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CLASSIFICATION WITH POLYNOMIAL KERNELS AND
l1−COEFFICIENT REGULARIZATION

Hongzhi Tong*, Di-Rong Chen and Fenghong Yang

Abstract. In this paper we investigate a class of learning algorithms for classifica-
tion generated by regularization schemes with polynomial kernels and l1−regularizer.
The novelty of our analysis lies in the estimation of the hypothesis error. A
Bernstein-Kantorovich polynomial is introduced as a regularizing function. Al-
though the hypothesis spaces and the regularizers in the schemes are sample
dependent, we prove the hypothesis error can be removed from the error decom-
position with confidence. As a result, we derive some explicit learning rates for
the produced classifiers under some assumptions.

1. INTRODUCTION

We consider binary classification algorithms generated by regularization schemes
with general convex loss functions and polynomial kernels. Let X be a compact metric
space (input space) and Y = {−1, 1} (representing the two classes). Classification
algorithms produce binary classifiers C : X → Y, which divide the input space into
two classes. The misclassification error is used to measure the prediction power of a
classifier C. If ρ is a probability measure on Z := X × Y, then the misclassification
error for C is defined to be the probability of the event {C(x) �= y}:

R(C) := Prob {C(x) �= y} =
∫

X

ρ(y �= C(x)|x)dρX.

Here ρX is the marginal distribution on X and ρ(·|x) is the conditional probability
measure at x ∈ X induced by ρ. It has been known from [6] the classifier which
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minimizes the misclassification error is the Bayes rule. Recall the regression function
of ρ :

fρ(x) =
∫

Y
ydρ(y|x) = ρ(y = 1|x)− ρ(y = −1|x), x ∈ X.

Then the Bayes rule is given by the sign of the regression function fc := sgn(fρ).
Here, for a function f : X → R, the sign function is defined as sgn(f)(x) = 1 if
f(x) ≥ 0 and sgn(f)(x) = −1 if f(x) < 0.

The classifiers considered here are induced by f : X → R as C = sgn(f), where
the real-valued functions f are generated from regularization schemes with general
convex loss functions and polynomial kernels.

Definition 1.1. A continuous function V : R → R+ is called a classifying loss
(function) if it is convex, differentiable at 0 with V ′(0) < 0 and 1 is the smallest real
for which the value of V is zero.

Examples of classifying loss include the hinge loss Vh(t) = max{1 − t, 0} for
the classical support vector machines (SVM) [15] classifier, and the least square loss
Vls(t) = (1− t)2 (see [12]).

In this paper we consider the univariate input space X = [0, 1]. The polynomial
kernel is defined by

K(x, u) := Kd(x, u) = (1 + xu)d, ∀x, u ∈ X,

where d is the degree of kernel polynomial. We know from [4] that K is a Mercer
kernel and the reproducing kernel Hilbert space (HK , ‖ · ‖K) associated with kernel K
is the set of polynomials on X of degree at most d.

As ρ is unknown, the best classifier fc can not be found directly. What we have
in hand is a set of samples z := {zi}m

i=1 = (xi, yi)m
i=1 ∈ Zm independently drawn

according to ρ. We call

Ez(f) := EV
z (f) =

1
m

m∑
i=1

V (yif(xi))

the empirical error with respect to z. Regularization learning schemes are implemented
by minimizing a penalized version of the empirical error over a set of functions H,
called a hypothesis space, equipped with a penalty functional Ω : H → R

+, called
a regularizer that reflects constraints imposed on functions from hypothesis space in
various desirable forms.

With classifying loss V and polynomial kernel K, [22] analyzes a regularized
classifier sgn(f̃z,λ), where

(1.1) f̃z,λ := arg min
f∈HK

{Ez(f) + λ‖f‖2
K

}
.



Classification with Polynomial Kernels and l1−Coefficient Regularization 1635

Here λ > 0 is a regularization parameter. Particularly, when V is the hinge loss Vh,
(1.1) becomes the classical SVM soft margin classifier (see [3]).

In this paper we shall consider a different regularization scheme. In our setting,
the regularizer is rather than a reproducing kernel Hilbert space norm but a l1−norm
of the coefficients in the kernel ensembles. Let

HK,z :=

{
m∑

i=1

aiKxi : ai ∈ R, i = 1, 2, · · ·m
}

,

where Ku(·) = K(u, ·) = K(·, u), and

Ωz(f) := inf

{
m∑

i=1

|ai| : f =
m∑

i=1

aiKxi

}
.

Then the regularized classifier with polynomial kernel K considered in this paper is
given by sgn(fz,λ), where fz,λ is a minimizer of the following optimization problem:

(1.2) fz,λ := arg min
f∈HK,z

{Ez(f) + λΩz(f)} .

Algorithms like (1.2) are also called coefficient regularization (see [11]). Recently,
l1−coefficient regularization has attracted much attention, the increasing interest is
mainly brought by the progress of lasso in statistics [13] and compressive sensing in
signal processing [2]. An essential difference between scheme (1.2) and (1.1) is the
dependence of the hypothesis space and regularizer on samples z. It raises a need of
different methods for analyzing scheme (1.2). For instance, a key approach for scheme
(1.1) used in [22] is an error decomposition which decomposes the total error into a
sum of sample error and regularization error. However, this typical error decomposition
technique does not apply for scheme (1.2) due to the dependence of HK,z and Ωz(·) on
z. This was pointed out in [19] where a modified error decomposition was introduced
by means of an extra hypothesis error. Under the framework established in [19],
[20, 14] study least square regression and SVM regression with l1−regularizer. The
novelty of this paper is that we illustrate the hypothesis error can be removed with
confidence by a special choice of the regularizing function for polynomial kernels. As
a result, we derive some explicit learning rates for learning scheme (1.2) by estimating
the sample error and regularization error respectively.

2. ERROR DECOMPOSITION

Define the generalization error associated with classifying loss V as

E(f) := EV (f) =
∫

Z
V (yf(x))dρ.
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Let fV
ρ be a measurable function minimizing the generalization error, that is

fV
ρ := arg min{E(f) : f is a measurable function on X}.

Since the smallest zero of V is 1, it is shown in [17] that fV
ρ can be chosen such that

fV
ρ (x) ∈ [−1, 1] for all x ∈ X.

Our goal is to estimate the excess misclassification error

(2.1) R(sgn(fz,λ))−R(fc).

The following comparison theorem given by [3, 21] implies that the excess misclassi-
fication error can be bounded by the excess generalization error.

Proposition 2.1. Let V be a classifying loss, then for any measurable function f ,

R(sgn(f))−R(fc) ≤
⎧⎨
⎩

E(f)− E(fc) if V (t) = (1 − t)+,

CV

√
E(f) − E(fV

ρ ) if V ′′(0) ≥ 0,

where CV is some constant dependent on V .

One always gets better estimates by making full use of the projection operator
introduced in [1].

Definition 2.1. The projection operator π is defined on the space of measurable
functions f : X → R as

π(f)(x) :=

⎧⎪⎨
⎪⎩

1, if f(x) > 1,

−1, if f(x) < −1,

f(x), if − 1 ≤ f(x) ≤ 1.

Trivially sgn(π(f)) = sgn(f), Proposition 2.1 tells us

(2.2) R(sgn(f))−R(fc) ≤
⎧⎨
⎩

E(π(f))− E(fc) if V (t) = (1 − t)+,

CV

√
E(π(f))− E(fV

ρ ) if V ′′(0) ≥ 0.

Therefore, to estimate (2.1) it is sufficient for us to bound the excess generalization
error E(π(fz,λ)) − E(fV

ρ ). In addition, we can get immediately from Definition 1.1
that V (yπ(f)(x)) ≤ V (yf(x)), so for any measurable function f ,

(2.3) E(π(f)) ≤ E(f), Ez(π(f)) ≤ Ez(f).

Let ν be a Borel measure on X , we denote Lp
ν (1 ≤ p < ∞) the measurable

functions on X with norm ‖f‖Lp
ν

:=
(∫

X |f(x)|pdν
) 1

p < ∞. When ν is the Lebesgue
measure, we simply denote L

p
ν as Lp. We also denote C(X) as the space of continuous

functions on X with the uniform norm ‖ · ‖∞.
Now we introduce the Bernstein-Kantorovich polynomials [9] that will play a key

role in our analysis.
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Definition 2.2. Let f ∈ L1, the Bernstein-Kantorovich polynomial (of degree d)
for f on X is given by

(2.4) Bd(f, x) :=
d∑

k=0

pd,k(x)(d + 1)
∫ (k+1)/d+1

k/d+1

f(u)du,

where pd,k(x) ≡ (d
k

)
xk(1 − x)d−k, k = 0, 1, · · · , d, are the Bernstein basis polyno-

mials of degree d.

To formulate the error decomposition, we need to make use of a polynomial repro-
duction in the univariate case X = [0, 1].

Definition 2.3. Let T be a normed linear space with dual T ∗. Given two subspaces
W ⊆ T and U ⊆ T ∗, the set U is called a norming set of W if there exists some c > 0
so that

sup
u∈U,‖u‖=1

|u(w)| ≥ c‖w‖ ∀w ∈ W.

With δx we denote the point evaluation functional at x, i.e.: δx(f) = f(x). The
following proposition was given in [16], which was a reformulation of the result of
[8].

Proposition 2.2. If {x1, x2 · · · , xm} ⊂ X , W is a finite dimensional subspace of
C(X) and U = span{δxi : 1 ≤ i ≤ m} is a norming set of W with norming constant
c ≥ 1/2. Then for every w∗ ∈ W ∗ with ‖w∗‖ = 1 there exist real numbers ai with∑m

i=1 aiw(xi) = w∗(w) and
∑m

i=1 |ai| ≤ 2.

Definition 2.4. A set {x1, x2 · · · , xm} ⊂ X is said to be Δ−dense if for any
x ∈ X there exists some 1 ≤ i ≤ m such that |x − xi| < Δ.

Lemma 2.1. Let P = Pd be the space of polynomials of degree d. If {x1, x2 · · · , xm}
is Δ−dense in X with Δ ≤ 1

4d2 , then U = span{δxi : 1 ≤ i ≤ m} is a norming set
of P with norming constant c = 1/2.

Proof. For any p ∈ P , there exists an x̄ ∈ X with p(x̄) = ‖p‖∞. Since
{x1, x2 · · · , xm} is Δ−dense in X , there is some 1 ≤ i ≤ m such that |x̄ − xi| < Δ.
By Lagrange’s Mean Value Theorem, there is at least a ζ, between x̄ and xi, such that

|p(x̄) − p(xi)| = |p′(ζ)||x̄− xi|.
Applying the Markov inequality which is given for p ∈ P by

|p′(t)| ≤ 2d2‖p‖∞, t ∈ [0, 1],

we have with Δ ≤ 1
4d2 ,

|p(x̄)| − |p(xi)| ≤ 2d2‖p‖∞Δ ≤ 1
2
‖p‖∞.
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So
|δxi(p)| = |p(xi)| ≥ 1

2
‖p‖∞.

This proves the lemma.

An immediate consequence of Lemma 2.1 and Proposition 2.2 is

Proposition 2.3. If {x1, x2 · · · , xm} is Δ−dense in X with Δ ≤ 1
4d2 , then

there exist for every x ∈ X real numbers ai(x) such that
∑m

i=1 |ai(x)| ≤ 2 and∑m
i=1 ai(x)p(xi) = p(x) for all p ∈ P .

Definition 2.5. The margin distribution ρX is said to satisfy condition Lτ with
1 ≤ τ < ∞ if for some cτ > 0 and any interval B(x, r) := {u ∈ X : |u − x| < r},
one has

(2.5) ρX(B(x, r)) ≥ cτr
τ , ∀x ∈ X, 0 < r ≤ 1.

Proposition 2.4. If ρX satisfies condition Lτ with τ ≥ 1, and {x1, x2 · · · , xm}
are samples independently drawn from ρX , for any t > 1, choosing

Δ = 2

[
1 +

(
1
cτ

) 1
τ

](
logm + t

m

) 1
τ

.

Then {x1, x2 · · · , xm} is Δ−dense in X with confidence 1 − e−t.

Proof. Let N be the minimal l ∈ N such that there exist l open intervals with
radius η/2 covering X , then N ≤ 2

η . If {Bj}N
j=1 are the open intervals with radius η/2

covering X , by Definition 2.5, for each j the probability of the event {xi}m
i=1∩Bj = ∅

is (1 − ρX(Bj))m ≤ (1 − cτ ( η
2)τ )m. So the probability for {xi}m

i=1 ∩ Bj = ∅ to be
true for at least one j ∈ 1, · · · , N is at most

N (1− cτ (
η

2
)τ )m ≤ 2

η
exp

{
−mcτ (

η

2
)τ )

}
.

This implies {xi}m
i=1 is η−dense in X with confidence at least 1− 2

η exp
{−mcτ

(
η
2 )τ

)}
.

So, if η satisfies

(2.6) log
(η

2

)
+ mcτ

(η

2

)
)τ ≥ t,

then {xi}m
i=1 is η−dense in X with confidence 1 − e−t. What is left is to verify Δ

satisfies (2.6). To this end, we consider the strictly increasing function h1 on (0, +∞)
defined by

h1(η) = log
(η

2

)
+ mcτ

(η

2

)τ
.

Take η̃ to be the positive solution to the equation h1(η) = t. If η̃ ≥ 2
(

1
m

) 1
τ , then
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t = h1(η̃) ≥ −1
τ

logm + mcτ

(
η̃

2

)τ

,

thus

η̃ ≤ 2

(
t + 1

τ logm

mcτ

) 1
τ

≤ Δ.

If η̃ < 2
(

1
m

) 1
τ , we can see η̃ ≤ Δ still holds. Therefore

h1(Δ) ≥ h1(η̃) = t.

It follows that Δ satisfies inequality (2.6) and the proof of Proposition 2.4 is
completed.

Let

(2.7) C1 =

[
8

(
1 +

(
1
cτ

) 1
τ

)]τ

.

From Proposition 2.3 and 2.4, we can get

Corollary 2.1. Suppose ρX satisfies condition Lτ with τ ≥ 1, and {xi}m
i=1 are

samples independently drawn from ρX . For any t > 1, when

(2.8) m ≥ C1(logm + t)d2τ ,

then with confidence 1 − e−t, we can find numbers ai(x), for every x ∈ X such that
m∑

i=1

ai(x)p(xi) = p(x)

for all p ∈ P and
m∑

i=1

|ai(x)| ≤ 2.

Theorem 2.1. Suppose z = {(xi, yi)}m
i=1 is a set of samples independently drawn

according to the measure ρ, and ρX satisfies condition Lτ with τ ≥ 1. If |f(x)| ≤ 1
for all x ∈ X , then for any t > 1 and m satisfying (2.8), with confidence 1 − e−t,
there holds

Bd(f) ∈ HK,z, and Ωz(Bd(f)) ≤ 2 · 18d.

Proof. Let uj = j
d , j = 0, 1, · · · , d. Then

Kuj(x) = (1+ujx)d = (1−x+(1+uj)x)d =
d∑

l=0

(1+uj)lpd,l(x), j = 0, 1, · · · , d.
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The Bernstein basis polynomial pd,k(x) with k ∈ {0, 1, · · · , d} can be written as

pd,k(x) =
d∑

j=0

ck,jKuj (x),

where {ck,j}d
j=0 is the solution to the linear system

d∑
j=0

(1 + uj)lck,j = δl,k, l = 0, 1, · · · , d.

By Cramer’s rule,
ck,j =

Dk,j

D
, j = 0, 1, · · · , d

where D is the Vandermonde determinant

D := D(1 + u0, 1 + u1, · · · , 1 + ud) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
1 + u0 1 + u1 · · · 1 + ud

...
...

...
(1 + u0)d (1 + u1)d · · · (1 + ud)d

∣∣∣∣∣∣∣∣∣
and Dk,j is the determinant obtained from D by replacing the jth column by ek+1.
Take

fj(x) = D(1 + u0, · · · , 1 + uj−1, x, 1 + uj+1, · · · , 1 + ud).

We can see

fj(x)
D

=
∑d

k=0 Dk,jx
k

D
=

d∑
k=0

ck,jx
k =

∏
l �=j

x − (1 + ul)
uj − ul

.

It follows that for k = 0, 1, · · · , d,

ck,j =
(−1)d−k∏

l �=j(uj − ul)

∑
j1<j2···<jd−k

ji �=j

(1 + uj1) · · · (1 + ujd−k
)

=
(−1)d−k(−1)d−jdd

j!(d− j)!

∑
j1<j2···<jd−k

ji �=j

(1 +
j1

d
) · · · (1 +

jd−k

d
).

Hence
|ck,j| ≤ dd

d!

(
d

j

)(
d

k

)
2d−k.

We thus can write
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Bd(f, x) =
d∑

k=0

pd,k(x)(d + 1)
∫ (k+1)/d+1

k/d+1
f(u)du

=
d∑

k=0

(d + 1)
∫ (k+1)/d+1

k/d+1

f(u)du
d∑

j=0

ck,jKuj(x)

=
d∑

j=0

βjKuj(x),

and

|βj| =

∣∣∣∣∣
d∑

k=0

ck,j(d + 1)
∫ (k+1)/d+1

k/d+1

f(u)du

∣∣∣∣∣
≤

d∑
k=0

|ck,j|

≤ dd

d!

(
d

j

) d∑
k=0

(
d

k

)
2d−k

=
dd

d!

(
d

j

)
3d.

Since Kx(·) ∈ P for any fixed x ∈ X, by Corollary 2.1, with confidence 1 − e−t, we
have for j = 0, 1, · · · , d,

Kuj(x) = Kx(uj) =
m∑

i=1

ai(uj)Kx(xi) =
m∑

i=1

ai(uj)Kxi(x),

and m∑
i=1

|ai(uj)| ≤ 2.

Therefore,

Bd(f, x) =
d∑

j=0

βjKuj(x) =
m∑

i=1

d∑
j=0

ai(uj)βjKxi(x) ∈ HK,z,

and

Ωz(Bd(f)) ≤
m∑

i=1

|
d∑

j=0

ai(uj)βj| ≤ 2
d∑

j=0

|βj|

≤ 2
d∑

j=0

dd

d!

(
d

j

)
3d = 2 · 6d dd

d!
≤ 2 · 18d.
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The last inequality follows from the Stirling formula.

Taking Bd(fV
ρ ) as the regularizing function, we can now present the error decom-

position as following.

Theorem 2.2. If z = {(xi, yi)}m
i=1 are independently drawn according to ρ, and

ρX satisfies condition Lτ with τ ≥ 1. Then for any t > 1 and m satisfying (2.8), with
confidence 1 − e−t,

(2.9)

E(π(fz,λ)) − E(fV
ρ ) ≤ [E(π(fz,λ))− Ez(π(fz,λ))

+Ez(Bd(fV
ρ )) − E(Bd(fV

ρ ))]

+[E(Bd(fV
ρ ))− E(fV

ρ ) + λΩz(Bd(fV
ρ ))].

Proof. Since fV
ρ (x) ∈ [−1, 1] for all x ∈ X, according to Theorem 2.1, we know

that Bd(fV
ρ ) ∈ HK,z with confidence 1 − e−t. So under the same confidence,

(2.10)

E(π(fz,λ))− E(fV
ρ )

≤ E(π(fz,λ))− E(fV
ρ ) + λΩz(fz,λ)

= [E(π(fz,λ)) − Ez(π(fz,λ))] + [(Ez(π(fz,λ)) + λΩz(fz,λ))

−(Ez(Bd(fV
ρ )) + λΩz(Bd(fV

ρ )))]

+[Ez(Bd(fV
ρ ))− E(Bd(fV

ρ ))]

+[E(Bd(fV
ρ ))− E(fV

ρ ) + λΩz(Bd(fV
ρ ))].

It follows from (2.3) that Ez(π(fz,λ)) ≤ Ez(fz,λ). This in connection with the definition
of fz,λ implies the second term of (2.10) is at most zero. So the theorem is proved.

The second term in (2.10) with a regularizing function fλ ∈ HK is called in [19]
hypothesis error, caused by the sample dependence of the hypothesis space HK,z which
need not contain the regularizing function fλ. Dealing with hypothesis error is usually
the key and difficult step in the analysis of algorithms established in a data dependent
hypothesis space (see [14, 20]). However, Theorem 2.2 ensures us the hypothesis
error can be discarded with high confidence, which is mainly attributed to the special
structure of polynomial kernels.

3. ERROR ANALYSIS

As usual, the first and second term on the right side of (2.9) are respectively called
sample error and regularization error. In this section, we shall provide some bounds
for them separately.
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3.1. Estimating E(Bd(fV
ρ ))− E(fV

ρ )

Since V is convex, its left, right derivatives V ′−, V ′
+ exist.

Proposition 3.1. Let V be a classifying loss function and M0 := max{|V ′±(−1)|,
|V ′±(1)|}, then there holds

(3.1) E(Bd(fV
ρ ))− E(fV

ρ ) ≤ M0‖Bd(fV
ρ )− fV

ρ ‖L1
ρX

.

Proof. Since fV
ρ (x) ∈ [−1, 1], we can see that |Bd(fV

ρ , x)| ≤ 1 for each x ∈ X .
By Theorem 4 in [17],

E(Bd(fV
ρ )) − E(fV

ρ ) ≤ ‖V ′
±‖L∞[−1,1]‖Bd(fV

ρ ) − fV
ρ ‖L1

ρX
.

The convexity of V implies that the one-side derivatives V ′
+, V ′− are both nondecreas-

ing, this proves the proposition.

In order to estimate ‖Bd(fV
ρ ) − fV

ρ ‖L1
ρX

, we give the following definition which
was discussed in [4].

Definition 3.1. We call DρX
the distortion of ρX (with respect to the Lebesgue

measure), if DρX
is the operator norm ‖J‖ where J is the identity mapping

L1 J−→ L1
ρX

.

DρX
measures how much ρX distorts the Lebesgue measure. It is often reasonable

to suppose that the distortion DρX
is finite. Therefore

(3.2) ‖Bd(fV
ρ ) − fV

ρ ‖L1
ρX

≤ DρX
‖Bd(fV

ρ ) − fV
ρ ‖L1.

It has been known from the knowledge of approximation theory that approxima-
tion by Bernstein-Kantorovich polynomials can be characterized by the modulus of
smoothness of the functions they approximate.

Definition 3.2. Let ϕ(x) =
√

x(1− x) and

Δ2
hϕf(x) =

{
f(x − hϕ(x))− 2f(x) + f(x + hϕ(x)), if x ± hϕ(x) ∈ [0, 1],
0, otherwise.

Then the modulus of smoothness of f ∈ L1 is defined as

ω2
ϕ(f, r) := sup

0<h≤r
‖Δ2

hϕf‖L1.
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From Theorem 9.3.2 in [7] we know that for any f ∈ L1,

‖Bd(f) − f‖L1 ≤ C2

[
ω2

ϕ(f,
1√
d
) +

‖f‖L1

d

]
,

where C2 is a constant independent of f and d. This together with (3.1) and (3.2)
implies

Proposition 3.2. If DρX
< ∞, ω2

ϕ(fV
ρ , r) = O(r2s), (0 < s ≤ 1). Then there

exists a constant C3 independent of d, such that

E(Bd(fV
ρ )) − E(fV

ρ ) ≤ C3DρX
d−s.

3.2. Estimating [Ez(Bd(fV
ρ ))− Ez(fV

ρ )]− [E(Bd(fV
ρ )) − E(fV

ρ )]

For a measurable function f : Z → R, denote Ef :=
∫
Z f(z)dρ. The follow-

ing definition is a variance-expectation condition for the pair (V, ρ), which has been
generally used to achieve sharp estimation of the sample error.

Definition 3.3. A variance power α of the pair (V, ρ) is a number in [0, 1] such
that for any f : X → [−1, 1], there exists some constant cα > 0 satisfying

(3.3) E[V (yf(x))− V (yfV
ρ (x))]2 ≤ cα[E(f)− E(fV

ρ )]α.

Remark 3.1. For V = Vls, the power can be taken as α = 1 (see [5]). For the
hinge loss V = Vh, one can take α = q

q+1 , when a Tsybakov noise condition with
exponent q ≥ 0 is satisfied (see [10]). In general, (3.3) always holds for α = 0 and
cα = (V (−1))2.

To complete the estimation, we need to use the following one-side Bernstein in-
equality (see [4]).

Let ξ be a random variable on a probability space Z with mean Eξ = μ and
variance σ2(ξ) = σ2. If |ξ − μ| ≤ B almost everywhere, then for all η > 0,

Probz∈Zm

{
1
m

m∑
i=1

ξ(zi) − μ ≥ η

}
≤ exp

{
− mη2

2(σ2 + 1
3Bη)

}
.

Proposition 3.3. If (3.3) holds, then for any t > 1, with the confidence 1 − e−t,

[Ez(Bd(fV
ρ )) − Ez(fV

ρ )]− [E(Bd(fV
ρ ))− E(fV

ρ )]

≤ 4V (−1)t
3m

+
(

2cαt)
m

)1/(2−α)

+ E(Bd(fV
ρ )) − E(fV

ρ ).
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Proof. Let ξ = V (yBd(fV
ρ , x))−V (yfV

ρ (x)). Since |fV
ρ (x)| ≤ 1 and |Bd(fV

ρ , x)|
≤ 1, we know by the monotonicity of V that |ξ| ≤ V (−1). Hence Eξ = E(Bd(fV

ρ ))−
E(fV

ρ ), |ξ−Eξ| ≤ 2V (−1), and (3.3) yields σ2(ξ) ≤ E(ξ2) ≤ cα(Eξ)α. Applying the
one-side Bernstein inequality to ξ, we find that for every η > 0,

Probz∈Zm

{
1
m

m∑
i=1

ξ(zi) − Eξ ≥ η

}
≤ exp

{
− mη2

2(cα(Eξ)α + 2
3V (−1)η)

}
.

So for any t > 1, with confidence 1 − e−t,

1
m

m∑
i=1

ξ(zi) − Eξ ≤ 4V (−1)t
3m

+

√
2tcα(Eξ)α

m

≤ 4V (−1)t
3m

+
α

2
Eξ + (1− α

2
)
(

2tcα

m

) 1
2−α

≤ 4V (−1)t
3m

+
(

2tcα

m

) 1
2−α

+ Eξ.

Here the second inequality follows from an elementary inequality

(3.4) ab ≤ 1
p
ap +

1
q
bq, ∀a, b > 0, p, q > 1,

1
p

+
1
q

= 1.

This proves the proposition.

3.3. Estimating [E(π(fz,λ))− E(fV
ρ )]− [Ez(π(fz,λ)) − Ez(fV

ρ )]

The function fz,λ changed with the sample z runs over a set of functions in HK ,
so we need a uniform probability inequality which involves the complexity of HK

described by means of the covering number.

Definition 3.4. For a subset F of a metric space and η > 0, the covering number
N (F , η) is defined to be the minimal integer l ∈ N such that there exist l balls with
radius η covering F .

We can see that the dimension of HK is d + 1. For any f ∈ HK , denote

‖f‖ := inf

⎧⎨
⎩

d+1∑
j=1

|aj|, f =
d+1∑
j=1

ajKuj , uj ∈ X

⎫⎬
⎭

and BR := {f ∈ HK , ‖f‖ ≤ R}. It is easy to see that BR is a subset of C(X), and

‖f‖∞ ≤ sup
x,u∈X

|K(x, u)| · ‖f‖ ≤ 2dR.
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By Proposition 5 in Chapter I of [4], we have

(3.5) logN (BR, η) ≤ (d + 1) log
(

4 · 2dR

η

)
.

The following lemma is adopted from [18], it can been seen as a uniform law of
large numbers for a class of functions.

Lemma 3.1. Let 0 ≤ α ≤ 1, B > 0, c ≥ 0, and G be a set of functions on Z such
that for every g ∈ G, Eg ≥ 0, |g − Eg| ≤ B almost everywhere and E(g2) ≤ c(Eg)α.
Then for every η > 0,

Probz∈Zm

{
sup
g∈G

Eg− 1
m

∑m
i=1 g(zi)√

(Eg)α+ηα
>4η1−α

2

}
≤N (G, η) exp

{
− mη2−α

2(c + 1
3Bη1−α)

}
.

Applying Lemma 3.1 to the following function set:

FR := {V (yπ(f)(x))− V (yfV
ρ (x)) : f ∈ BR},

we can find

Proposition 3.4. Let R > 0, if (3.3) holds, then for every η > 0,

Probz∈Zm

⎧⎨
⎩ sup

f∈BR

[E(π(fz,λ))− E(fV
ρ )]− [Ez(π(fz,λ)) − Ez(fV

ρ )]√
[E(π(fz,λ)) − E(fV

ρ )]α + ηα
≤ 4η1−α

2

⎫⎬
⎭

≥ 1 − exp

{
(d + 1) log

(
4 · 2dM0R

η

)
− mη2−α

2(cα + 2
3V (−1)η1−α)

}
.

Here M0 is given in Proposition 3.1.

Proof. Each function g ∈ FR has the form g(z) = g(x, y) = V (yπ(f)(x)) −
V (yfV

ρ (x)) with some f ∈ BR. Hence Eg = E(π(f))−E(fV
ρ ) ≥ 0, 1

m

∑m
i=1 g(zi) =

Ez(π(f))− Ez(fV
ρ ). Furthermore,

‖g‖∞ ≤ V (−1), |g − Eg| ≤ 2V (−1).

(3.3) tells us E(g2) ≤ Cα(Eg)α. Now applying Lemma 3.1 to FR, we have

Probz∈Zm

⎧⎨
⎩ sup

f∈BR

[E(π(fz,λ))− E(fV
ρ )]− [Ez(π(fz,λ)) − Ez(fV

ρ )]√
[E(π(fz,λ)) − E(fV

ρ )]α + ηα
> 4η1−α

2

⎫⎬
⎭

≤ N (FR, η) exp

{
− mη2−α

2(cα + 2
3V (−1)η1−α)

}
.
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What is left is to bound the covering number. Observe that for any f1, f2 ∈ BR and
(x, y) ∈ Z,

|[V (yπ(f1)(x))− V (yfV
ρ (x))]− [V (yπ(f2)(x))− V (yfV

ρ (x))]|
= |V (yπ(f1)(x))− V (yπ(f2)(x))|
≤ |V ′

+(−1)| |π(f1)(x) − π(f2)(x)|
≤ M0‖f1 − f2‖∞.

This in connection with (3.5) means that

logN (FR, η) ≤ logN (BR,
η

M0
) ≤ (d + 1) log(

4 · 2dM0R

η
).

So the proposition is proved.

We now need to find a ball BR containing fz,λ.

Lemma 3.2. For all λ > 0 and z ∈ Zm, one has

(3.6) ‖fz,λ‖ ≤ V (0)
λ

.

Proof. By taking f = 0 in (1.2), one can see that

λ‖fz,λ‖ ≤ λΩz(fz,λ) ≤ Ez(fz,λ)+λΩz(fz,λ) ≤ Ez(0) = V (0).

Proposition 3.5. Let 0 < θ < 1/2, λ = e−4d, d = (Cm)θ with some constant
C > 0 independent of m. If (3.3) holds, then for all t > 1 and m ≥ {1/θ2 +
log(4M0V (0))}1/θ, with confidence 1 − e−t, there holds

[E(π(fz,λ))− E(fV
ρ )] − [Ez(π(fz,λ))− Ez(fV

ρ )]

≤ 1
2
[E(π(fz,λ))− E(fV

ρ )] + C4tm
− 1−2θ

2−α ,

where C4 is a constant independent of m or t.

Proof. Taking R = V (0)
λ . By (3.6), fz,λ ∈ BR for all z ∈ Zm. Choose η∗ to be the

positive solution to the following equation

(3.7) h2(η) :=
mη2−α

2(cα + 2
3V (−1)η1−α)

− (d + 1) log
(

4M0V (0)2d

λη

)
= t.

Then Proposition 3.4 implies that with confidence 1 − e−t,
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[E(π(fz,λ))− E(fV
ρ )] − [Ez(π(fz,λ)) − Ez(fV

ρ )]

≤ 4η∗1−α/2
√

[E(π(fz,λ))− E(fV
ρ )]α + η∗α

≤ 4η∗ + 4η∗1−α/2[E(π(fz,λ))− E(fV
ρ )]α/2

≤ 4η∗ +
α

2
[E(π(fz,λ)) − E(fV

ρ )] + (1 − α

2
)42/(2−α)η∗

≤ 20η∗ +
1
2
[E(π(fz,λ)) − E(fV

ρ )].

Here in the third inequality we have used the elementary inequality (3.4) again.
It remains to estimate η∗. Let β := 1−2θ

2−α . If η∗ ≥ m−β , putting λ = e−4d, d =
(Cm)θ into (3.7), we can see that

h2(η∗) ≥ mη∗2−α

2(cα + 2
3V (−1)η∗1−α)

− ((Cm)θ + 1) [log (4M0V (0))

+(Cm)θ log 2 + 4(Cm)θ + β logm
]
.

Since m ≥ {1/θ2 + log(4M0V (0))}1/θ, we have log(4M0V (0)) ≤ mθ and

(3.8) β logm < logm < mθ.

In fact, let F (x) = xθ−log x, then F ′(x) = 1
x(θxθ−1). It means F (x) is an increasing

function when xθ > 1
θ2 , and F

(
(1/θ2)1/θ

)
= 1

θ

(
1
θ + 2 log θ

)
> 0. So (3.8) holds.

Therefore,

(3.9) t = h2(η∗) ≥ mη∗2−α

2(cα + 2
3V (−1)η∗1−α)

− (1 + Cθ)(2 + (4 + log 2)Cθ)m2θ.

Denote C̃ := (1 + Cθ)(2 + (4 + log 2)Cθ), then (3.9) can be rewritten as

η∗2−α − 4
3
V (−1)

[
t

m
+ C̃m2θ−1

]
η∗1−α − 2cα

[
t

m
+ C̃m2θ−1

]
≤ 0.

It implies that

(3.10)
η∗ ≤ max

{
8
3
V (−1)

(
t

m
+ C̃m2θ−1

)
,

(
4cα

(
t

m
+ C̃m2θ−1

)) 1
2−α

}

≤ C̃4tm
− 1−2θ

2−α ,

where C̃4 := 1 + 8
3V (−1)(1 + C̃) +

(
4cα(1 + C̃)

) 1
2−α

.

If η∗ < m−β , (3.10) still holds. So the proposition follows by taking C4 =
20C̃4.
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4. LEARNING RATE

Combining the estimations in the last section, we can derive some explicit learning
rates for scheme (1.2) by choosing suitable values of λ and d.

Theorem 4.1. Suppose DρX
< ∞, ω2

ϕ(fV
ρ , r) = O(r2s) for some 0 < s ≤

1, ρX satisfies condition Lτ with τ ≥ 1 and (3.3) holds. Let θ = 1
1+2τ , d =(

m
(2C1)1/(1−θ)

)θ
, λ = e−4d. Then for any t > 1, when m ≥ {t+1/θ2+log(M0V (0))}1/θ,

with confidence 1 − 3e−t, we have

E(π(fz,λ))− E(fV
ρ ) ≤ C5tm

−min
{

2τ−1
(2−α)(1+2τ)

, s
1+2τ

}
,

where C5 = 2(C4 + 4V (−1)
3 + (2cα)1/(2−α)) + 4(C3DρX

+ 1)(2C1)
θs

1−θ .

Proof. Since m ≥ {t + 1/θ2 + log(M0V (0))}1/θ, we know from (3.8)

mθ > t, mθ > logm.

Hence

C1(logm + t)d2τ ≤ 2C1m
θ

(
m

(2C1)1/(1−θ)

)θ· 1−θ
θ

= m.

Now by Theorem 2.2, with confidence 1 − e−t, (2.9) holds. Putting Theorem 2.1,
Proposition 3.2, 3.3 and Proposition 3.5 with C = (2C1)1/(θ−1) into the right side of
(2.9), we find that with confidence 1 − 3e−t,

E(π(fz,λ)) − E(fV
ρ ) ≤ 1

2
[E(π(fz,λ))− E(fV

ρ )] + C4tm
− 1−2θ

2−α

+
4V (−1)t

3m
+
(

2cαt)
m

)1/(2−α)

+ 2C3DρX
d−s + 2

(
18
e4

)d

.

Note that
(

18
e4

)d ≤ (
1
2

)d ≤ d−s = (2C1)
θs

1−θ m−sθ , we have with same confidence

E(π(fz,λ)) − E(fV
ρ ) ≤ 2(C4 + 4V (−1)

3 + (2cα)1/(2−α))tm− 1−2θ
2−α

+4(C3DρX
+ 1)(2C1)

θs
1−θ m−θs

≤ C5tm
−min{ 1−2θ

2−α
,θs}

= C5tm
−min

{
2τ−1

(2−α)(1+2τ)
, s
1+2τ

}
.

Theorem 4.1 in connection with the relation (2.2) yields the learning rates with
respect to misclassification error.
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Corollary 4.1. For all 0 < δ < 1, if the conditions in Theorem 4.1 are satisfied
with t = log(3/δ), then with confidence 1 − δ, there holds

R(sgn(fz,λ))−R(fc) ≤
{ C5 log(3/δ)m−γ if V (t) = (1− t)+,

CV

√
C5

√
log(3/δ) m−γ/2 if V ′′(0) ≥ 0.

where γ = min
{

2τ−1
(2−α)(1+2τ ),

s
1+2τ

}
.
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