda_{3} a e \bar{f}+\lambda_{4} a b \bar{d}\right)+a b c \bar{f}$,
(c) $r^{2}\left(\lambda_{i}+\lambda_{j}\right)+s^{2}\left(\lambda_{k}+\lambda_{l}\right)=\left(|b|^{2}+|c|^{2}+|e|^{2}\right) \lambda_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{2}+$ $\left(|a|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{3}+\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \lambda_{4}-(b c \bar{e}+c d \bar{f}+a e \bar{f}+a b \bar{d})$, and
(d) $r^{2} \alpha_{i} \alpha_{j}+s^{2} \alpha_{k} \alpha_{l}-\frac{1}{4} r^{2} s^{2}=|a|^{2} \alpha_{3} \alpha_{4}+|b|^{2} \alpha_{1} \alpha_{4}+|c|^{2} \alpha_{1} \alpha_{2}+|d|^{2} \alpha_{2} \alpha_{4}+$ $|e|^{2} \alpha_{1} \alpha_{3}+|f|^{2} \alpha_{2} \alpha_{3}-\left[\alpha_{1} \operatorname{Re}(b c \bar{e})+\alpha_{2} \operatorname{Re}(c d \bar{f})+\alpha_{3} \operatorname{Re}(a e \bar{f})+\alpha_{4} \operatorname{Re}(a b \bar{d})\right]-$ $\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)-2 \operatorname{Re}(a b c \bar{f})\right)$.

Proof. By Lemma 2,

$$
\begin{aligned}
P_{A}(x, y, z)= & {\left[\left(\alpha_{i} x+\beta_{i} y+z\right)\left(\alpha_{j} x+\beta_{j} y+z\right)-\frac{s^{2}}{4}\left(x^{2}+y^{2}\right)\right] } \\
& \cdot\left[\left(\alpha_{k} x+\beta_{k} y+z\right)\left(\alpha_{l} x+\beta_{l} y+z\right)-\frac{r^{2}}{4}\left(x^{2}+y^{2}\right)\right] .
\end{aligned}
$$

Comparing this with polynomial (*), we have

$$
\begin{aligned}
Q(x, y, z)= & r^{2}\left(\alpha_{i} x+\beta_{i} y+z\right)\left(\alpha_{j} x+\beta_{j} y+z\right) \\
& +s^{2}\left(\alpha_{k} x+\beta_{k} y+z\right)\left(\alpha_{l} x+\beta_{l} y+z\right)-\frac{r^{2} s^{2}}{4}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

and then obtain the following equalities by computing the coefficients of x^{2}, y^{2}, $z^{2}, x y, x z$, and $y z$, respectively. Therefore,
(1) $r^{2} \alpha_{i} \alpha_{j}+s^{2} \alpha_{k} \alpha_{l}-\frac{r^{2} s^{2}}{4}=|a|^{2} \alpha_{3} \alpha_{4}+|b|^{2} \alpha_{1} \alpha_{4}+|c|^{2} \alpha_{1} \alpha_{2}+|d|^{2} \alpha_{2} \alpha_{4}+$ $|e|^{2} \alpha_{1} \alpha_{3}+|f|^{2} \alpha_{2} \alpha_{3}-\left[\alpha_{1} \operatorname{Re}(b c \bar{e})+\alpha_{2} \operatorname{Re}(c d \bar{f})+\alpha_{3} \operatorname{Re}(a e \bar{f})+\alpha_{4} \operatorname{Re}(a b \bar{d})\right]-$ $\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)-2 \operatorname{Re}(a b c \bar{f})\right)$,
(2) $r^{2} \beta_{i} \beta_{j}+s^{2} \beta_{k} \beta_{l}-\frac{r^{2} s^{2}}{4}=|a|^{2} \beta_{3} \beta_{4}+|b|^{2} \beta_{1} \beta_{4}+|c|^{2} \beta_{1} \beta_{2}+|d|^{2} \beta_{2} \beta_{4}+$ $|e|^{2} \beta_{1} \beta_{3}+|f|^{2} \beta_{2} \beta_{3}-\left[\beta_{1} \operatorname{Im}(b c \bar{e})+\beta_{2} \operatorname{Im}(c d \bar{f})+\beta_{3} \operatorname{Im}(a e \bar{f})+\beta_{4} \operatorname{Im}(a b \bar{d})\right]-$ $\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+|b|^{2}|f|^{2}-2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)+2 \operatorname{Re}(a b c \bar{f})\right)$,
(3) $r^{2}+s^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}$,
(4) $r^{2}\left(\alpha_{i} \beta_{j}+\alpha_{j} \beta_{i}\right)+s^{2}\left(\alpha_{k} \beta_{l}+\alpha_{l} \beta_{k}\right)=|a|^{2}\left(\alpha_{3} \beta_{4}+\alpha_{4} \beta_{3}\right)+|b|^{2}\left(\alpha_{1} \beta_{4}+\right.$ $\left.\alpha_{4} \beta_{1}\right)+|c|^{2}\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)+|d|^{2}\left(\alpha_{2} \beta_{4}+\alpha_{4} \beta_{2}\right)+|e|^{2}\left(\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}\right)+$ $|f|^{2}\left(\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}\right)-\left(\alpha_{1} \operatorname{Im}(b c \bar{e})+\beta_{1} \operatorname{Re}(b c \bar{e})\right)-\left[\alpha_{2} \operatorname{Im}(c d \bar{f})+\beta_{2} \operatorname{Re}(c d \bar{f})\right]-$ $\left[\alpha_{3} \operatorname{Im}(a e \bar{f})+\beta_{3} \operatorname{Re}(a e \bar{f})\right]-\left[\alpha_{4} \operatorname{Im}(a b \bar{d})+\beta_{4} \operatorname{Re}(a b \bar{d})\right]+\operatorname{Im}(a b c \bar{f})$,
(5) $r^{2}\left(\alpha_{i}+\alpha_{j}\right)+s^{2}\left(\alpha_{k}+\alpha_{l}\right)=\left(|b|^{2}+|c|^{2}+|e|^{2}\right) \alpha_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \alpha_{2}+$ $\left(|a|^{2}+|e|^{2}+|f|^{2}\right) \alpha_{3}+\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \alpha_{4}-[\operatorname{Re}(b c \bar{e})+\operatorname{Re}(c d \bar{f})+\operatorname{Re}(a e \bar{f})+$ $\operatorname{Re}(a b \bar{d})]$, and
(6) $r^{2}\left(\beta_{i}+\beta_{j}\right)+s^{2}\left(\beta_{k}+\beta_{l}\right)=\left(|b|^{2}+|c|^{2}+|e|^{2}\right) \beta_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \beta_{2}+\left(|a|^{2}+\right.$ $\left.|e|^{2}+|f|^{2}\right) \beta_{3}+\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \beta_{4}-[\operatorname{Im}(b c \bar{e})+\operatorname{Im}(c d \bar{f})+\operatorname{Im}(a e \bar{f})+$ $\operatorname{Im}(a b \bar{d})]$.

Note that the combination of (1), (2) and (4) is equivalent to the one of (b) and (d) since (1) $-(2)+i(4)$ yields (b). Moreover, the combination of (5) and (6) is equivalent to (c) since (5) $+i(6)$ yields (c). This completes the proof.

Although every matrix is unitarily equivalent to an upper-triangular matrix, it is not easy to obtain the upper-triangular form of a matrix. For generality, we obtain the unitary invariant forms of Theorems 3 and 4.

Corollary 5. Let A be a 4×4 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4}. Then $C_{R}(A)$ consists of two points λ_{i}, λ_{j} and one ellipse having its foci at two other eigenvalues of A and minor axis of length r if and only if
(a) $r^{2}=\operatorname{tr}\left(A^{*} A\right)-\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2}$,
(b) $r^{2} \lambda_{i} \lambda_{j}=\sum_{1 \leq i<j \leq 4}\left(r^{2}+\left|\lambda_{i}\right|^{2}+\left|\lambda_{j}\right|^{2}\right) \lambda_{i} \lambda_{j}+\operatorname{tr}\left(A^{*} A^{3}\right)-\operatorname{tr}(A) \operatorname{tr}\left(A^{*} A^{2}\right)$,
(c) $r^{2}\left(\lambda_{i}+\lambda_{j}\right)=r^{2} \operatorname{tr}(A)-\operatorname{tr}\left(A^{*} A^{2}\right)+\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}$, and
(d) $r^{2} \alpha_{i} \alpha_{j}=4 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-4 \operatorname{det}(\operatorname{Re} A)$.

Proof. Let B be in upper-triangular form (2.1) which is unitarily equivalent to A. After a little computation, we obtain

$$
\begin{aligned}
\operatorname{tr}\left(B^{*} B\right)= & \sum_{i=1}^{4}\left|\lambda_{i}\right|^{2}+|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}, \\
\operatorname{tr}\left(B^{*} B^{2}\right)= & \sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}+\left(|a|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{1}+\left(|a|^{2}+|b|^{2}+|e|^{2}\right) \lambda_{2} \\
& +\left(|b|^{2}+|c|^{2}+|d|^{2}\right) \lambda_{3}+\left(|c|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{4} \\
& +(a b \bar{d}+a e \bar{f}+c d \bar{f}+b c \bar{e}), \\
\operatorname{tr}\left(B^{*} B^{3}\right)= & \sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}^{2}+\left(|a|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{1}^{2}+\left(|a|^{2}+|b|^{2}+|e|^{2}\right) \lambda_{2}^{2} \\
& \left.+|b|^{2}+|c|^{2}+|d|^{2}\right) \lambda_{3}^{2}+\left(|c|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{4}{ }^{2}+|a|^{2} \lambda_{1} \lambda_{2}+|b|^{2} \lambda_{2} \lambda_{3} \\
& +|c|^{2} \lambda_{3} \lambda_{4}+|d|^{2} \lambda_{1} \lambda_{3}+|e|^{2} \lambda_{2} \lambda_{4}+|f|^{2} \lambda_{1} \lambda_{4}+a b \bar{d}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \\
& +a e \bar{f}\left(\lambda_{1}+\lambda_{2}+\lambda_{4}\right)+c d \bar{f}\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)+b c \bar{e}\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)+a b c \bar{f},
\end{aligned}
$$

and

$$
\operatorname{det}(\operatorname{Re} B)=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-\frac{1}{4} Q(1,0,0)
$$

By the condition (a) in Theorem 3, we have

$$
\operatorname{tr}\left(B^{*} B\right)-\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}=r^{2}
$$

By the condition (b) in Theorem 3, we have

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq 4}\left(r^{2}+\left|\lambda_{i}\right|^{2}+\left|\lambda_{j}\right|^{2}\right) \lambda_{i} \lambda_{j}+\operatorname{tr}\left(B^{*} B^{3}\right)-\operatorname{tr}(B) \operatorname{tr}\left(B^{*} B^{2}\right) \\
= & |a|^{2} \lambda_{3} \lambda_{4}+|b|^{2} \lambda_{1} \lambda_{4}+|c|^{2} \lambda_{1} \lambda_{2}+|d|^{2} \lambda_{2} \lambda_{4}+|e|^{2} \lambda_{1} \lambda_{3}+|f|^{2} \lambda_{2} \lambda_{3} \\
& -\left(\lambda_{1} b c \bar{e}+\lambda_{2} c d \bar{f}+\lambda_{3} a e \bar{f}+\lambda_{4} a b \bar{d}\right)+a b c \bar{f} .
\end{aligned}
$$

By the condition (c) in Theorem 3, we have

$$
\begin{aligned}
& r^{2} \operatorname{tr}(B)-\operatorname{tr}\left(B^{*} B^{2}\right)+\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i} \\
= & \left(|b|^{2}+|c|^{2}+|e|^{2}\right) \lambda_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{2}+\left(|a|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{3} \\
& +\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \lambda_{4}-(b c \bar{e}+c d \bar{f}+a e \bar{f}+a b \bar{d}) .
\end{aligned}
$$

By the condition (d) in Theorem 3, we have

$$
\begin{aligned}
4 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-4 \operatorname{det}(\operatorname{Re} B)= & Q(1,0,0) \\
= & |a|^{2} \alpha_{3} \alpha_{4}+|b|^{2} \alpha_{1} \alpha_{4}+|c|^{2} \alpha_{1} \alpha_{2} \\
& +|d|^{2} \alpha_{2} \alpha_{4}+|e|^{2} \alpha_{1} \alpha_{3}+|f|^{2} \alpha_{2} \alpha_{3} \\
& -\left[\alpha_{1} \operatorname{Re}(b c \bar{e})+\alpha_{2} \operatorname{Re}(c d \bar{f})\right. \\
& \left.+\alpha_{3} \operatorname{Re}(a e \bar{f})+\alpha_{4} \operatorname{Re}(a b \bar{d})\right] \\
& -\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+|b|^{2}|f|^{2}\right. \\
& -2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)-2 \operatorname{Re}(a b c \bar{f})) .
\end{aligned}
$$

Since trace and determinant are unitary invariant, completing the proof.
Corollary 6. Let A be a 4×4 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4}. Then $C_{R}(A)$ consists of two ellipses, one with foci λ_{k}, λ_{l} and minor axis of length r, the other with foci λ_{i}, λ_{j} and minor axis of length s if and only if
(a) $r^{2}+s^{2}=\operatorname{tr}\left(A^{*} A\right)-\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \equiv \gamma^{2}$,
(b) $r^{2} \lambda_{i} \lambda_{j}+s^{2} \lambda_{k} \lambda_{l}=\sum_{1 \leq i<j \leq 4}\left(\gamma^{2}+\left|\lambda_{i}\right|^{2}+\left|\lambda_{j}\right|^{2}\right) \lambda_{i} \lambda_{j}+\operatorname{tr}\left(A^{*} A^{3}\right)-\operatorname{tr}(A) \operatorname{tr}\left(A^{*} A^{2}\right)$,
(c) $r^{2}\left(\lambda_{i}+\lambda_{j}\right)+s^{2}\left(\lambda_{k}+\lambda_{l}\right)=\gamma^{2} \operatorname{tr}(A)-\operatorname{tr}\left(A^{*} A^{2}\right)+\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}$, and
(d) $r^{2} \alpha_{i} \alpha_{j}+s^{2} \alpha_{k} \alpha_{l}-\frac{1}{4} r^{2} s^{2}=4 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-4 \operatorname{det}(\operatorname{Re} A)$.

Proof. Let B be in upper-triangular form (2.1) which is unitarily equivalent to A. A direct computation yields that

$$
\begin{aligned}
\operatorname{tr}\left(B^{*} B\right) & =\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2}+|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2} \\
\operatorname{tr}\left(B^{*} B^{2}\right) & =\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}+\left(|a|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{1}+\left(|a|^{2}+|b|^{2}+|e|^{2}\right) \lambda_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(|b|^{2}+|c|^{2}+|d|^{2}\right) \lambda_{3}+\left(|c|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{4} \\
& +(a b \bar{d}+a e \bar{f}+c d \bar{f}+b c \bar{e}) \\
\operatorname{tr}\left(B^{*} B^{3}\right)= & \sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}{ }^{2}+\left(|a|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{1}^{2}+\left(|a|^{2}+|b|^{2}+|e|^{2}\right) \lambda_{2}^{2} \\
& +\left(|b|^{2}+|c|^{2}+|d|^{2}\right) \lambda_{3}^{2}+\left(|c|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{4}^{2}+|a|^{2} \lambda_{1} \lambda_{2}+|b|^{2} \lambda_{2} \lambda_{3} \\
& +|c|^{2} \lambda_{3} \lambda_{4}+|d|^{2} \lambda_{1} \lambda_{3}+|e|^{2} \lambda_{2} \lambda_{4}+|f|^{2} \lambda_{1} \lambda_{4}+a b \bar{d}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \\
& +a e \bar{f}\left(\lambda_{1}+\lambda_{2}+\lambda_{4}\right)+c d \bar{f}\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)+b c \bar{e}\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)+a b c \bar{f}
\end{aligned}
$$

and

$$
\operatorname{det}(\operatorname{Re} B)=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-\frac{1}{4} Q(1,0,0)
$$

By the condition (a) in Theorem 4, we have

$$
\operatorname{tr}\left(B^{*} B\right)-\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+|e|^{2}+|f|^{2}=r^{2}
$$

By the condition (b) in Theorem 4, we have

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq 4}\left(r^{2}+\left|\lambda_{i}\right|^{2}+\left|\lambda_{j}\right|^{2}\right) \lambda_{i} \lambda_{j}+\operatorname{tr}\left(B^{*} B^{3}\right)-\operatorname{tr}(B) \operatorname{tr}\left(B^{*} B^{2}\right) \\
= & |a|^{2} \lambda_{3} \lambda_{4}+|b|^{2} \lambda_{1} \lambda_{4}+|c|^{2} \lambda_{1} \lambda_{2}+|d|^{2} \lambda_{2} \lambda_{4}+|e|^{2} \lambda_{1} \lambda_{3}+|f|^{2} \lambda_{2} \lambda_{3} \\
& -\left(\lambda_{1} b c \bar{e}+\lambda_{2} c d \bar{f}+\lambda_{3} a e \bar{f}+\lambda_{4} a b \bar{d}\right)+a b c \bar{f}
\end{aligned}
$$

By the condition (c) in Theorem 4, we have

$$
\begin{aligned}
& r^{2} \operatorname{tr}(B)-\operatorname{tr}\left(B^{*} B^{2}\right)+\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i} \\
= & \left(|b|^{2}+|c|^{2}+|e|^{2}\right) \lambda_{1}+\left(|c|^{2}+|d|^{2}+|f|^{2}\right) \lambda_{2}+\left(|a|^{2}+|e|^{2}+|f|^{2}\right) \lambda_{3} \\
& +\left(|a|^{2}+|b|^{2}+|d|^{2}\right) \lambda_{4}-(b c \bar{e}+c d \bar{f}+a e \bar{f}+a b \bar{d}) .
\end{aligned}
$$

By the condition (d) in Theorem 4, we have

$$
\begin{aligned}
4 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-4 \operatorname{det}(\operatorname{Re} B)= & Q(1,0,0) \\
= & |a|^{2} \alpha_{3} \alpha_{4}+|b|^{2} \alpha_{1} \alpha_{4}+|c|^{2} \alpha_{1} \alpha_{2} \\
& +|d|^{2} \alpha_{2} \alpha_{4}+|e|^{2} \alpha_{1} \alpha_{3}+|f|^{2} \alpha_{2} \alpha_{3}
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\alpha_{1} \operatorname{Re}(b c \bar{e})+\alpha_{2} \operatorname{Re}(c d \bar{f})\right. \\
& \left.+\alpha_{3} \operatorname{Re}(a e \bar{f})+\alpha_{4} \operatorname{Re}(a b \bar{d})\right] \\
& -\frac{1}{4}\left(|a|^{2}|c|^{2}+|d|^{2}|e|^{2}+|b|^{2}|f|^{2}\right. \\
& -2 \operatorname{Re}(a \bar{c} \bar{d} e)-2 \operatorname{Re}(b \bar{d} \bar{e} f)-2 \operatorname{Re}(a b c \bar{f}))
\end{aligned}
$$

Since trace and determinant are unitary invariant, the results follow obviously.
Now we are ready to formulate a sufficient condition for a 4×4 matrix A to have an elliptic disc as its numerical range.

Corollary 7. Let A be a 4×4 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} which satisfies the following conditions:
(a) $r^{2}=\operatorname{tr}\left(A^{*} A\right)-\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2}$,
(b) $r^{2} \lambda_{i} \lambda_{j}=\sum_{1 \leq i<i j \leq 4}\left(r^{2}+\left|\lambda_{i}\right|^{2}+\left|\lambda_{j}\right|^{2}\right) \lambda_{i} \lambda_{j}+\operatorname{tr}\left(A^{*} A^{3}\right)-\operatorname{tr}(A) \operatorname{tr}\left(A^{*} A^{2}\right)$,
(c) $r^{2}\left(\lambda_{i}+\lambda_{j}\right)=\gamma^{2} \operatorname{tr}(A)-\operatorname{tr}\left(A^{*} A^{2}\right)+\sum_{i=1}^{4}\left|\lambda_{i}\right|^{2} \lambda_{i}$,
(d) $r^{2} \alpha_{i} \alpha_{j}=4 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}-4 \operatorname{det}(\operatorname{Re} A)$, and
(e) $\left(\left|\lambda-\lambda_{k}\right|+\left|\lambda-\lambda_{l}\right|\right)^{2}-\left|\lambda_{k}-\lambda_{l}\right|^{2} \leq r^{2}$, where $\lambda=\lambda_{i}, \lambda_{j}$ and λ_{k}, λ_{l} are other two eigenvalues of A.

Then $W(A)$ is an elliptic disc with foci λ_{k}, λ_{l} and the minor axis of length r.
Proof. By Corollary 5, $C_{R}(A)$ consists of two points λ_{i}, λ_{j} and one ellipse whose foci are λ_{k}, λ_{l} and whose minor axis has length r. Moreover, condition (e) means that these two points λ_{i}, λ_{j} lie inside the ellipse. Hence $W(A)$ is an elliptic with foci λ_{k}, λ_{l} and the minor axis of length r.

Corollary 8. Let A be a 4×4 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4}. If conditions (a)-(d) of Corollary 6 hold and, in addition,
(e) $\sqrt{\left|\lambda_{k}-\lambda_{l}\right|^{2}+r^{2}}+\left|\lambda_{k}-\lambda_{i}\right|+\left|\lambda_{l}-\lambda_{j}\right| \leq \sqrt{\left|\lambda_{i}-\lambda_{j}\right|^{2}+s^{2}}$.

Then $W(A)$ is an elliptic disc with foci λ_{i}, λ_{j} and the minor axis of length s.
Proof. By Corollary 6, $C_{R}(A)$ consists of two ellipses, one with foci λ_{k}, λ_{l} and the minor axis of length r and the other with foci λ_{i}, λ_{j} and the minor axis of length s. Moreover, for λ in \mathbb{C} such that

$$
\left|\lambda-\lambda_{k}\right|+\left|\lambda-\lambda_{l}\right| \leq \sqrt{\left|\lambda_{k}-\lambda_{l}\right|+r^{2}},
$$

we have

$$
\begin{aligned}
\left|\lambda-\lambda_{i}\right|+\left|\lambda-\lambda_{j}\right| & \leq\left|\lambda-\lambda_{k}\right|+\left|\lambda-\lambda_{l}\right|+\left|\lambda_{k}-\lambda_{i}\right|+\left|\lambda_{l}-\lambda_{j}\right| \\
& \leq \sqrt{\left|\lambda_{k}-\lambda_{l}\right|+r^{2}}+\left|\lambda_{k}-\lambda_{i}\right|+\left|\lambda_{l}-\lambda_{j}\right| \\
& \leq \sqrt{\left|\lambda_{i}-\lambda_{j}\right|^{2}+s^{2}}
\end{aligned}
$$

by condition (e). Thus we conclude that $W(A)$ is an elliptic disc with foci λ_{i}, λ_{j} and the minor axis of length s.

References

1. E. Brieskorn and H. Knorrer, Plane Algebraic Curves, Birkhauser Verlag, Basel, 1986.
2. J. L. Coolidge, A Treatise on Algebraic Plane Curves, Dover, New York, 1959.
3. M. Fiedler, Geometry of the numerical range of matrices, Linear Algebra Appl. 37 (1981), 81-96.
4. H.-L. Gau and Y.-H. Lu, Elliptical numerical ranges of 4×4 matrices, Master Thesis, National Central University, 2003.
5. K. E. Gustafson and D. K. M. Rao, Numerical Range, the Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
6. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.
7. D. S. Keeler, L. Rodman and I. M. Spitkovsky, The Numerical Range of 3×3 Matrices. Linear Algebra Appl., 252 (1997), 115-139.
8. R. Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr., 6 (1951), 193-228.
9. F. Kirwan, Complex Algebraic Curves, Cambridge Univ. Press, Cambridge, 1992.
10. C.-K. Li, A simple proof of the elliptical range theorem, Proc. Amer. Math. Soc., 124 (1996), 1985-1986.
11. F. D. Murnaghan, On the field of values of a square matrix, Proc. Nat. Acad. Sci. U.S.A., 18 (1932), 246-248.

Hwa-Long Gau
Department of Mathematics,
National Central University,
Chung-Li 32001, Taiwan.
E-mail: hlgau@math.ncu.edu.tw

[^0]: Received February 27, 2005.
 Communicated by Ngai-Ching Wong.
 2000 Mathematics Subject Classification: 15A18, 15A60.
 Key words and phrases: Numerical range, Kippenhahn curve.
 Research partially supported by the National Science Council of the Republic of China.

