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EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DEGENERATE
CHEMOTAXIS SYSTEM

L. Shangerganesh, N. Barani Balan and K. Balachandran

Abstract. In this paper we establish the existence and uniqueness of a weak
solution of the strongly coupled chemotaxis model with Dirichlet boundary con-
ditions.

1. INTRODUCTION

Chemotaxis model was first proposed by Keller and Segel [1] and further it has
been studied by many researchers in the last few decades (see [2, 3, 4, 5, 6]) and the
references there in. Chemotaxis is a chemosensitive movement of cells which direct
towards the gradient of a chemical contained in the environment. For example, when a
bacterial infection invades the body it may be attacked by movement of cells towards
the source due to chemotaxis. Convincing evidence suggests that leukocyte cells in
the blood move towards a region of bacterial inflammation by moving up a chemical
gradient caused by the infection.

In the literature, there has been increasing biological interest in the qualitative
analysis of solutions of differential equations of chemotaxis model and related models
(see [2, 7, 8, 9, 10, 11, 12, 5, 6]). The review article by Hillen and Painter [13]
explores in detail a number of variations of the original Keller-Segel model, contrasts
their patterning properties, summarizes the key results on their analytical properties and
classifies their solution form. In its original form, this model consists of four coupled
reaction-advection-diffusion equations. These can be reduced under quasi-steady-state
assumptions to a model involves two unknown functions which would be the focus of
our study in this article.

Let the space and time evolution of the cell density be denoted by u and the space
and time evolution of the chemo-attractant density by v; then the model represented in
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[4] reads as

∂tu = ∇ · (D(u)∇u)−∇ · (g(u)∇v) in QT = Ω × (0, T ),

∂tv − dΔv = αu− βv in QT ,

(u, v)(x, 0) = (u0(x), v0(x)) in Ω,

(u, v) = 0 in ΓT = ∂Ω × (0, T ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)

where Ω is a bounded open set in RN with smooth boundary ∂Ω. D(u) denotes the
density-dependent diffusion co-efficient and g(u) = ug1(u) where g1(u) is commonly
referred to as the chemotactic sensitivity function. Here the linear function αu −
βv, where α, β ≥ 0, involves the rates of production and degradation of the chemo-
attractant. Suppose we assume that there exists a maximal population density of cells
um such that g(um) = 0. This corresponds to a switch to repulsion at high densities,
known as prevention of overcrowding, volume-filling effect or density control, for
example, see [14]. It means that cells stop to accumulate at a given point of Ω after
their density attains a certain threshold value, and the chemotactic cross-diffusion term
g(u) vanishes identically when u ≥ um. We also assume that the diffusion coeffcient
D(u) vanishes at 0 and um, so that, (1.1) degenerates for u = 0 and u = um, while
D(u) > 0 for 0 < u < um. Therefore the above type of chemotaxis model is the special
case of the classical Keller-Segel model and it is called as degenerate chemotaxis model
according to the strong degeneracy of density-dependent coefficient D(u). This means
that there is no diffusion when u approaches values close to a threshold value in the
absence of cell-population. For example in [15], this interpretation was proposed where
the diffusion coefficient takes the form D(u) = εu(1 − u) for ε > 0. However for
more details regarding the degenerate chemotaxis model, see [4, 14, 16]. The main
advantage of this nonlinear diffusion model seem to be related to the finite speed
of propagation (which is more realistic in biological applications) and the asymptotic
behavior of solutions.

The basic assumption made here is the existence of a threshold value for the cell
density which corresponds to a tight packing state. In otherwords, cells cannot ac-
cumulate without bound at a given point of Ω and the corresponding mathematical
assumption is that the function g vanishes identically when u crosses the threshold
value. The effect of a threshold cell density or a volume-filling effect has been taken
into account in the modelling of chemotaxis phenomenon in [9, 4, 14, 16] and the well-
posedness and large time behavior of solutions to chemotaxis systems incorporating the
volume-filling effect has been studied in [16, 17, 18]. Chemotaxis model has received
considerable attention in modeling segregation phenomena in population dynamics and
it plays a major role in modern applied mathematics and medicine biology. For exam-
ple, Kowalczyk and Szymanska considered the chemotaxis model used in angiogenesis,
which is the process of the creation of new (blood) vessels from existing ones (see [19]),
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and established the existence and uniqueness of solutions. While in cancer invasion
theory, global existence and uniqueness of classical solutions of chemotaxis-haptotaxis
model have been studied by [20, 21, 22] using fixed point technique.

Moreover, in the literature there have appeared few articles in which the authors
established the existence of solutions of chemotaxis model with volume filling effect. In
particular, Bendahamne et al. [16] established the existence of weak solutions of two-
sidedly degenerate chemotaxis model with volume filling effect by using regularization
and Schauder’s fixed point method. Cieslak and Morales-Rodrigo [23] proved the
existence of solutions of quasilinear parabolic-elliptic chemotaxis system using the
Schauder fixed point theorem. Existence and uniqueness of solutions and the Holder
continuity of solutions of doubly nonlinear chemotaxis model have been studied by
Bendahamne et al. [3].

Laurencot and Wrzosek [4] established the existence and uniqueness of weak solu-
tions of chemotaxis model with threshold density and degenerate diffusion using general
abstract theory. Andreianov et al. [2] used finite volume method to establish the nu-
merical solutions of the degenerate chemotaxis model. On the other hand Bendahamne
et al. [24] established the existence of solutions of reaction diffusion system with L1

data related to the chemotaxis models and Shangerganesh et al. [12] proved the dif-
ferent notion of weak-renormalized solutions for similar type of degenerate equations.
Bendahamne and Karlsen [25] proved the existence of solutions of reaction diffusion
and cardiac tissue model using Galerkin’s approximation method. In contrast with
their works, we prove herein the existence and uniqueness of weak solutions for the
degenerate system (1.1) using difference and non-variational methods. In this work,
we obtain the weak solutions for the given system under the following hypotheses: the
density dependent diffusion D ∈ C2(R) and the function g ∈ C2(R) vanishes at large
density. As for the initial data, we assume that u0(x), v0(x) ∈ L2(Ω) with u0 and v0
being non-negative a.e in Ω.

A difficulty in the analysis of the system (1.1) is the strong degeneracy of the
diffusion term D(u). To handle this difficulty, we replace the diffusion term D(u)
by Dε(u) = D(u) + ε and let us first consider, for each fixed ε > 0, the following
regularized non-degenerate problem of the system (1.1):

∂tuε = ∇ · (Dε(uε)∇uε) −∇ · (g(uε)∇vε) in QT ,

∂tvε − dΔvε = αuε − βvε in QT ,

(uε, vε)(x, 0) = (u0(x), v0(x)) in Ω,

(uε, vε) = 0 in ΓT .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.2)

To prove the existence theorem, first we prove the existence of weak solutions of the
regularized problem and then we send the regularization parameter to zero to obtain
the weak solutions of the original system (1.1). To attain this, one can use a priori
estimates and compactness arguments.
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The paper is organized as follows: In Section 2, we prove the existence of weak
solutions for the steady-state version of the regularized problem using Galerkin’s ap-
proximation method. In Section 3, we prove the existence of weak solutions of the
regularized system using difference method and further we establish the existence of
weak solutions of the original system by bringing the regularization parameter to zero.
Moreover, in Section 4, we prove the uniqueness result using the duality approach.
Throughout the paper, we use the same generic constant c everywhere instead of dif-
ferent constants.

2. STEADY-STATE CASE

In this section, first we consider the existence of solutions of steady-state case of
the approximation problem

−∇ · (Dε(uε)∇uε) + ∇ · (g(uε)∇vε) = 0 in Ω,
−dΔvε = αuε − βvε in Ω,
(uε, vε) = 0 on ∂Ω.

⎫⎪⎬
⎪⎭(2.1)

Lemma 2.1. [26, 27]. Let F : R
K → R

K (K ∈ N) be a continuous function such
that 〈F (r), r〉 ≥ 0 on |r| = ρ. Then there exists z ∈ B̄ρ(0) such that F (z) = 0 for
sufficiently large ρ.

Theorem 2.1. Under the assumption for some d0 > 0 such that Dε(uε) ≥ d0, the
non-degenerate steady-state system (2.1) has a weak solution (uε, vε) such that for
any φ, ψ ∈ H1

0 (Ω), ∫
Ω
Dε(uε)∇uε∇φdx−

∫
Ω
g(uε)∇vε∇φdx = 0,

d

∫
Ω
∇vε∇ψ =

∫
Ω
(αuε − βvε)ψdx,

holds.

Proof. In order to prove the existence of solutions of the system (2.1), we use the
Galerkin’s method of approximate solutions (see [26]). To use the Galerkin’s method,
we are in need of the specific basis. Now, let us introduce the spectral problem, find
w ∈ H1

0 (Ω) and λ ∈ R such that

(∇w,∇φ)L2(Ω),L2(Ω) = λ(w, φ)L2(Ω),L2(Ω), for all φ ∈ H1
0 (Ω),

w = 0 on ∂Ω.

The above problem gives a sequence of non-decreasing eigenvalues {λl}∞l=1 and a
sequence of corresponding eigenfunctions {el}∞l=1, forming an orthogonal basis in
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H1
0 (Ω). For each n ∈ N, define the subspace Vn = span{e1, · · · , en}. It is well

known that (Vn, ‖ · ‖) and (Rn, | · |) are isometrically isomorphic by the natural linear

map T : Vn → Rn given by z =
n∑

i=1
riei → T (z) = r = (r1, · · · , rn) (see [26]). So

‖z‖ = |T (z)| = |r|, where | · | and ‖ · ‖ denote the usual norms in RN and Vn(Ω)
respectively.

We look for the functions (uεn, vεn) ∈ H1
0 (Ω) of the form uεn =

n∑
l=1

rn,lel(x),

vεn =
n∑

l=1

sn,lel(x), where we need to determine the coefficients (rn,l, sn,l), so that,

for k = 1, 2, · · · , n,∫
Ω
Dε(uεn)∇uεn∇ekdx−

∫
Ω
g(uεn)∇vεn∇ekdx = 0 in Ω,

d

∫
Ω
∇vεn∇ekdx =

∫
Ω
(αuεn − βvεn)ekdx in Ω.

Now let us consider the following function F : R
2n → R

2n given by

F (r, s) =
(
f1(r, s), · · · , fn(r, s), h1(r, s), · · · , hn(r, s)

)
,

where

fk(r, s) =
∫

Ω

[
Dε

(
n∑

l=1

rn,lel(x)

)(
n∑

l=1

rn,l∇el(x)

)
∇ek

−g
(

n∑
l=1

rn,lel(x)

)(
n∑

l=1

sn,l∇el(x)

)
∇ek

]
dx,

hk(r, s) = d

∫
Ω

[(
n∑

l=1

sn,l∇el(x)

)
∇ek−

(
α

n∑
l=1

rn,lel(x)−β
n∑

l=1

sn,lel(x)

)
ek

]
dx,

for each point r = (r1, · · · , rn) ∈ R
n and s = (s1, · · · , sn) ∈ R

n. Then

〈F (r, s), (r, s)〉

≥
∫

Ω

⎛
⎝d0

∣∣∣∣∣
n∑

l=1

rn,l∇el(x)
∣∣∣∣∣
2

− g0
2

⎛
⎝
∣∣∣∣∣

n∑
l=1

rn,l∇el(x)
∣∣∣∣∣
2

+

∣∣∣∣∣
n∑

l=1

sn,l∇el(x)
∣∣∣∣∣
2
⎞
⎠
⎞
⎠ dx

+
∫

Ω

⎛
⎝d

∣∣∣∣∣
n∑

l=1

sn,l∇el(x)
∣∣∣∣∣
2

−c
⎛
⎝
∣∣∣∣∣

n∑
l=1

rn,lel(x)

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑

l=1

sn,lel(x)

∣∣∣∣∣
2
⎞
⎠
⎞
⎠ dx,

≥ c
(‖uεn‖2 + ‖vεn‖2

)
,
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where we have used the Holder’s and Young’s inequality so that 〈F (r, s), (r, s)〉 ≥ 0,
if ‖(uεn, vεn)‖ = ρ provided that ρ > 0 sufficiently large enough. Hence it follows,
from Lemma 2.1, that for each n ∈ N, there exists (uεn, vεn) ∈ Vn × Vn satisfying

F (uεn, vεn) = (0, 0), ‖(uεn, vεn)‖ ≤ ρ.

This shows that, given absolutely continuous coefficients bi,n,l, i = 1, 2, we set

φn =
n∑

l=1

b1,n,lel(x) and ψn =
n∑

l=1

b2,n,lel(x) such that

∫
Ω
Dε(uεn)∇uεn∇φndx−

∫
Ω
g(uεn)∇vεn∇φndx = 0,

∫
Ω
d∇vεn∇ψndx =

∫
Ω
(αuεn − βvεn)ψndx,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

holds with (‖uεn‖, ‖vεn‖) ≤ ρ, for all n ∈ N. Let us assume that uε, vε ∈ H1
0 (Ω) be

the weak limits of {uεn} and {vεn} respectively, then there exist subsequences which
are also denoted by {uεn} and {vεn} such that,

(uεn, vεn) ⇀ (uε, vε) weakly in H1
0 (Ω),

(uεn, vεn) → (uε, vε) in Lq(Ω) for 1 < q <
2N
N − 2

,

Dε(uεn)∇uεn ⇀ ξ weakly in L2(Ω),

(uεn, vεn) → (uε, vε) a.e in Ω.

By adopting the technique proved in [27] and recalling the definition of monotonicity
assumption (see [28]) in the existence theory, that is ϑ→ a(x, t, u, ϑ) is monotone if

〈a(x, t, u, ϑ1) − a(x, t, u, ϑ2), ϑ1 − ϑ2〉 ≥ 0,

for all ϑi ∈ R
n, i = 1, 2, one can easily obtain that ξ = Dε(uε)∇uε. Then taking limit

as n→ ∞ in (2.2), we get∫
Ω

Dε(uε)∇uε∇φdx−
∫

Ω

g(uε)∇vε∇φdx = 0,

∫
Ω
d∇vε∇ψdx =

∫
Ω
(αuε − βvε)ψdx.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

Equation (2.3) hold for all functions in H1
0 (Ω), as the functions φ and ψ are dense in

this space. Hence this proves that (uε, vε) is a weak solution of the system (2.1).
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3. EXISTENCE OF WEAK SOLUTIONS

In this section, we prove the existence of weak solution for the system (1.1) using
suitable approximation problem. First let us define the weak solution for the given
chemotaxis model (1.1).

Definition 3.1. (Weak solution). A function (u, v) is a weak solution of the system
(1.1) if the following conditions hold

u ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ) ∩ L2(0, T ;H1
0(Ω)), D(u) ∈ L2(0, T ;H1

0(Ω)),

v ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ) ∩ Lp(0, T ;W 2,p(Ω)).

For any φ, ψ ∈ L2(0, T ;H1
0(Ω)) ∩ C1(QT ), with φ(·, T ) = ψ(·, T ) = 0, we have

(3.1)

−
∫

Ω

u0(x)φ(x)dx−
∫

QT

uφtdxdt+
∫

QT

D(u)∇u∇φdxdt

−
∫

QT

g(u)∇v∇φdxdt = 0,

−
∫

Ω

v0(x)ψ(x)dx−
∫

QT

vψtdxdt+d
∫

QT

∇v∇ψdxdt=
∫

QT

(αu− βv)ψdxdt.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

For our convenience, here and henceforth we denote the functions φ(x, 0), ψ(x, 0) by
φ(x), ψ(x) respectively. Now we state the main theorem of this section.

Theorem 3.1. Under the assumptions u0(x), v0(x) ∈ L2(Ω) and further assuming
that there is a positive constant d0 such that D(u) ≥ d0. Then the system (1.1) admits
a unique weak solution in the sense of Definition 3.1.

Regarding the regularized non-degenerate problem, one can state the following
lemma:

Lemma 3.1. Under the assumptions u0(x), v0(x) ∈ L2(Ω), the non-degenerate
initial-boundary value problem (1.2) has the pair of weak solutions (uε, vε), such that
for any φ, ψ ∈ L2(0, T ;H1

0(Ω)) ∩ C1(QT ) with φ(·, T ) = 0 and ψ(·, T ) = 0, the
following identities

(3.2)

−
∫

Ω

u0(x)φ(x)dx−
∫

QT

uεφtdxdt

+
∫

QT

Dε(uε)∇uε∇φdxdt−
∫

QT

g(uε)∇vε∇φdxdt = 0,

−
∫

Ω

v0(x)ψ(x)dx −
∫

QT

vεψtdxdt

+d
∫

QT

∇vε∇ψdxdt =
∫

QT

(αuε − βvε)ψdxdt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

holds.
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Proof. To prove the existence of the weak solutions (uε, vε) of (1.2), let us use
the difference and non-variational methods. First we denote

W = {(uε, vε) ∈ H1
0 (Ω) ∩ L2(Ω)},

and also

‖(uε, vε)‖W = ‖uε‖L2(Ω) + ‖vε‖L2(Ω) + ‖uε‖H1
0 (Ω) + ‖vε‖H1

0(Ω).

Then it is clear that W is a Banach space.
Now we construct the solutions {(uh)ε, (vh)ε} for the regularized problem (1.2).

Let n be a positive integer. Let h = T/n. Consider the following time-discrete problem
of (1.2)

(3.3)

uεk
− uεk−1

h
−∇ · (Dε(uεk

)∇uεk
) = −∇ · (g(uεk

)∇vεk
) in Ω,

vεk
− vεk−1

h
− dΔvεk

= αuεk
− βvεk

in Ω,

(uεk
, vεk

) = 0 in ∂Ω.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Repeating the same procedures as in the previous section, we can obtain the weak
solutions (uεk

, vεk
) in W of (3.3) for k = 1, 2, · · · , n. It follows that, for every

(φ, ψ) ∈W,

(3.4)

1
h

∫
Ω

(uεk − uεk−1)φdx+
∫

Ω

Dε(uεk)∇uεk∇φdx−
∫

Ω

g(uεk)∇vεk∇φdx = 0,

1
h

∫
Ω

(vεk − vεk−1 )ψdx+ d

∫
Ω

∇vεk∇ψdx =
∫

Ω

(αuεk − βvεk)ψdx.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Taking φ = uεk
, ψ = vεk

as the test functions in (3.4) respectively and the bound-
edness of solutions of the time-discretized problem, we obtain a priori estimate for
(uεk

, vεk
), k = 1, 2, · · · , n as

1
2

∫
Ω
|uεk

|2dx+γ
∫

Ω
|∇uεk

|2dx ≤ c

(∫
Ω
|∇vεk

|2dx+
∫

Ω
|uεk−1

|2dx
)
,(3.5)

for any γ = h
(
d0 − g0

2

)
> 0 and the constant c > 0 independent of ε. Thus

considering the left hand side of the above inequality, one can easily find that

‖uεk
‖2

L2(Ω) ≤ c(‖u0‖2
L2(Ω) + 1).(3.6)

Moreover, for the second equation of (3.4), we have
1
2

∫
Ω

|vεk
|2dx+ dh

∫
Ω

|∇vεk
|2dx

≤ αh

2

∫
Ω
|uεk

|2dx+
(α− 2β)h

2

∫
Ω
|vεk

|2dx+
1
2

∫
Ω
|vεk−1

|2dx.
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Applying Poincare’s inequality and the result (3.6), we have, for any η = h[2d+c(2β−
α)] > 0,

‖vεk
‖2

L2(Ω) + η

∫
Ω
|∇vεk

|2dx ≤ c
(
‖vεk−1

‖2
L2(Ω) + ‖u0‖2

L2(Ω) + 1
)
,(3.7)

where c > 0 is a constant independent of ε. Thus considering the left hand side of the
above inequality, one can easily find that,

‖vεk
‖2

L2(Ω) ≤ c
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω) + 1

)
.(3.8)

Next, for every h =
T

n
, we have

(uhε(x, t), vhε(x, t))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u0(x), v0(x)), t=0,

(u1ε(x), v1ε(x)), 0<t<h,
... ,

(ujε(x), vjε(x)), (j−1)h<t<jh,
... ,

(unε(x), vnε(x)), (n−1)h<t<nh=T.

(3.9)

For each t ∈ [0, T ], there exists some k = 1, 2, · · · , n such that t ∈ [(k − 1)h, kh].
Thus, recalling (3.6) and (3.8) we conclude that

‖uhε‖L∞(0,T ;L2(Ω)) ≤ c and ‖vhε‖L∞(0,T ;L2(Ω)) ≤ c.(3.10)

wherec>0 is aconstantwhichdependsonlyongivendataandN,Ω, ‖u0‖L2(Ω), ‖v0‖L2(Ω).
By summing up the inequalities (3.5) and (3.7), we have

‖∇uhε‖L2(0,T ;L2(Ω)) ≤ c, ‖∇vhε‖L2(0,T ;L2(Ω)) ≤ c.

The above inequalities of (uhε , vhε) lead to,

‖uhε‖L∞(0,T ;L2(Ω)) + ‖uhε‖L2(0,T ;H1
0(Ω)) ≤ c,

‖vhε‖L∞(QT ) + ‖vhε‖L∞(0,T ;L2(Ω)) + ‖vhε‖L2(0,T ;H1
0(Ω)) ≤ c,

}
(3.11)

where c > 0 is a constant. Therefore we may choose a subsequence (still denoted by
(uhε, vhε)) such that

(3.12)

uhε ⇀ uε weakly∗ in L∞(0, T ;L2(Ω)),

uhε ⇀ uε weakly in L2(0, T ;H1
0(Ω)),

Dε(uhε)∇uhε ⇀ ξ weakly in L2(QT ),

vhε ⇀ vε weakly∗ in L∞(QT ) ∩ L∞(0, T ;L2(Ω)),

vhε ⇀ vε weakly in L2(0, T ;H1
0(Ω)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Therefore we conclude that

‖uε‖L∞(0,T ;L2(Ω)) + ‖uε‖L2(0,T ;H1
0(Ω)) ≤ c,

‖vε‖L∞(QT ) + ‖vε‖L∞(0,T ;L2(Ω)) + ‖vε‖L2(0,T ;H1
0(Ω)) ≤ c.

}
(3.13)

Next we show that (uε, vε) is a weak solution of the regularized problem (1.2). For
every φ, ψ ∈ C1(QT ) with φ(·, T ) = ψ(·, T ) = 0 and φ(x, T )|ΓT

= ψ(x, T )|ΓT
= 0

and for every k = {1, 2, · · · , n} we solve, −Δζ1k
(x) = φ(x, kh) and −Δζ2k

(x) =
ψ(x, kh) to find functions (ζ1k

, ζ2k
) ∈ W and let them be test functions respectively

in (3.4) to have

1
h

∫
Ω
uεk

φ(x, kh)dx− 1
h

∫
Ω
uεk−1

φ(x, kh)dx+
∫

Ω
Dε(uεk

)∇uεk
∇φ(x, kh)dx

=
∫

Ω
g(uεk

)∇vεk
∇φ(x, kh)dx,

1
h

∫
Ω

vεk
ψ(x, kh)dx− 1

h

∫
Ω

vεk−1
ψ(x, kh)dx+ d

∫
Ω

∇vεk
∇ψ(x, kh)dx

=
∫

Ω
(αuεk

− βvεk
)ψ(x, kh)dx.

Summing up all the equalities and recalling the definition of uhε(x, t) in (3.9) and
φ(·, T ) = φ(·, nh) = 0 = ψ(·, nh) = ψ(·, T ), we have

(3.14)

h
n−1∑
k=1

∫
Ω

uhε(x, kh)
φ(x, kh)−φ(x, (k+1)h)

h
dx−

∫
Ω

u0(x)φ(x, h)dx

+h
n∑

k=1

∫
Ω
Dε(uhε(x, kh))∇uhε(x, kh)∇φ(x, kh)dx

= h

n∑
k=1

∫
Ω
g(uhε(x, kh))∇vhε(x, kh)∇φ(x, kh)dx,

h

n−1∑
k=1

∫
Ω
vhε(x, kh)

ψ(x, kh)−ψ(x, (k+1)h)
h

dx−
∫

Ω
v0(x)ψ(x, h)dx

+h
n∑

k=1

∫
Ω
d∇vhε(x, kh)∇ψ(x, kh)dx

= h

n∑
k=1

∫
Ω
(αuhε(x, kh)− βvhε(x, kh))ψ(x, kh)dx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

From (3.11)-(3.13) and for φ, ψ ∈ C1(QT ), we have
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h
n∑

k=1

∫
Ω

Dε(uhε(x, kh))∇uhε(x, kh)∇φ(x, kh)dx

=
∫

QT

Dε(uhε(x, τ))∇uhε(x, τ)∇φ(x, τ)dxdτ

+
n∑

k=1

∫ kh

(k−1)h

∫
Ω
Dε(uhε(x, τ))∇uhε(x, τ) · (∇φ(x, kh)−∇φ(x, τ)dxdτ

→
∫

QT

ξ∇φ(x, τ)dxdτ as h→ 0.

Similarly

h

n∑
k=1

∫
Ω
g(uhε(x, kh))∇vhε(x, kh)∇φ(x, kh)dx→

∫
QT

g(uε)∇vε∇φ(x, τ)dxdτ,

h

n∑
k=1

∫
Ω
d∇vhε(x, kh)∇ψ(x, kh)dx→

∫
QT

d∇vε∇ψ(x, τ)dxdτ,

h

n∑
k=1

∫
Ω

(αuhε(x, kh)−βvhε(x, kh))ψ(x, kh)dx→
∫

QT

(αuε−βvε)ψ(x, τ)dxdτ.

as h→ 0 then we deduce, from (3.14), that

(3.15)

−
∫

QT

uε
∂φ

∂t
dxdτ −

∫
Ω
u0(x)φ(x, 0)dx

+
∫

QT

ξ∇φdxdτ =
∫

QT

g(uε)∇vε∇φdxdτ,

−
∫

QT

vε
∂ψ

∂t
dxdτ −

∫
Ω
v0(x)ψ(x, 0)dx

+
∫

QT

∇vε∇ψdxdτ =
∫

QT

(αuε − βvε)ψdxdτ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which show that ∂tuε ∈ L2(0, T ;H−1(Ω)) and ∂tvε ∈ L2(0, T ;H−1(Ω)). Thus one
can find a large positive integer s such that H−1(Ω) ⊂ H−s(Ω) (see [29]) and we get
that ∂tuε ∈ L2(0, T ;H−s(Ω)) and ∂tvε ∈ L2(0, T ;H−s(Ω)) which follow from [30]
that ∂tuε ∈ C([0, T ];H−s(Ω)) and ∂tvε ∈ C([0, T ];H−s(Ω)).

For each ε > 0 and all t, t0 ∈ [0, T ], together with (3.13) there exists a positive
number δ > 0 such that

(3.16) δ‖∇uε(t) −∇uε(t0)‖L2(Ω) ≤
ε

2
, δ‖∇vε(t) −∇vε(t0)‖L2(Ω) ≤

ε

2
.
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From the compact imbedding, H1
0 (Ω) ↪→ L2(Ω) ↪→ H−s(Ω), we have, for all t, t0 ∈

[0, T ],

‖uε(t) − uε(t0)‖L2(Ω) ≤ δ‖uε(t) − uε(t0)‖H1
0(Ω) + c(δ)‖uε(t) − uε(t0)‖H−s(Ω)

≤ ε

2
+ c(δ)‖uε(t) − uε(t0)‖H−s(Ω).

Similarly
‖vε(t) − vε(t0)‖L2(Ω) ≤

ε

2
+ c(δ)‖vε(t) − vε(t0)‖H−s(Ω).

Therefore we conclude that

(uε, vε) ∈ C([0, T ];L2(Ω)).

To complete the proof of the existence of weak solutions of the regularized problem
(1.2), we have to prove that ξ = Dε(uε)∇uε a.e in QT . Taking φ = uε as a test
function in the first equation of (3.15), we get

(3.17)
1
2

(
‖uε(T )‖2

L2(Ω)−‖u0‖2
L2(Ω)

)
+
∫

QT

ξ∇uεdxdτ=
∫

QT

g(uε)∇vε∇uεdxdτ.

Taking Auε = Dε(uε)∇uε and using the definition of monotonicity assumption, we
have ∫

Ω
(Auεk

− Az(τ)) (∇uεk
−∇z(τ)) ≥ 0,(3.18)

for each k = 1, 2, · · · , n and every z ∈ L2(0, T ;H1
0(Ω)) ∩ L∞(QT ).

Choosing φ = uεk
as a test function in (3.4) and, from (3.18), we get

(3.19)

1
h

∫
Ω
(uεk

− uεk−1
)uεk

dx+
∫

Ω
Auεk

∇z(τ)dx

+
∫

Ω
Az(∇uεk

−∇z(τ))dx−
∫

Ω
g(uεk

)∇vεk
∇uεk

dx ≥ 0.

Integrating (3.19) over ((k− 1)h, kh) and using the Cauchy’s inequality, we have

1
2

(
‖uεk

‖2
L2(Ω) − ‖uεk−1

‖2
L2(Ω)

)
+
∫ kh

(k−1)h

∫
Ω
Auεk

∇z(τ)dxdτ

+
∫ kh

(k−1)h

∫
Ω
Az(∇uεk

−∇z(τ))dxdτ−
∫ kh

(k−1)h

∫
Ω
g(uεk

)∇vεk
∇uεk

dx≥0.

Summing up the above inequalities for k = 1, 2, · · · , n, we have
1
2

(
‖uhε(T )‖2

L2(Ω) − ‖u0‖2
L2(Ω)

)
+
∫

QT

Auhε∇z(τ)dxdτ

+
∫

QT

Az(τ)(∇uhε −∇z(τ))dxdτ −
∫

QT

g(uhε)∇vhε∇uhεdxdτ ≥ 0.
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Passing the limit as h → 0 and noting that ‖uε(T )‖L2(Ω) ≤ lim inf
h→0

‖uhε(T )‖L2(Ω),
we obtain

(3.20)

1
2

(
‖uε(T )‖2

L2(Ω) − ‖u0‖2
L2(Ω)

)
+
∫

QT

ξ∇z(τ)dxdτ

+
∫

QT

Az(τ)(∇uε −∇z(τ))dxdτ −
∫

QT

g(uε)∇vε∇uεdxdτ ≥ 0.

Combining (3.20) with (3.17), we get∫
QT

(ξ −Az(τ))(∇uε −∇z(τ))dxdτ ≥ 0.

Choosing z = uε − λw for any λ > 0, w ∈ L2(0, T ;H1
0(Ω)) in the above inequality,

we get ∫
QT

(ξ −A(uε − λw)∇wdxdτ ≥ 0.

Taking λ → 0, and using Lebesgue’s dominated convergence theorem, we have∫
QT

(ξ −Auε)∇ψdxdτ ≥ 0,

for every ψ ∈ L2(0, T ;H1
0(Ω)). Therefore we conclude that ξ = Auε a.e in QT

and hence we have proved the existence of weak solutions of the regularized
problem (1.2).

Proof of Theorem 3.1. In the above, we have proved that there exist a weak solution
(uε, vε) for the regularized problem (1.2). To prove the existence of a weak solution
of the original system (1.1), let us make the regularization parameter ε → 0 . From
(3.13) and the classical Lp regularity theory, one can write the following result

‖∂tvε‖Lp(QT ) + ‖vε‖Lp(0,T ;W 2,p(Ω)) ≤ c, 1 ≤ p <∞.(3.21)

Proving the non-negativity of solutions (uε, vε) is an easy task under the multiplication
of first and second equations of (1.2) by u−ε = sup(−uε, 0) and v−ε = sup(−vε, 0)
respectively. Now let us show that Dε(uε) ∈ L2(0, T ;H1

0(Ω)). To prove this, first let

us take D(r) :=
∫ r

0
D(s)ds. Now we multiply the first equation of (1.2) by Dε(uε)

and integrate over Ω, to get

d

dt

∫
Ω
D̂ε(uε)dx+

∫
Ω
|∇Dε(uε)|2dx ≤ ‖g‖L∞(Ω)‖∇Dε(uε)‖L2(Ω)‖∇vε‖L2(Ω)

≤ 1
2
‖∇Dε(uε)‖L2(Ω)+

1
2
‖g‖L∞(Ω)‖∇vε‖L2(Ω)
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where
d2

dr2
D̂ε =

d

dr
Dε = Dε where we have used the Young’s inequality. Now

integrating from 0 to T and using (3.21), we get∫
QT

|∇Dε(uε)|2dx ≤ c(3.22)

which proves the desired estimate.
Now from (3.13)-(3.21) and the standard compactness arguments (see [31]), we

can extract a subsequences such that as ε tends to 0

uε ⇀ u and vε ⇀ v weakly in L∞(QT ),

uε ⇀ u weakly in L2(0, T ;H1
0(Ω)),

vε ⇀ v weakly in L2(0, T ;H1
0(Ω)),

∂tuε ⇀ ∂tu weakly in L2(0, T ;H−1(Ω)),

∂tvε ⇀ ∂tv weakly in L2(0, T ;H−1(Ω)).

uε ∈ C([0, T ];L2(Ω)) and the compact imbedding L2(0, T ;H1
0(Ω)) ⊂ L2(QT ) (see

[32]) lead to
uε → u strongly in L2(QT ) and a.e in QT .

From the above convergence results and (3.22) in (3.2), as ε → 0, we conclude
that, for some φ, ψ ∈ L2(0, T ;H1

0(Ω)),

−
∫

Ω
u0(x)φ(x)dx−

∫
QT

uφtdxdt+
∫

QT

D(u)∇u∇φdxdt−
∫

QT

g(u)∇v∇φdxdt=0,

−
∫

Ω

v0(x)ψ(x)dx−
∫

QT

vψtdxdt+ d

∫
QT

∇v∇ψdxdt =
∫

QT

(αu − βv)ψdxdt.

This proves the existence of weak solutions of the original system (1.1).

4. UNIQUENESS OF SOLUTIONS

Theorem 4.1. The solution of the system (1.1) is unique.

Proof. Let us assume that (u1, u2) and (v1, v2) are the two solutions of the
system (1.1). To prove the uniqueness result, we use here the duality approach [4].
Taking u = u1 − u2 and v = v1 − v2, u and v satisfy,

(4.1)

ut −∇ · (D(u1)∇u1 −D(u2)∇u2)

= −∇ · (g(u1)∇v1 − g(u2)∇v2) in QT ,

vt − dΔv = αu − βv in QT ,

u(x, 0) = v(x, 0) = 0 in Ω,

u(x, t) = v(x, t) = 0 on ∂Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Define by φ the solution of the problem −Δφ(·, t) = u(·, t) in Ω and φ(·, t) = 0 on
∂Ω for a.e t ∈ (0, T ). Since u1 and u2 are bounded solutions, from the theory of linear

elliptic equations, the solution φ satisfies φ ∈ C([0, T ];H2(Ω)) with
∫

Ω
φ(·, t)dx = 0.

From u(·, 0) = 0 we get φ(·, t) = 0 in L2(Ω). Now

(4.2)

∫ t

0

< ut, φ > ds =
∫

Qt

D(u1)∇u∇φdxds

−
∫

Qt

(D(u1) −D(u2))∇u2∇φdxds

−
∫

Qt

g(u1)∇v∇φdxds+
∫

Qt

(g(u1) − g(u2))∇v2∇φdxds,

where Qt = Ω× (0, t). Since u1 and u2 are bounded solutions, there exists a constant
c > 0 depending on ‖u1‖L∞(Ω), ‖u2‖L∞(Ω) such that

|D(u1)−D(u2)| ≤ c|u1 − u2| and |g(u1)− g(u2)| ≤ c|u1 − u2|.

2
∫ t

0
< ut, φ > ds =

∫
Ω
|∇φ(x, t)|2dx−

∫
Ω
|∇φ(x, 0)|2dx =

∫
Ω
|∇φ(x, t)|2dx.

With the above results, the equation (4.2) becomes∫
Ω

|∇φ(x, t)|2dx ≤ 2
∫ t

0

‖D(u1)‖L∞(Ω)‖∇u‖L2(Ω)‖∇φ‖L2(Ω)ds

+2
∫ t

0

‖∇u2‖L∞(Ω)‖u‖L2(Ω)‖∇φ‖L2(Ω)ds

+2
∫ t

0
‖g(u1)‖L∞(Ω)‖∇v‖L2(Ω)‖∇φ‖L2(Ω)ds

+2
∫ t

0
‖u‖L2(Ω)‖∇v2‖L∞(Ω)‖∇φ‖L2(Ω)ds

≤ c

(∫ t

0
‖∇u‖2

L2(Ω)ds+
∫ t

0
‖u‖2

L2(Ω)ds+
∫ t

0
‖∇φ‖2

L2(Ω)ds

)

Similarly one can get

1
2
d

dt

∫
Qt

|v|2dxds = −d
∫

Qt

|∇v|2dxds+
∫

Qt

(αu− βv)vdxds

≤ −d
∫

Qt

|∇v|2dxds+ c

∫
Qt

|u2|dxds+ c

∫
Qt

|v|2dxds,
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where c > 0 is constant.
Finally, from the above estimates, we have

1
2

∫
Ω
|v(x, t)|2dx+

∫
Ω
|∇φ(x, t)|2dx ≤ c

∫ T

0
‖∇φ‖2

L2(Ω)ds+ c

∫
Qt

|v|2dxds,

since ∇v ∈ Lp(0, T ;L∞(Ω)) and Gronwall’s lemma show that v = 0 and ∇φ = 0 a.e
in QT . This proves the uniqueness of solutions.
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