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WEIGHTED HARDY SPACES ASSOCIATED TO SELF-ADJOINT
OPERATORS AND BMOL,w

Suying Liu, Kai Zhao* and Shujuan Zhou

Abstract. Let L be a non-negative self-adjoint operator satisfying a pointwise
Guassian estimate for its heat kernel. Let w be some As weight on Rn. In
this paper, we obtain a weighted (p, q)−atomic decomposition with q ≥ s for
the weighted Hardy spaces Hp

L,w(Rn), 0 < p ≤ 1. We also introduce the suit-
able weighted BMO spaces BMOp

L,w. Then the duality between H1
L,w(Rn) and

BMOL,w is established.

1. INTRODUCTION

One of the central part of modern harmonic analysis is the theory of Hardy spaces
which was initiated by Stein, Fefferman and Weiss [26, 14]. It is known that the
classical weighted spaces Hp

w, which are associated to Laplacian, have been extensively
studied by Garcia-Cuerva [15] and Strömberg and Torchinsky [27], where w is a
Muckenhoupt’s weight Ap.

Since there are some important situations in which the theory of classical Hardy
spaces is not applicable, many authors begin to study Hardy spaces that are adapted to
a linear operator L. For example, Auscher, Duong and McIntosh [1], and then Duong
and Yan [12, 13], introduced the unweighted Hardy and BMO spaces adapted to an
operator L which satisfies the Gaussian heat kernel upper bounds. For more results,
we refer to [3, 2, 20, 19, 18] and the references therein.

Recently, Song and Yan [24] discussed the weighted theory of Hardy space H1
L,w

associated to Schrödinger operators, for w ∈ A1 ∩RH2. Bui and Duong [4] improved
the results of [24] to Hp

L,w, 0 < p ≤ 1, and obtained the atomic and molecular char-
acterizations of the elements of Hp

L,w. In [5], they studied the weighted BMO spaces
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associated to operators, and obtained that the dual space of H1
L(X,w) in [24] was

BMOL∗(X,w) associated to the adjoint operator L∗. As we know, the decomposi-
tions of function spaces are very critical in harmonic analysis. The first author and
Song in [21] improved the results of [24]. They gave a new atomic decomposition
(different from that of [24]) for weighted function space H1

L,w(Rn). Comparing with
[24], the condition w ∈ A1 ∩ RH2 was weakened to w ∈ A1.

One of our purpose in this paper is to extend the results of [21] to Hp
L,w(Rn), 0 <

p ≤ 1, by the theory of Littlewood-Paley functions and semigroup properties. And then
define an adapted weighted BMO space, and establish its duality with H1

L,w(Rn).
The layout of the paper is as follows. In section 2, we prepare some notations and

preliminary lemmas. In section 3, we introduce weighted Hardy spaces Hp
L,w(Rn) as-

sociated to a non-negative self-adjoint operator with Gaussian upper bounds on its heat
kernel, and obtain an atomic decomposition. In section 4, we study BMOp

L,w spaces
associated to operators and establish the duality between H1

L,w(Rn) and BMOL,w.
Throughout this paper, the letter “C” or “c” will denote (possibly different) con-

stants that are independent of the essential variables.

2. NOTATIONS AND PRELIMINARIES

2.1. Preliminaries

Suppose that L is a non-negative self-adjoint operator on L2(Rn) and that each of
the heat semigroup e−tL generated by −L, has the kernel pt(x, y) which satisfies the
following Gaussian upper bounds, i.e., there exist constants C, c > 0 such that

(GE) |pt(x, y)| ≤ C

tn/2
exp

(
− |x− y|2

c t

)
.

We note that such estimates are typical for elliptic or sub-elliptic differential oper-
ators of second order (see for instance, [9] and [11]).

Now we introduce the following useful lemma, refer to [9] and [23].

Lemma 2.1. Let L be a non-negative self-adjoint operator satisfying (GE). For
every k = 0, 1, . . . , there exist two positive constants Ck, ck such that the kernel
pt,k(x, y) of the operator (t2L)ke−t2L satisfies

|pt,k(x, y)| ≤ Ck

(4πt)n
exp

(
− |x− y|2

ckt2

)
,(2.1)

for all t > 0 and almost every x, y ∈ Rn.

Suppose that F is a closed set in Rn, γ ∈ (0, 1) is fixed. We set

F ∗ :=
{
x ∈ Rn : for every ball B(x) in Rn centered at x,

|F ∩B(x)|
|B(x)| ≥ γ

}
,
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and every x as above is called a point having global γ-density with respect to F . One
can see that F ∗ is closed and F ∗ ⊂ F . Also,

cF ∗ = {x ∈ Rn : M(χcF )(x) > 1 − γ},

where M is Hardy-Littlewood maximal function, which implies |cF ∗| ≤ C|F | with
C depending on γ and the dimension only. We define a saw-tooth region R(F ) =⋃

x∈F Γ(x), where Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t}.

From now on, the paper we denote by cF the complement of F .
The following lemma is very important for our main result (see [7]).

Lemma 2.2. Suppose that Φ is a non-negative function on Rn+1
+ . There exists

γ ∈ (0, 1), sufficiently close to 1, such that for every closed set F whose complement
has finite measure the following inequality holds:∫∫

R(F∗)
Φ(y, t)tn dydt ≤ Cγ

∫
F

∫∫
Γ(x)

Φ(y, t) dydtdx.(2.2)

2.2. Muckenhoupt weights

We review some background on Muckenhoupt weights. We use the notation

−
∫

E
h(x) dx =

1
|E|

∫
E
h(x) dx.

A weight w is a non-negative locally integrable function on Rn. It is said that w ∈ Ap,
1 < p <∞, if there exists a constant C such that for every ball B ⊆ Rn,(

−
∫

B

w dx
)(

−
∫

B

w−1/(p−1) dx
)p−1 ≤ C.

For p = 1, w ∈ A1 means that there is a constant C such that for every ball B ⊆ Rn,

−
∫

B
w(y) dy ≤ Cw(x) for a.e. x ∈ B.

Let w ∈ Ap, for 1 ≤ p < ∞. The weighted Lebesgue spaces Lp
w can be defined

by
{
f :
∫

Rn |f(x)|pw(x) dx <∞} with norm ‖f‖Lp
w

:=
( ∫

Rn |f(x)|pw(x) dx
)1/p.

We summarize some of the properties of classes in the following results, for more
details, see [10], [16], [25] references therein.

Lemma 2.3. Denote w(E) :=
∫
E w(x) dx for any set E ⊆ Rn. For 1 ≤ p ≤ ∞,

denote p′ the adjoint number of p, i.e. 1/p + 1/p′ = 1. We have the following
properties:

(i) A1 ⊆ Ap ⊆ Aq, for 1 ≤ p ≤ q <∞.
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(ii) If w ∈ Ap, 1 < p <∞, then there exists 1 < q < p such that w ∈ Aq.
(iii) A∞ =

⋃
1≤p<∞Ap.

(iv) If 1 < p <∞, w ∈ Ap if and only if w1−p′ ∈ Ap′ .
(v) Let w ∈ Ap, p ≥ 1. Then for any ball B and λ > 1, we have that

w(λB) ≤ Cλnpw(B),

for some constant C independent of B and λ.

2.3. Finite speed propagation for the wave equation

Let L be an operator satisfying (GE), EL(λ) denote its spectral decomposition.
Then for every bounded Borel function F : [0,∞) → C, one defines the operator
F (L) : L2(Rn) → L2(Rn) by the formula

F (L) :=
∫ ∞

0
F (λ) dEL(λ).(2.3)

In particular, the operator cos(t
√
L) is well-defined on L2(Rn). Moreover, it follows

from Theorem 3 of [8] that there exists a constant c0 such that the Schwartz kernel
Kcos(t

√
L)(x, y) of cos(t

√
L) satisfies

suppKcos(t
√

L)(x, y) ⊆
{
(x, y) ∈ Rn × Rn : |x− y| ≤ c0t

}
.(2.4)

See also [6]. By the Fourier inversion formula, whenever F is an even bounded Borel
function with F̂ ∈ L1(R), we can write F (

√
L) in terms of cos(t

√
L). More precisely,

by recalling (2.3), we have

F (
√
L) = (2π)−1

∫ ∞

−∞
F̂ (t) cos(t

√
L) dt,

which, combined with (2.4), gives

KF (
√

L)(x, y) = (2π)−1

∫
|t|≥c−1

0 |x−y|
F̂ (t)Kcos(t

√
L)(x, y) dt.(2.5)

Lemma 2.4. Let ϕ ∈ C∞
0 (R) be even and suppϕ ⊆ [−c−1

0 , c−1
0 ]. Let Φ denote

the Fourier transform of ϕ. Then for each k = 0, 1, . . . , and every t > 0, the kernel
K(t2L)kΦ(t

√
L)(x, y) of (t2L)kΦ(t

√
L) satisfies

suppK(t2L)kΦ(t
√

L) ⊆
{
(x, y) ∈ Rn × Rn : |x− y| ≤ t

}
(2.6)

and

|K(t2L)kΦ(t
√

L)(x, y)| ≤ Ct−n,(2.7)

for all t > 0 and x, y ∈ Rn.
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Proof. For the proof, we refer the reader to Lemma 3.5 in [18].

For s > 0, we define

F(s) :=
{
ψ : C → C measurable : |ψ(z)| ≤ C

|z|s
(1 + |z|2s)

}
.

Then for any non-zero function ψ ∈ F(s), we have that {∫∞
0 |ψ(t)|2dt

t }1/2 < ∞.
Denote ψt(z) = ψ(tz). It follows from the spectral theory in [28] that for any f ∈
L2(Rn),

(2.8)

{∫∞
0 ‖ψ(t

√
L)f‖2

L2(Rn)
dt
t

}1/2
=
{∫ ∞

0

〈
ψ(t

√
L)ψ(t

√
L)f, f

〉dt
t

}1/2

=
{〈∫ ∞

0
|ψ|2(t

√
L)
dt

t
f, f

〉}1/2

= κ‖f‖L2(Rn),

where κ =
{ ∫∞

0 |ψ(t)|2 dt/t}1/2. The estimate will be used repeatedly in this paper.

3. ATOMIC CHARACTERIZATION OF WEIGHTED HARDY SPACES

3.1. Weighted Hardy spaces and weighted atoms

Suppose w ∈ A∞ and 0 < p ≤ 1. We define Hardy spaces Hp
L,w(Rn) as the

completion of {f ∈ L2(Rn) : ‖SL(f)‖L
p
w(Rn) < ∞} with respect to Lp

w-norm of the
square function; e.g., ∥∥f∥∥

H
p
L,w(Rn)

:=
∥∥SL(f)

∥∥
L

p
w(Rn)

,

where

SL(f)(x) :=
( ∫∫

|y−x|<t

∣∣t2Le−t2Lf(y)
∣∣2 dydt
tn+1

)1/2
, x ∈ Rn.

The (p, q,M, w)-atom associated to the operator L is defined as follows.

Definition 3.1. Suppose that M is a positive integer, w ∈ As, 1 ≤ s < ∞ and
0 < p ≤ 1. A function a(x) ∈ L2(Rn) is called a (p, q,M, w)-atom associated to
an operator L, 1 < q < ∞, if there exist a function b ∈ D(LM), the domain of an
operator L, and a ball B of Rn such that

(i) a = LMb;
(ii) supp Lkb ⊆ B, k = 0, 1, · · · ,M ;
(iii)

∥∥(r2BL)kb
∥∥

L
q
w(Rn)

≤ r2M
B w(B)1/q−1/p, k = 0, 1, · · · ,M.
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Remark 3.2. It follows directly from Hölder’s inequality that (p, q1,M, w)-atom
is also (p, q2,M, w)-atom whenever q1 > q2.

Definition 3.3. Let M , w and p be the same as above. The weighted atomic Hardy
spaces Hp,q,M

L,w (Rn) are defined as follows. We will say that f =
∑
λjaj is an atomic

(p, q,M, w)-representation (of f ) if {λj}∞j=0 ∈ 	1, each aj is a (p, q,M, w)-atom, and
the sum converges in L2(Rn). Set

H
p,q,M
L,w (Rn) :=

{
f : f has an atomic (p, q,M, w)-representation

}
,

with the norm
∥∥f∥∥

H
p,q,M
L,w (Rn)

given by

inf
{( ∞∑

j=0

|λj|p
)1/p : f =

∞∑
j=0

λjaj is an atomic (p, q,M, w)-representation
}
.

The spaces Hp,q,M
L,w (Rn) are then defined as the completion of H

p,q,M
L,w (Rn) with respect

to this norm.

3.2. Atomic characterization of weighted Hardy spaces

The definition of g∗μ,Ψ function is given as

g∗μ,Ψ(f)(x)=
(∫∫

R
n+1
+

( t

t+|x−y|
)nμ∣∣Ψ(t

√
L)f(y)

∣∣2 dy dt

tn+1

)1/2

, μ>1,(3.1)

where ϕ and Φ are the same as in Lemma 2.4, and Ψ(x) := x2sΦ3(x), s ≥ n+1, x ∈
Rn. The following lemma was proved in Lemma 5.1 of [17].

Lemma 3.4. Let L be a non-negative self-adjoint operator such that the corre-
sponding heat kernel satisfies condition (GE). There exists a constant C > 0 such
that for all w ∈ Ap, 1 < p <∞, μ > 3, the following estimate holds:∥∥g∗μ,Ψ(f)

∥∥
Lp

w(Rn)
+
∥∥SL(f)

∥∥
Lp

w(Rn)
≤ C

∥∥f∥∥
Lp

w(Rn)
.

Then we have the following main result.

Theorem 3.5. Suppose that w ∈ As, 1 ≤ s <∞, and 0 < p ≤ 1.
(i) Let M ∈ N and 1 < q < ∞. If f ∈ Hp

L,w(Rn) ∩ L2(Rn), then there exist a
family of (p, q,M, w)-atoms {ai}∞i=0 and a sequence of numbers {λi}∞i=0 such
that f can be represented in the form f =

∑∞
i=0 λiai, and the sum converges in

the sense of L2(Rn)-norm. Moreover,

( ∞∑
i=0

|λi|p
)1/p ≤ C

∥∥f∥∥
Hp

L,w(Rn)
.
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(ii) Suppose that M ∈ N, M > (s−p)n
2p and q > s. Let f =

∑∞
i=0 λiai, where

{λi} ∈ 	p, ai, i = 0, 1, 2, . . . , be (p, q,M, w)-atoms, and the sum converges in
L2(Rn). Then f ∈ Hp

L,w(Rn) ∩ L2(Rn) and

∥∥∥ ∞∑
i=0

λiai

∥∥∥
Hp

L,w(Rn)
≤ C

( ∞∑
i=0

|λi|p
)1/p

.

Remark 3.6. If s > 1, then w ∈ As implies w ∈ As−ε for some ε > 0. Thus
Theorem 3.5 (ii) holds for q ≥ s > 1.

Proof.
Step 1. Let f ∈ Hp

L,w(Rn) ∩ L2(Rn). Here we will apply the similar idea with
[21] to obtain the weighted atomic decomposition.

Let ϕ and Φ be the same as in Lemma 2.4. Set Ψ(x) := x2αΦ3(x) and α =
M + n + 1. By L2-functional calculus ([22]), for every f ∈ L2(Rn), one can write

(3.2)
f(x) = cΨ

∫ ∞

0
Ψ(t

√
L)t2Le−t2Lf(x)

dt

t

= lim
N→∞

cΨ

∫ N

1/N
Ψ(t

√
L)t2Le−t2Lf(x)

dt

t

with the integral converging in L2(Rn).
Now for each k ∈ Z, we define Ok = {x ∈ Rn : SL(f)(x) > 2k} and O∗

k = {x ∈
Rn : M(χOk

)(x) > 2−(n+1)}. Then we know that Ok ⊆ O∗
k and |O∗

k| ≤ C|Ok| for
every k ∈ Z. Let {Qk

j}j be a Whitney decomposition of O∗
k, and Ô∗

k be a tent region,
that is

Ô∗
k :=

{
(x, t) ∈ Rn × (0,∞) : dist(x,cO∗

k) ≥ t
}
.

Choose a large constant c. Let Bk
j denote the ball with the same center as Qk

j , but c
times its diameter. Then for every i, j ∈ Z, we define

T k
j = B̂k

j ∩ (Qk
j × (0,+∞)

) ∩ (Ô∗
k

∖
Ô∗

k+1

)
,(3.3)

and λk
j = 2kw(Bk

j )1/p. Note that Rn+1
+ = ∪j,kT

k
j and T k

j are disjoint for different j
or k. Then one can write

(3.4)

f(x) =
∑
j,k∈Z

cΨ

∫ ∞

0
Ψ(t

√
L)
(
χT k

j
t2Le−t2L

)
f(x)

dt

t

=:
∑
j,k∈Z

λk
ja

k
j ,



1670 Suying Liu, Kai Zhao and Shujuan Zhou

where ak
j = LMbkj and

bkj = (λk
j )

−1cΨ

∫ ∞

0
t2αLn+1Φ3(t

√
L)
(
χT k

j
t2Le−t2L

)
f(x)

dt

t
.

We claim that, up to a normalization by a multiplicative constant, ak
j are (p, q,M, w)-

atoms. Once the claim is established, we shall have∑
j,k

|λk
j |p =

∑
j,k

2kpw(Bk
j ) ≤ C

∑
j,k

2kpw(Qk
j ) ≤ C

∑
k

2kpw(O∗
k)

≤ C
∑

k

2kpw(Ok) ≤ C‖f‖p
Hp

L,w(Rn)

as desired.
Let us now prove the claim. By Remark 3.2, it suffices to show that for every

k ∈ Z and q > s, the function C−1ak is a (p, q,M, w)-atom associated with the ball
Bk

j , for some constant C. From Lemma 2.4, the integral kernel K(t2L)iΦ3(t
√

L)(x, y)

of the operator (t2L)iΦ3(t
√
L) satisfies

supp K(t2L)iΦ3(t
√

L)(x, y) ⊆
{
(x, y) ∈ Rn × Rn : |x− y| ≤ 3t

}
.

This, together with the fact (x, t) ∈ T k
j ⊆ B̂k

j , implies that for every i = 0, 1, · · · ,M ,

supp
(
Libkj

) ⊆ 3Bk
j .

To continue, for any s < q < ∞ and every ball Bk
j we consider some g ∈

Lq′

w−q′/q
(3Bk

j ) such that ‖g‖
Lq′

w−q′/q

≤ 1. Then for every i = 0, 1, · · · ,M, we have

(3.5)

∣∣∣ ∫ (r2Bk
j
L
)i
bkj (x)g(x) dx

∣∣∣
=
cΨ

λk
j

∣∣∣∣∣
∫∫

T k
j

r2i
Bk

j
t2αLn+1+iΦ3(t

√
L)g(y)t2Le−t2Lf(y)

dydt

t

∣∣∣∣∣
≤ r2M

Bk
j

cΨ

λk
j

∫∫
B̂k

j \Ô∗
k+1

∣∣(t2L)n+1+iΦ3(t
√
L)g(y)

∣∣∣∣t2Le−t2Lf(y)
∣∣ dydt

t
,

where in the inequality above we have used the fact 0 < t ≤ rBk
j
.

By Lemma 2.2 and estimate (3.5), we obtain∣∣∣ ∫ (r2Bk
j
L
)i
bkj (x)g(x)dx

∣∣∣
≤ C

λk
j

r2M
Bk

j

∫
cOk+1

(∫∫
Γ(x)

χ
B̂k

j

(y, t)
∣∣(t2L)n+1+iΦ3(t

√
L)g(y)

∣∣∣∣t2Le−t2Lf(y)
∣∣ dydt
tn+1

)
dx

=
C

λk
j

r2M
Bk

j

∫
Bk

j ∩cOk+1

(∫∫
Γ(x)

∣∣(t2L)n+1+iΦ3(t
√
L)g(y)

∣∣∣∣t2Le−t2Lf(y)
∣∣ dydt
tn+1

)
dx.



Weighted Hardy Spaces 1671

We observe that if |x− y| < t, then
(

t
|x−y|+t

)nμ ≥ C. By Hölder’s inequality, we
have

(3.6)

∣∣∣ ∫ (r2Bk
j
L
)i
bkj (x)g(x)dx

∣∣∣
≤ C

λk
j

r2M
Bk

j

∫
Bk

j ∩cOk+1

(∫∫
Γ(x)

|(t2L)n+1+iΦ3(t
√
L)g(y)|2 dydt

tn+1

)1/2

SL(f)(x) dx

≤ C

λk
j

r2M
Bk

j

∫
Bk

j ∩cOk+1

g∗μ,Ψ(g)(x)SL(f)(x) dx

≤ C

λk
j

r2M
Bk

j

( ∫ (
g∗μ,Ψ(g)(x)

)q′
w−q′/q(x)dx

)1/q′

(∫
Bk

j ∩cOk+1

(
SL(f)(x)

)q
w(x) dx

)1/q
.

Note that ∫
Bk

j ∩cOk+1

(
SL(f)(x)

)q
w(x) dx ≤ C2kqw(Bk

j ).(3.7)

Since s < q, then w ∈ As implies w ∈ Aq. By (iv) of Lemma 2.3, we have w−q′/q ∈
Aq′ . Together with Lemma 3.4, we obtain( ∫ (

g∗μ,Ψ(g)(x)
)q′
w−q′/q(x) dx

)1/q′ ≤ C
∥∥g∥∥

Lq′
w−q′/q

≤ C.(3.8)

Combing estimates (3.6)-(3.8) and the definition of λk
j , we have∣∣∣ ∫ (r2Bk

j
L
)i
bkj (x)g(x)dx

∣∣∣≤ Cr2M
Bk

j
w(Bk

j )1/q−1/p,

which implies that ak
j are (p, q,M, w)-atoms for s < q <∞, and thus for 1 < q <∞.

To prove Theorem 3.5 (ii), we need the following lemma (see [4]).

Lemma 3.7. Fix M ∈ N, 0 < p ≤ 1 and w ∈ A∞. Assume that T is a non-
negative sublinear operator, satisfying the weak-type (2,2)

μ{x ∈ Rn : |Tf(x)| > η} ≤ CT η−2‖f‖2
L2(Rn), for all η > 0,

and that for every (p, q,M, w)-atom a, we have

‖Ta‖Lp
w(Rn) ≤ C
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with constant C independent of a. Then T is bounded from Hp
L,w(Rn) to Lp

w(Rn),
and ∥∥Tf∥∥

Lp
w(Rn)

≤ C
∥∥f∥∥

Hp
L,w(Rn)

.

Step 2. By Lemma 3.7, it is enough to establish a uniform Lp
w, 0 < p ≤ 1, bound

on any (p, q,M, w)-atom. That is to say, there exists a constant C > 0 such that∥∥SL(a)
∥∥

Lp
w(Rn)

≤ C,(3.9)

where a is a (p, q,M, w)-atom associated to a ball B = B(xB , rB).
We can write∫ (
SL(a)(x)

)p
w(x)dx =

∫
2B

(
SL(a)(x)

)p
w(x)dx+

∫
c(2B)

(
SL(a)(x)

)p
w(x)dx

=: I1 + I2.

To estimate term I1, note that if w ∈ As and 1 ≤ s < q, then w ∈ Aq. Thus, we
use Hölder’s inequality and Lemma 3.4 to obtain that

I1 ≤
( ∫

2B

(
SL(a)(x)

)q
w(x) dx

)p/q(∫
2B
w(x) dx

)1−p/q

≤ C
∥∥SL(a)

∥∥p

Lq
w(Rn)

w(2B)1−p/q

≤ C
∥∥a∥∥p

Lq
w(Rn)

w(2B)1−p/q

≤ Cw(B)p(1/q−1/p)w(B)1−p/q

≤ C,

where in the fourth inequality above we have used the definition of (p, q,M, w)
-atom a.

It remains to estimate term I2. For any x ∈c (2B), we write

S2
L(a)(x) =

( ∫ rB

0
+
∫ +∞

rB

)∫
|x−y|<t

∣∣t2Le−t2La(y)
∣∣2 dydt
tn+1

=: I21 + I22.

Observe that x ∈c (2B), z ∈ B and |x− y| < t imply rB ≤ |x− z| < t + |y − z|.
Thus, |x−xB | ≤ |x− y|+ |y− z|+ |z−xB | < 3(t+ |y− z|), which, combined with
Lemma 2.1, implies that for all N > 0,
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(3.10)

I21 ≤ C

∫ rB

0

∫
|x−y|<t

( ∫ tN

(t+ |y − z|)n+N
|a(z)| dz

)2 dydt

tn+1

≤ C
1

|x− xB|2n+2N

∫ rB

0

t2N−1 dt ‖a‖2
L1(Rn)

≤ C
r2N
B

|x− xB|2n+2N
‖a‖2

L1(Rn).

Consider the term I22. Noting that a = LM b, applying Lemma 2.1, we obtain

(3.11)

I22 =
∫ ∞

rB

∫
|x−y|<t

∣∣t2Le−t2L(LMb)(y)
∣∣2 dydt
tn+1

=
∫ ∞

rB

∫
|x−y|<t

∣∣(t2L)M+1e−t2Lb(y)
∣∣2 dydt

t4M+n+1

≤ C

∫ ∞

rB

∫
|x−y|<t

( ∫
B

tN

(t+ |y − z|)n+N
|b(z)| dz

)2 dydt

t4M+n+1

≤ C
1

|x− xB |2n+2N

∫ ∞

rB

dt

t4M−2N+1
‖b‖2

L1(Rn)

≤ C
r2N−4M
B

|x− xB |2n+2N
‖b‖2

L1(Rn),

whenever M > N/2.
Therefore, combing (3.10) and (3.11), we have

I2 ≤ C

∫
c(2B)

rpN
B

|x− xB|(n+N)p
w(x) dx

(
‖a‖p

L1(Rn)
+ r−2M

B ‖b‖p
L1(Rn)

)
.

Using Hölder’s inequality and the definition of (p, q,M, w)-atom and w ∈ Aq, we
obtain

(3.12)

‖a‖L1(Rn) ≤
(
‖a‖Lq

w(Rn)

)( ∫
B
w(x)−1/(q−1) dx

)1−1/q

≤ Cw(B)1/q−1/pw(B)−1/q|B|
≤ Cw(B)−1/p|B|.

Similarly, one also can have

r−2M
B ‖b‖L1(Rn) ≤ Cw(B)−1/p|B|.(3.13)

Thus,
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(3.14)

∫
c(2B)

r
pN
B

|x− xB |(n+N)p
w(x) dx ≤

∞∑
k=1

∫
2k+1B\2kB

r
pN
B

|x− xB|(n+N)p
w(x) dx

≤ C

∞∑
k=1

rpN
B

(2krB)p(n+N)
w(2k+1B)

≤ C

∞∑
k=1

rpN
B

(2krB)p(n+N)
2(k+1)snw(B)

≤ Cw(B)|B|−p,

where in the third inequality above we have used (v) of Lemma 2.3. The condition
that M > (s−p)n

2p ensures us to find N such that 2M > N > n(s−p)
p .

It follows from estimates (3.12)–(3.14) that I2 ≤ C, which completes the proof of
(3.9) and the proof of Theorem 3.5.

4. BMOL,w: DUALITY WITH H1
L,w(Rn) SPACES

In this section, we introduce and study the duality of the weighted Hardy space
H1

L,w(Rn). Following [13], we introduce the definition of the class of functions that
the operator L act on. For any β > 0, a function f ∈ L2

loc(R
n) is said to be a function

of β-type if f satisfies( ∫
Rn

|f(x)|2
1 + |x|n+β

dx
)1/2 ≤ c <∞.(4.1)

Denote by Mβ the collection of all functions of β-type. If f ∈ Mβ, the norm of f in
Mβ is defined by

‖f‖Mβ
= inf{c ≥ 0 : (4.1) holds}.

Then, we give the definition of BMOp
L,w , where 1 ≤ p <∞.

Definition 4.1. Let L be a non-negative self-adjoint operator such that the cor-
responding heat kernel satisfies condition (GE). For w ∈ As, 1 ≤ s < ∞ and
1 ≤ p <∞, an element f ∈ Mβ is said to belong to BMOp

L,w if

‖f‖BMOp
L,w

=: sup
B⊂Rn

(
1

w(B)

∫
B
|(I − (1 + r2BL)−1)Mf |pw1−p dx

)1/p

<∞,

where the sup is taken over all balls B in Rn, I denotes the identity operator on Rn.
In particularly, for p = 1 denote BMO1

L,w =: BMOL,w.

We have the following theorem.

Theorem 4.2. H1,q,M
L,w (Rn)∗ = BMOq′

L,w(Rn), q ≥ 1.
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Proof. We begin by showing that each f ∈ BMOq′
L,w induces a bounded linear

functional on H1,q,M
L,w (Rn). Suppose that a is a (1, q,M, w)-atom in H1,q,M

L,w (Rn), and
let f ∈ BMOq′

L,w(Rn). Then∫
B a(x)f(x) dx =

∫
B
(I − (1 + r2BL)−1)Ma(x)f(x) dx

+
∫

B

(
I − (I − (1 + r2BL)−1)M

)
a(x)f(x) dx

=: J1 + J2.

For the term J1, by Hölder’s inequality and the properties of atom,

J1 ≤ ‖a‖L
q
w

(∫
B

|(I − (1 + r2BL)−1)Mf(x)|q′w1−q′ dx
)1/q′

≤ C‖f‖
BMOq′

L,w

w(B)1/q−1w(B)1/q′

≤ C‖f‖
BMO

q′
L,w

.

To analyze J2, by condition a = LMb and the fact that L is self-adjoint, we write(
I − (I − (1 + r2BL)−1)M

)
a(x)

= LM
(
I − (I − (1 + r2BL)−1)M

)
b(x)

=
M∑

k=1

M !
(M − k)k!

(r−2k
B LM−k)(I − (1 + r2BL)−1)Mb(x).

Thus,

J2 ≤
M∑

k=1

M !
(M − k)k!

∣∣∣r−2M
B

∫
B

(r2BL)M−kb(x)(I− (1 + r2BL)−1)Mf(x) dx
∣∣∣

≤
M∑

k=1

M !
(M − k)k!

r−2M
B ‖(r2BL)M−kb‖Lq

w

(∫
B

|(I−(1+r2BL)−1)Mf(x)|q′w1−q′dx
)1/q′

≤ Cr−2M
B r2M

B w(B)1/q−1w(B)1−1/q‖f‖
BMOq′

L,w

≤ C‖f‖
BMOq′

L,w

.

Therefore, for every h =
∑

j λjaj ∈ H1,q,M
L,w (Rn), where aj are weighted atoms, we

have
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∣∣ ∫
Rn
f(x)h(x) dx

∣∣ ≤ ∑
j

|λj|
∣∣ ∫

Rn
f(x)aj(x) dx

∣∣
≤ C

∑
j

|λj|‖f‖BMO
q′
L,w

≤ C‖h‖H1
L,w,at,M (Rn)‖f‖BMOq′

L,w

,

and the assertion follows.
Conversely, suppose that l ∈ H1

L,w(Rn)∗. For any g ∈ H1
L,w(Rn)

⋂
L2(Rn), which

is dense in H1
L,w(Rn), l can be represented by f in the form

l(g) =
∫

Rn

g(x)f(x) dx.

For fixed ball B, let φ ∈ Lq
w(B) and ‖φ‖Lq

w(B) ≤ 1. Set

a(x) =
1

w(B)1−1/q
(I − (1 + r2BL)−1)Mφ.

Then it is not difficult to check that a is a (1, q,M, w)-atom (see the Theorem 6.4 in
[18]).

Consequently,

‖l‖ ≥ ‖l(a)‖

=
1

w(B)1−1/q

∫
B

(I − (1 + r2BL)−1)Mφf(x) dx

=
1

w(B)1−1/q

∫
B
φ(I − (1 + r2BL)−1)Mf(x) dx.

Thus, by duality it readily follows that(
1

w(B)

∫
B
|(I − (1 + r2BL)−1)Mf(x)|q′w1−q′dx

)1/q′

≤ ‖l‖,

which is what we wanted to show.

Remark 4.3. By Theorem 3.5 and Theorem 4.2, we can obtain BMO
p
L,w ∼

BMOL,w for 1 ≤ p <∞.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their meticulous work and helpful
suggestions, which improve the presentation of this paper.



Weighted Hardy Spaces 1677

REFERENCES

1. P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach Space Valued Sin-
gular Integral Operators and Hardy Spaces, Unpublished preprint, 2005.

2. P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian
manifolds, J. Geom. Anal., 18 (2008), 192-248.

3. P. Auscher and E. Russ, Hardy spaces and divergence operators on strongly Lipschitz
domain of Rn, J. Funct. Anal., 201 (2003), 148-184.

4. A. Bui and X. T. Duong, Weighted Hardy Spaces Associated to Operators and Bound-
edness of Singular Integrals, arXiv:1202.2063.

5. A. Bui and X. T. Duong, Weighted BMO Spaces Associated to Operators, arXiv:
1201.5828.

6. J. Cheeger, M. Cromov and M. Taylor, Finite propagation speed, kernel estimates for
functions of the Laplacian and the geometry of complete Riemannian manifolds, J.
Differential Geom., 17 (1982), 15-53.

7. R. R. Coifman, Y. Meyer and E. M. Stein, Some new functions and their applications to
harmonic analysis, J. Funct. Anal., 62 (1985), 304-335.

8. T. Coulhon and A. Sikora, Gaussian heat kernel upper bounds via Phragmén-Lindelöf
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