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A NOTE ON ENNOLA RELATION

Jae Moon Kim and Jado Ryu*

Abstract. Ennola gives an example of a relation among the cyclotomic units
which is not a combination of elementary relations. He also proves that twice
any relation among the cyclotomic units is a consequence of elementary relations.
In the sense of the distribution, the torsion part of the universal even punctured
distribution

(
A0

n

)+ is a 2-torsion group. In particular, when n has three distinct
prime divisors,

(
A0

n

)+ has a unique 2-torsion element. The aim of this paper is
to find an algorithm to produce the unique 2-torsion element when n has three
distinct odd prime divisors.

1. INTRODUCTION

For a positive integer n (n �≡ 2 mod 4), let ζn = e2πi/n be a primitive nth root
of 1 in C. For an integer k with n � k, put ak = log |1− ζk

n|, which is (the logarithm
of) a cyclotomic number. It is well known that there are two types of relations among
the cyclotomic numbers:

(1.1) ak = an−k for n � k

(1.2) a(n/m)k =
n/m−1∑

i=0

ak+mi for m | n and m, n � k.

We call these relations the elementary relations. In [2], Ennola gives a relation for
n = 105 which is not a combination of elementary relations:

a1 + a2 + a17 + a43 + a44 + a46 − a3 + a9 + a36 + a25 + a40 + a28 = 0.
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We call such a relation an Ennola relation.
Let

(
A0

n

)+ be the universal even punctured distribution. Namely,
(
A0

n

)+ is the
abelian group generated by {

g
(x

n

)∣∣∣x
n
∈ 1

n
Z
/
Z,

x

n
�= 0
}

with the relations:

(1.3) g
(−x

n

)
= g

(x

n

)
for

x

n
�= 0

(1.4) g
( x

m

)
=

n/m−1∑
i=0

g
(x + mi

n

)
for m | n and

x

n
,

x

m
�= 0.

The structure of
(
A0

n

)+ is known to be ([4, Theorem 12.18])(
A0

n

)+ � Zϕ(n)/2+r−1 ⊕ (Z/2Z)2
r−1−r ,

where r is the number of distinct prime divisors of n. Moreover, the map g(x/n) �→ ax

induces an isomorphism(
A0

n

)+/(Z/2Z)2
r−1−r � 〈log |1− ζa

n|〉 .

Thus from the 2-torsion elements of
(
A0

n

)+, we can obtain Ennola relations. In par-
ticular,

(
A0

n

)+ has a unique 2-torsion element when n = pe1
1 pe2

2 pe3
3 has three distinct

prime divisors.
The aim of this paper is to find an algorithm to produce an Ennola relation when

n has three distinct odd prime divisors. Namely, we will find the 2-torsion element of
the universal even punctured distribution. Although there is another algorithm to find
Ennola relations ([1]), it seems that our result is more explicit and efficient once the
generators of (Z/pei

i Z)× are given.

2. PRELIMINARIES AND NOTATIONS

Let n = pe1
1 pe2

2 pe3
3 be the prime factorization of n which is odd. For each i = 1, 2

and 3, put qi = pei
i , ni = n/qi and mi = ϕ(qi)/2, where ϕ is the Euler-phi function.

We have
(Z/nZ)× � (Z/q1Z)× × (Z/q2Z)× × (Z/q3Z)× .

We fix a generator σi of the cyclic group (Z/qiZ)×. The unique integer x mod n
satisfying x ≡ σi mod qi and x ≡ 1 mod ni is also denoted by σi. With these
notations, the relations (2.1) and (2.2) below can be obtained from the relations (1.3)
and (1.4), where p−1

i is an integer satisfying p−1
i pi ≡ 1 mod ni:

(2.1) g
(σi1+m1

1 σi2+m2
2 σi3+m3

3

n

)
= g

(σi1
1 σi2

2 σi3
3

n

)
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(2.2)
2mi−1∑

t=0

g
(bσt

i

n

)
= g

( b

ni

)
− g
(bp−1

i

ni

)
for gcd(b, pi) = 1.

Throughout this paper we assume {1, 2, 3} = {α, β, γ}. We define Iα(β) and
I ′α(β) by

Iα(β) = the index of p−1
β for the base σα, i.e., σα

Iα(β) ≡ p−1
β mod qα.

I ′α(β) =

{
Iα(β) if 0 ≤ Iα(β) < mα,

Iα(β)− mα if mα ≤ Iα(β) < ϕ(qα).

We also define δα
β by

δα
β =

{
1 if Iβ(α) = I ′β(α),

−1 if Iβ(α) �= I ′β(α).

Let

Lα
γ =

Iγ(α)−1∑
t=0

(
g
(σt

γ

qγ

)
− g
(σt

γp−1
β

qγ

))
=

Iγ(α)−1∑
t=0

(
g
(σt

γ

qγ

)
− g
(σ

t+Iγ(β)
γ

qγ

))

and

L̃α
γ =

mγ−1∑
t=I′γ(α)

(
g
(σt

γ

qγ

)
− g
(σt

γp−1
β

qγ

))
=

mγ−1∑
t=I′γ(α)

(
g
(σt

γ

qγ

)
− g
(σ

t+Iγ(β)
γ

qγ

))
.

In the summation above and for the rest of this paper,
∑−1

i=0(∗) or
∑0

i=1(∗) should
be understood to be zero. Note that

Lα
γ =

2mβ−1∑
i=0

Iγ(α)−1∑
j=0

g
(σi

βσj
γ

qβqγ

)
and that

Lα
γ =

I′γ(α)−1∑
t=0

(
g
(σt

γ

qγ

)
− g
(σt

γp−1
β

qγ

))
since

Iγ (α)−1∑
t=I′γ(α)

(
g
(σt

γ

qγ

)
− g
(σt

γp−1
β

qγ

))
= 0.

Lemma 2.1. For integers α, β and γ , we have
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(i) L̃α
γ = −Lα

γ ,

(ii) Lα
γ = Lβ

γ .

Proof. (i) It is not hard to check that
mγ−1∑
t=0

[
g
(σt

γ

qγ

)
− g
(σt

γτ

qγ

)]
= 0 for all τ .

Thus Lα
γ + L̃α

γ = 0 with τ = p−1
β .

(ii) We have

Lα
γ =

Iγ(α)−1∑
t=0

(
g
(σt

γ

qγ

)
− g
(σ

t+Iγ(β)
γ

qγ

))

=
Iγ(α)−1∑

t=0

Iγ(β)−1∑
s=0

(
g
(σt+s

γ

qγ

)
− g
(σt+s+1

γ

qγ

))

=
Iγ(β)−1∑

s=0

Iγ(α)−1∑
t=0

(
g
(σs+t

γ

qγ

)
− g
(σs+t+1

γ

qγ

))

=
Iγ(β)−1∑

s=0

(
g
(σs

γ

qγ

)
− g
(σ

s+Iγ (α)
γ

qγ

))
= Lβ

γ .

3. A 2-TORSION ELEMENT IN THE UNIVERSAL EVEN PUNCTURED DISTRIBUTION

This section is devoted to finding the 2-torsion element in
(
A0

n

)+. Put

M1 =
2m1−1∑

i=0

m2−1∑
j=0

m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)
,

M2 = −
2m1−1∑
i=m1

2m2−1∑
j=0

m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)
,

M3 =
2m1−1∑
i=m1

2m2−1∑
j=m2

2m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)
.

We also define Bα by
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Bα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B++

βγ if δα
β = 1, δα

γ = 1,

B+−
βγ if δα

β = 1, δα
γ = −1,

B−+
βγ if δα

β = −1, δα
γ = 1,

B−−
βγ if δα

β = −1, δα
γ = −1,

where

B++
βγ =

I′β(α)−1∑
s=0

I′γ(α)+mγ−1∑
t=0

g
(σs

βσt
γ

nα

)
+

mβ−1∑
s=I′β(α)

I′γ(α)−1∑
t=0

g
(σs

βσt
γ

nα

)
,

B−+
βγ =

I′β(α)−1∑
s=0

I′γ(α)−1∑
t=0

g
(σs

βσt
γ

nα

)
+

mβ−1∑
s=I′β (α)

I′γ (α)+mγ−1∑
t=0

g
(σs

βσt
γ

nα

)
,

B+−
βγ =

I′β(α)−1∑
s=0

⎡⎣mγ−1∑
t=0

g
(σs

βσt
γ

nα

)
+

2mγ−1∑
t=mγ+I′γ (α)

g
(σs

βσt
γ

nα

)⎤⎦+
mβ−1∑

s=I′β(α)

mγ−1∑
t=I′γ (α)

g
(σs

βσt
γ

nα

)
,

B−−
βγ =

I′β(α)−1∑
s=0

mγ−1∑
t=I′γ (α)

g
(σs

βσt
γ

nα

)
+

mβ−1∑
s=I′β (α)

⎡⎣mγ−1∑
t=0

g
(σs

βσt
γ

nα

)
+

2mγ−1∑
t=mγ+I′γ(α)

g
(σs

βσt
γ

nα

)⎤⎦
Lemma 3.1. For integers α, β and γ , we have

Mα + δα
βLα

β + δα
γLα

γ = 2Bα.

Proof. First, we consider the case when α = 1. Note that

M1 =
2m1−1∑

i=0

m2−1∑
j=0

m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)

=
m2−1∑
j=0

m3−1∑
k=0

(
g
(σj

2σ
k
3

n1

)
− g
(σj

2σ
k
3p−1

1

n1

))
.

Suppose that δ1
2 = 1 and δ1

3 = 1. Then we have

M1 + L1
2 + L1

3

= M1 +
I′2(1)−1∑

j=0

(
g
(σ

j
2

q2

)
− g
(σ

j
2p

−1
3

q2

))
+

I′3(1)−1∑
k=0

(
g
(σk

3

q3

)
− g
(σk

3p−1
2

q3

))
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= M1 +
I′2(1)−1∑

j=0

2m3−1∑
k=0

g
(σj

2σ
k
3

n1

)
+

I′3(1)−1∑
k=0

2m2−1∑
j=0

g
(σj

2σ
k
3

n1

)

=
I′2(1)−1∑

j=0

m3+I′3(1)−1∑
k=0

2g
(σj

2σ
k
3

n1

)
+

m2−1∑
j=I′2(1)

I′3(1)−1∑
k=0

2g
(σj

2σ
k
3

n1

)
= 2B++

23 .

For δ1
2 = δ1

3 = −1, we have

M1 − L1
2 −L1

3 = M1 + L1
2 + L1

3 − 2L1
2 − 2L1

3 = 2(B++
23 + L̃1

2 − L1
3) = 2B−−

23

since the meaning of M1 for δ1
2 = δ1

3 = 1 and that for δ1
2 = δ1

3 = −1 agree. When
δ1
2 = 1 and δ1

3 = −1, we have

M1 + L1
2 − L1

3 = M1 + L1
2 + L̃1

3

= M1 +
I′2(1)−1∑

j=0

2m3−1∑
k=0

g
(σj

2σ
k
3

n1

)
+

m3−1∑
k=I′3(1)

2m2−1∑
j=0

g
(σj

2σ
k
3

n1

)

=
I′2(1)−1∑

j=0

⎡⎣m3−1∑
k=0

2g
(σj

2σ
k
3

n1

)
+

2m3−1∑
k=m3+I′3(2)

2g
(σj

2σ
k
3

n1

)⎤⎦ +
m2−1∑

j=I′2(1)

m3−1∑
k=I′3(2)

2g
(σj

2σ
k
3

n1

)
= 2B+−

23 .

Finally, for δ1
2 = −1 and δ1

3 = 1, we have

M1 − L1
2 + L1

3 = M1 + L̃1
2 + L1

3 = 2B−+
23 .

The cases when α = 2 or 3 can be similarly proved by using the identities

M2 = −
2m1−1∑
i=m1

m3−1∑
k=0

(
g
(σi

1σ
k
3

n2

)
− g
(σi

1σ
k
3p−1

2

n2

))

=
m1−1∑
i=0

m3−1∑
k=0

(
g
(σi

1σ
k
3

n2

)
− g
(σi

1σ
k
3p−1

2

n2

))
and

M3 =
m1−1∑
i=0

m2−1∑
j=0

(
g
(σi

1σ
j
2

n3

)
− g
(σi

1σ
j
2p

−1
3

n3

))
.
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Theorem 3.2. Put

M =
m1−1∑
i=0

m2−1∑
j=0

m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)
.

Then

Rn = M +
(δ2

1 + δ3
1)

2
L2

1 +
(δ1

2 + δ3
2)

2
L3

2 +
(δ1

3 + δ2
3)

2
L1

3 − B1 − B2 − B3

is the 2-torsion element in
(
A0

n

)+.

Proof. Observe that

M1 + M2 + M3 =
m1−1∑
i=0

m2−1∑
j=0

m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)
+

2m1−1∑
i=m1

2m2−1∑
j=m2

2m3−1∑
k=m3

g
(σi

1σ
j
2σ

k
3

n

)

= 2

⎛⎝m1−1∑
i=0

m2−1∑
j=0

m3−1∑
k=0

g
(σi

1σ
j
2σ

k
3

n

)⎞⎠
= 2M.

On the other hand, by Lemma 3.1, we have

M1+δ1
2L1

2 +δ1
3L1

3 +M2+δ2
1L2

1+δ2
3L2

3+M3 +δ3
1L3

1 +δ3
2L3

2 = 2B1+2B2 +2B3.

Since L2
1 = L3

1, L1
2 = L3

2 and L1
3 = L2

3, we have

2M + (δ1
2 + δ3

2)L1
2 + (δ1

3 + δ2
3)L1

3 + (δ2
1 + δ3

1)L2
1 − 2B1 − 2B2 − 2B3 = 0.

Hence
2Rn = 0.

Finally, note that Rn �= 0 since the coefficient of g( 1
n) in the expansion of Rn with

respect to the basis of
(
A0

n

)+ given in [3, Theorem 1] equals 1.

4. EXAMPLE

When n = 105, the theorem given in the previous section enables us to obtain the
following Ennola relation.

Let g( a
n) = ga

n for simplicity. Put p1 = q1 = 7, p2 = q2 = 5 and p3 = q3 = 3.
Then with σ1 = 3(31 mod 105), σ2 = 3(43 mod 105) and σ3 = 2(71 mod 105),
we have

M = g1
105 + g16

105 + g31
105 + g43

105 + g58
105 + g73

105.
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Since

δ2
1 = 1, δ3

1 = −1,

δ1
2 = 1, δ3

2 = −1,

δ1
3 = 1, δ2

3 = −1,

we have
1
2
(δ2

1 + δ3
1)L2

1 = 0,

1
2
(δ1

2 + δ3
2)L1

2 = 0,

1
2
(δ1

3 + δ2
3)L1

3 = 0

and

B3 = B−−
12 = g8

35 + g3
35 + g16

35 + g23
35 + g2

35,

B2 = B+−
13 = g1

21 + g8
21 + g10

21 + g16
21,

B1 = B++
23 = g1

15.

Thus
R105 = (g1

105 + g16
105 + g31

105 + g43
105 + g58

105 + g73
105)

−(g8
35 + g3

35 + g16
35 + g23

35 + g2
35) − (g1

21 + g8
21 + g10

21 + g16
21) − (g1

15).

To compare above relation with the one given by Ennola, we note that
R105 = g1

105 + g2
105 + g17

105 + g43
105 + g44

105 + g46
105

−g1
35 + g3

35 + g12
35 + g5

21 + g8
21 + g4

15 + R1 + R2,

where R1 and R2 are sums of elementary relations (1.3) and (1.4):
R1 = −(g2

105 + g44
105 + g23

105 + g86
105 + g13

21 − g2
21)

−(g17
105 + g59

105 + g38
105 + g101

105 + g16
21 − g17

21) + (g23
105 + g58

105 + g31
35 − g23

35)

+(g38
105 + g73

105 + g1
35 − g3

35) + (g31
105 + g101

105 + g22
35 − g31

35)

+(g16
105 + g86

105 + g17
35 − g16

35)− (g1
21 + g4

21 + g10
21 + g13

21 + g16
21 + g19

21)

+(g13
21 + g20

21 + g2
7 − g6

7) − (g1
21 + g8

21 + g5
7 − g1

7) − (g4
15 + g3

5 + g14
15 − g4

5)

−(g8
35 + g3

35 + g23
35 + g13

35 + g18
35 + g33

35 + g4
5 − g3

5),

and
R2 = (g59

105 − g46
105) + (g13

35 − g22
35) + (g23

35 − g12
35) + (g18

35 − g17
35) + (g33

35 − g2
35)

+(g16
21 − g5

21) + (g13
21 − g8

21) + (g19
21 − g2

21) + (g4
21 − g17

21) + (g1
21 − g20

21)

+(g14
15 − g1

15) + (g5
7 − g2

7) + (g6
7 − g1

7).
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