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ANALYTIC SPACES DEFINED BY SYMMETRIC NORMING
FUNCTIONS

Mark C. Ho and Mu Ming Wong

Abstract. Let c0 be the space of sequences converging to 0. A symmet-
ric norming function (or briefly, s.n. function) is a function Φ from c0 into
nonnegative numbers with the properties of that in a norm, a normalizing crite-
ria: Φ(1, 0, 0, · · ·) = 1, and the symmetric condition: Φ(x1, x2, · · · ) = Φ(x∗

1,
x∗

2, · · · ), where x∗
1, x

∗
2, · · · is the nonincreasing rearrangement of |x1|, |x2|, · · · .

In this paper, we will define spaces of analytic functions based on s.n. func-
tions, which are generalization of the space B+

1 in [2].

1. INTRODUCTION

Let H be a separable Hilbert space and B(H) be the space of bounded operators
on H. Let S be a proper (two-sided) ideal of B. It is well-know that F ⊆ S ⊆ S∞,
where F = F (H) is the ideal of finite rank operators and S∞ is the ideal of compact
operators. A norm ‖ · ‖s defined on S is called a symmetric norm if it is a usual
norm with the additional properties:
(1) ‖ATB‖s ≤ ‖A‖‖T‖s‖B‖ for A, B ∈ B and T ∈ S;
(2) for any rank one operator T , ‖T‖s = ‖T‖ = s1(T ).
We shall say that S is a symmetrically-normed ideal (or briefly, s.n. ideal) if S is
complete with respect to the norm ‖ · ‖s.

On the other hand, let c0 be the space of real sequences which converge to
0, and ĉ = {(x1, x2, · · · ) ∈ c0 : xn = 0 for all but finitely many n}. A function
Φ : ĉ → R is called a symmetric norming function (or briefly, s.n. function) if

(a) Φ(x) > 0 for x ∈ ĉ, x �= 0;
(b) Φ(αx) = |α|Φ(x) for any α ∈ R, x ∈ ĉ;
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(c) Φ(x + y) ≤ Φ(x) + Φ(y), x, y ∈ ĉ;

(d) Φ(1, 0, 0, · · · ) = 1;

(e) Φ(x1, · · · , xn, 0, 0, · · · ) = Φ(|xσ(1)|, · · · , |xσ(n)|, 0, 0, · · ·), for any n, and
any permutation σ of 1, 2, · · · , n.

Now consider x = (x1, x2, · · · ) ∈ c0. Write x(n) = (x1, · · · , xn, 0, 0, · · ·) and
define

cΦ =
{

x ∈ c0 : sup
n

Φ(x(n)) < ∞
}

.

It is well-known that Φ(x(n)) is nondecreasing (Lemma 3.2, Chap. III, [4]), and
therefore we may define Φ(x) = limn→∞ Φ(x(n)), x ∈ cΦ. Now let T ∈ B. The
singular values of T is the nonincreasing sequence of nonnegative numbers {sn(T )}
(n = 1, 2, · · · )

sn(T ) = inf{‖T − S‖ : rank(S) < n}, n = 1, 2, · · · .

Note that sn(T ) ↘ 0 if and only if T ∈ S∞. There are other alternatives to
describe the sn(T )’s. For instance, one can show that the sn(T )’s are in fact the
eigenvalues of |T | = (T∗T )1/2. We say that T is in the symmetrically-normed ideal
SΦ generated by Φ if (s0(T ), s1(T ), · · ·) ∈ cΦ, with norm

‖T‖Φ = Φ(s0(T ), s1(T ), · · ·)

since Φ induces a symmetric norm on SΦ (Theorem 4.1, Chap. III, [4]), and we
use S

(0)
Φ to denote the closure of F in SΦ, which is itself a s.n. ideal.

The concept of s.n. functions is introduced for the purpose of classifying operator
ideals on Hilbert spaces with norms invariant with respect to unitary dilation (See
[4]). For example, the usual Schatten p-classes Sp, 1 ≤ p ≤ ∞ are defined by the
s.n. functions Φp(x1, x2, · · · ) = (

∑ |xn|p)1/p and S
(0)
p = Sp, and the so-called

binormalizing s.n. ideals SΠ are defined by the functions of form

ΦΠ(x) = sup
n

∑n
1 x∗

k∑n
1 πk

,

where x∗
1, x

∗
2, · · · is the nonincreasing rearrangement of |x1|, |x2|, · · · , and Π =

{πn} is a nonincreasing nonnegative sequence with π1 = 1 and
∑

πn = +∞.
The problems of characterizing special classes of operators in various s.n. ideals,

especially in the Schatten classes, have always attracted the attentions from the
functional analysts. In our case, the class of interest here is the Hankel operators
on H2 = H2(D), the Hardy space on the unit disc D. Let f ∈ H2, then the
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operator hf on H2 is called a Hankel operator if the matrix of hf with respect to
the standard basis {1, z, z2, · · ·} in H2 is given by


a0 a1 a2 a3 · · ·
a1 a2 a3 · · · · · ·
a2 a3 · · · · · · · · ·
a3 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·


 ,

where f(z) =
∑∞

0 anzn is the Taylor series of f . For the detail of Hankel operators,
we refer the readers to [7]. In [6], Peller proved a remarkable result stating that
hf ∈ Sp, 1 ≤ p < ∞ if and only if f ∈ Bp, where Bp is the analytic Besov space
defined by {

f analytic on D :
∫

DD
|f ′′(z)|p(1 − |z|2)2p−2dxdy < ∞

}
.

Later, in [2] and [3], the spaces B +
1 and BL are defined based on the s.n. function

ΦΠ to describe f for which the corresponding Hankel operator hf belonging to
SΠ, when Π satisfies a so-called regular conditions. Our goal for this paper is to
generalize these analytic spaces for all s.n. functions.

2. SPACES OF ANALYTIC FUNCTIONS RELATED TO SYMMETRIC NORMING FUNCTIONS

Let D = {z ∈ C : |z| < 1} be the unit disc and z, ω ∈ D. Let ρ(z, ω) be the
hyperbolic distance between z and ω, i.e.,

ρ(z, ω) =
1
2

log
1 +

∣∣∣∣ z − ω

1 − zω

∣∣∣∣
1 −

∣∣∣∣ z − ω

1 − zω

∣∣∣∣
.

Also, for r > 0, we denote the hyperbolic ball with center at z and radius r by
D(z, r), i.e., D(z, r) = {ω : ρ(z, ω) < r}. On the other hand, let K(z, ω) =
(1 − zω)−2 be the Bergmann kernel on D and dv(z) = 1

πdxdy the normalized
Lebesgue area measure on D. The followings are some useful facts in analytic
function theory on D concerning the hyperbolic metric that will be considered in
our later discussion:

Given r, s > 0, there is a C > 0 depending only on r and s so that

F1. C−1(1 − |a|2)2 ≤ |D(z, r)| ≤ C(1 − |a|2)2, where |D(z, r)| is the area of
D(z, r), for all z ∈ D(a, r) and a ∈ D.



4 Mark C. Ho and Mu Ming Wong

F2. C−1|D(z, r)| ≤ |D(ω, s)| ≤ C|D(z, r)| if ρ(ω, z) < r.

F3. C−1K(a, ω) ≤ K(z, ω) ≤ CK(a, ω) for all ω ∈ D if z ∈ D(a, r).

F4. (Subnormality)

h(a) ≤ C

|D(a, r)|
∫

D(a,r)
h(z)dv(z)

for any nonnegative subharmonic function h on D.

F5. There is a sequence {ωn} in D and measurable sets Dn ⊆ D so that (1)
|ωn| → 1 and

⋃∞
n=1 Dn = D (2) D(ωn, r

4) ⊆ Dn ⊆ D(ωn, r) for n ≥ 1 (3)
Dn ∩ Dm = ∅ if n �= m and (4) there is a N ∈ N depending only on r such
that any z in D belongs to at most N of the sets {D(ωn, 2r)}.

The reader can find details about these properties in, for instance, [8].
Now let H(D) denote the space of all analytic functions on D and Φ be a s.n.

function, as mentioned earlier. Pick r > 0, and choose a cover D = {Dn} of D

with respect to some sequence {ωn} in D, as in F5. Fixing a nonnegative integer
k, and let us consider the space of analytic functions on D as follows:

BΦ,D = {f ∈ H(D) : (λ1(f), λ2(f), · · · ) ∈ cΦ} ,

where λn(f) = sup{|f ′′(z)|(1− |z|2)2 : z ∈ Dn}, equipped with norm

‖f‖Φ,D = |f(0)|+ |f ′(0)|+ Φ(λ1(f), λ2(f), · · ·).

It is clear from the definition that BΦ,D ⊆ B0, where B0 is the little Bloch space. It is
also clear that if fk → f uniformly on compact subsets of D, then λn(fk) → λn(f)
for each n.

Theorem 2.1. BΦ,D with the norm above is a Banach space.

Proof. Let {fi} be a Cauchy sequence in BΦ,D and K ⊂ D be compact. Choose
n0 large enough such that

⋃
z∈K D(z, r) ⊆ ⋃n0

n=1 Dn. Hence, by the subnormality
of |f ′′| and F1-F5, for any z ∈ K, we have

|f ′′
i (z)− f ′′

j (z)| ≤ C

|D(z, r)|
∫

D(z,r)
|f ′′

i (ω)− f ′′
j (ω)|dv(ω)

≤ CK

n0∑
n=1

∫
Dn

|f ′′
i (ω)− f ′′

j (ω)|(1− |ω|2)2dλ(ω)

≤ CKC1n0 max
1≤n≤n0

λn(fi − fj)
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for some C, C1 > 0 depending only on r, with (infz∈K |D(z, r)|)CK ≥ C. Here
dλ(z) = K(z, z)dv(z). It follows that for all i, j, there exists C̃K > 0 such that

|f ′′
i (z) − f ′′

j (z)| ≤ C̃K‖fi − fj‖Φ,D

by properties of s.n. functions. This shows that {fi} is uniformly Cauchy on
compact subsets of D. Therefore fi converges uniformly on compacts to an analytic
function on D. The fact that f ∈ BΦ,D is clear. Indeed, for any fixed n, we have

Φ((λ1(f), λ2(f), · · · )(n)) ≤
Φ((λ1(f − fi), λ2(f − fi), · · ·)(n)) + Φ((λ1(fi), λ2(fi), · · ·)(n))

for any i. Since fi converges uniformly on compact subsets of D, we have, by
letting i → ∞, that for all n,

Φ((λ1(f), λ2(f), · · ·)(n)) ≤ M,

where M ≥ supi ‖fi‖Φ,D . This means that (λ1(f), λ2(f), · · ·) ∈ cΦ.

As much as the fact that BΦ,D being a Banach space is now established, it may
appear, at least in the surface, that the space BΦ,D depends on both the s.n. function
Φ and D. We will show, in the next result, that the “dependence” of BΦ,D on D
can be removed:

Proposition 2.2. BΦ,D does not depend on r, or the cover D.

Proof. In order to prove this, we need a couple of lemmas, which also turn out
to be very useful throughout the remaining of this article:

Lemma 2.3. Let p > 0, r, r̃ > 0 and D = {Dn}, D̃ = {D̃n} be the
corresponding decompositions of D (see F5), with the interpolating sequences {ω n},
{ω̃n}, respectively. Let h ≥ 0 be subharmonic on D. Then

n∑
k=1

(
sup
z∈Dk

h(z)(1− |z|2)2p

)∗
≈

n∑
k=1

(∫
D̃k

h(z)(1− |z|2)2pdλ(z)
)∗

,

where an ≈ bn means that there exists a C > 0 such that C −1an ≤ bn ≤ Cbn for all
n (Recalling that x∗

1, x
∗
2, · · · is the nonincreasing rearrangement of |x 1|, |x2|, · · · ).

Proof of Lemma 2.3. Since the hyperbolic metric ρ is invariant under Möbius
transformation, there exists M ∈ N, depending only on r, r̃, such that there are at
most M points in D(z, 2ε) that are at least δ apart, in the hyperbolic metric ρ, for
any z ∈ D, where ε ≥ max(r, r̃) and 0 < δ ≤ min(r

2 , r̃
2 ).
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For each n, let l(n) be the cardinality of the set An = {D̃k : D̃k ∩D(ωn, 2r) �=
∅}. Then l(n) ≤ M , and we may write An = {D̃n,i : 1 ≤ i ≤ M}, where D̃n,i = ∅
if i > l(n). Since h is continuous, there exists zn ∈ Dn (the closure of Dn) for
each n so that

sup
z∈Dn

h(z)(1 − |z|2)2p = h(zn)(1 − |zn|2)2p.

This means, by the subnormality of h and F1, F2, that there is a C > 0, depending
only on r and r̃, so that

sup
z∈Dn

h(z)(1 − |z|2)2p ≤ C

∫
D(zn, r

4
)

h(z)(1− |z|2)2pdλ(z),

which implies that

sup
z∈Dn

h(z)(1− |z|2)2p ≤ C

M∑
i=1

∫
D̃n,i

h(z)(1− |z|2)2pdλ(z)

≤ CM max
1≤i≤M

{∫
D̃n,i

h(z)(1− |z|2)2pdλ(z)

}
.

Now for each fixed i, D̃n,i can appear at most M times in D̃ as n runs through N.
Thus

n∑
k=1

(
sup
z∈Dk

h(z)(1− |z|2)2p

)∗
≤ CM2

n∑
k=1

(∫
D̃k

h(z)(1− |z|2)2pdλ(z)
)∗

for each n. The other half of the inequalities, i.e.,

n∑
k=1

(∫
D̃k

h(z)(1− |z|2)2pdλ(z)
)∗

≤ C1M
2

n∑
k=1

(
sup
z∈Dk

h(z)(1 − |z|2)2p

)∗

for each n, and for some C1 > 0, can be derived similarly.

The second lemma, due to K. Fan (See [1] or Lemma 3.1, Chap. III, [4]), is
stated as follow:

Lemma 2.4. Suppose that x = (x1, x2, · · ·), y = (y1, y2, · · · ) ∈ ĉ. If x1 ≥
x2 ≥ · · · ≥ 0, y1 ≥ y2 ≥ · · · ≥ 0 and

n∑
k=1

xk ≤
n∑

k=1

yk, n = 1, 2, · · · ,

then for any s.n. function Φ we have Φ(x) ≤ Φ(y).
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Proof of Proposition 2.2. By applying Lemma 2.3 to the subharmonic function
|f ′′|, we have

n∑
k=1

λk(f)∗ ≤ C

n∑
k=1

λ̃k(f)∗, n = 1, 2, · · · ,

where λ̃n(f) = sup{|f ′′(z)|(1− |z|2)2 : z ∈ D̃n}. Therefore, as a consequence of
Lemma 2.4

Φ(λ1(f), λ2(f), · · ·) ≤ CΦ(λ̃1(f), λ̃2(f), · · ·)
for some C > 0. This means that ‖f‖BΦ,D ≤ C1‖f‖BΦ,D̃ for some C1 > 0.
On the other hand, it is also clear that we can show, by similar argument, that
‖f‖BΦ,D̃ ≤ C2‖f‖BΦ,D for some C2 > 0. This proves that BΦ,D is isomorphic to
BΦ,D̃ .

From now on we shall replace BΦ,D by BΦ, in view of Proposition 2.2.

Example Let 1 ≤ p ≤ ∞ and pick a decomposition D of D described in F5.
Recall the s.n. function Φp defined in the previous section. Then the space BΦp is
precisely the analytic Besov space Bp. Indeed, for 1 ≤ p < ∞, since∫

Dn

|f ′′(z)|p(1 − |z|2)2pdλ(z) ≤ Cλn(f)p

for some C > 0 depending only on r, we have Bp ⊆ BΦp . On the other hand, since
|f ′′|p is subharmonic for p > 0, we have

n∑
k=1

λk(f)∗p ≤ C

n∑
k=1

(∫
Dk

|f ′′(z)|p(1− |z|2)2pdλ(z)
)∗

for all n,

by Lemma 2.3. This shows that BΦp ⊆ Bp. When p = ∞, we have BΦ∞ = B0

since Φ∞ is given by Φ∞(x) = ‖x‖∞, x ∈ c0.

As a consequence of the above examples, we have

Corollary 2.5. Let Φ be a s.n. function on ĉ. Then B1 ⊆ BΦ ⊆ B0.

Proof. Since by the properties of s.n. function, we have Φ∞(x) ≤ Φ(x) ≤
Φ1(x) for any x ∈ ĉ.

In the theory of s.n. ideals, it is known that two s.n. ideals are the same if and
only if their norms are equivalent. An analog of this fact can also be derived for
these spaces of analytic functions associated with s.n. functions:
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Corollary 2.6. Let Φ1 and Φ2 be s.n. functions on ĉ. Suppose that BΦ1 = BΦ2

elementwise. Then BΦ1 is isomorphic to BΦ2 .

Proof. Fix a decomposition D of D as described in F5, for all the spaces
involved. Let B be the set of elements of BΦ1 or, what is the same, BΦ2 . Equip B

with the norm
‖f‖ = max{‖f‖Φ1, ‖f‖Φ2}.

It is clear that ‖ · ‖ is the same with the norm generated by the s.n. function

Φ(x) = max{Φ1(x), Φ2(x)}, x ∈ ĉ,

i.e., B is in fact the space BΦ, which is, by Theorem 2.1, complete. On the other
hand, we see that, by the open mapping theorem, the identity map is an isomorphism
from (B, ‖·‖) onto (BΦ1 , ‖·‖Φ1) and in the same time an isomorphism from (B, ‖·‖)
onto (BΦ2 , ‖ · ‖Φ2). This completes the proof.

Another well-known fact about the s.n. ideals is that SΦ is separable if
Φ(xn+1, xn+2, · · · ) → 0 (or, equivalently, Φ(x∗n+1, x

∗
n+2, · · · ) → 0) as n → ∞

for every (x1, x2, · · ·) ∈ cΦ, and that F is dense in SΦ. Here we would like to
prove a similar result for BΦ:

Proposition 2.7. Suppose that Φ is a s.n. function such that for every
(x1, x2, · · · ) ∈ cΦ we have Φ(xn+1, xn+2, · · · ) → 0 as n → ∞. Then BΦ is
separable. Moreover, the disk algebra A(D) is dense in BΦ.

Proof. In view of Proposition 2.2, let us first introduce a special decomposition
of D satisfying the conditions in F5: Let I = [a, b) ⊆ [0, 1) and |I | = b − a.
Associate I a subset W (I) (a “window”) in D defined by

W (I) :=
{

z :
1
2
|I | < 1 − |z| ≤ |I | and arg(z) ∈ 2πI

}
.

A ω ∈ W (I) is called the center of W (I) if 1−|ω| = 3
4 |I | and arg(ω) = (a+ b)π

(or, the geometric center of W (I)). Now let us consider an interval I ⊆ [0, 1) with
dyadic endpoints, then the associated W (I) has the form

Wn,k =
{

z :
1

2n+1
≤ 1 − |z| <

1
2n

and
k − 1
2n−1

π ≤ arg(z) <
k

2n−1
π

}

where 1 ≤ k ≤ 2n and n ≥ 0. It is known that the collection D = {Wn,k}
forms a decomposition of the unit disc D with their centers (The so-called dyadic
decomposition of D) satisfying the conditions described in F5 with suitable r > 0
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(see, for example, [5]). We shall rewrite D = {Dn : n = 1, 2, · · · }, with the
corresponding centers {ωn : n = 1, 2, · · ·}.

Now suppose that f ∈ BΦ and ri ↗ 1. Set fi(z) = f(riz). We will show that
fi → f in BΦ. Let ε > 0 be given. Then there exists n0 ∈ N so that

Φ(λn(f), λn+1(f), · · ·) < ε

if n ≥ n0. Pick 1
2 < R < 1 such that {z ∈ C : R ≤ |z| < 1} ⊆ ⋃

n≥n0
Dn.

Furthermore, choose n1 > n0 so that if n ≥ n1, then ρ(ζ, z) > 2r whenever
ζ ∈ Dn and |z| ≤ R+1

2 . Since f ′′
i → f ′′ uniformly on compact subsets of D, we

may choose large i such that 1 − ri < ε,

Φ((λ1(fi − f), λ2(fi − f), · · · )(n1)) < ε

and ri(R+1) > 2R. Now choose zn ∈ Dn such that λn(fi) = |f ′′
i (zn)|(1−|zn|2)2,

one has

λn(fi) ≤ C

∫
D(zn, r

4
)
|f ′′

i (z)|dv(z)

≤ C
∑

Dk∈An

∫
Dk

|f ′′
i (z)|dv(z)

for some C > 0 depending only on r, where again, the cardinality of the set
An = {Dk : Dk ∩ D(ωn, r) �= ∅} does not exceed M for some M ∈ N. Also note
that by the choice of An, Dk ⊆ {z ∈ C : R+1

2 ≤ |z| < 1} if Dk ∈ An and n ≥ n1,
which means that there exists n0 ≤ n2 ≤ n1 so that Dk ∈ {Dm : m ≥ n2} ⊆ {z :
R+1

2 ≤ |z| < 1} if Dk ∈ An and n ≥ n1. It follows then from the definition of fi

that

λn(fi) ≤ C
∑

Dk∈An

r−2
i

∫
riDk

|f ′′(z)|dv(z)

≤ 2C
∑

Dk∈An

∫
riDk

|f ′′(z)|dv(z)

≤ 2CM max
Dk∈An

∫
riDk

|f ′′(z)|dv(z).

However, since the {riDk} are pairwise disjoint and the set Bk = {Dn : Dn ∩
riDk �= ∅} has at most two elements, we see that

n2+j∑
k=n2

(∫
riDk

|f ′′(z)|dv(z)
)∗

≤ 2
n0+j∑
n=n0

(∫
Dn

|f ′′(z)|dv(z)
)∗
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for j = 1, 2, · · · , by the choice of n2 and ri. Now each Dk appears in at most N

different An’s (see F5). Therefore

n1+j∑
n=n1

λn(fi)∗ ≤ 4CMN

n0+j∑
n=n0

(∫
Dn

|f ′′(z)|dv(z)
)∗

≤ 4C1MN

n0+j∑
n=n0

λn(f)∗

for j = 1, 2, · · · , and for some C1 > 0 depending on r. Hence, by Lemma 2.4, we
have

Φ(λn1(fi)∗, λn1+1(fi)∗, · · ·) ≤ 4C1MNΦ(λn0(f)∗, λn0+1(f)∗, · · · ) < 4C1MNε.

This implies that

Φ(λ1(fi − f), λ2(fi − f), · · ·) ≤ 2(1 + 2C1MN )ε,

or, ‖fi − f‖Φ ≤ (|f ′(0)|+ 2(1 + 2C1MN ))ε. This completes the proof.

Conjecture. BΦ is separable if and only if Φ(xn+1, xn+2, · · · ) → 0.
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