TAIWANESE JOURNAL OF MATHEMATICS
Vol. 18, No. 5, pp. 1563-1581, October 2014
DOI: 10.11650/tjm.18.2014.3169
This paper is available online at http://journal.taiwanmathsoc.org.tw

DECOMPOSITION OF COMPLETE GRAPHS INTO TRIANGLES AND CLAWS

Chin-Mei Fu*, Yuan-Lung Lin, Shu-Wen Lo and Yu-Fong Hsu

Abstract

Let K_{n} be a complete graph with n vertices, C_{k} denote a cycle of length k, and S_{k} denote a star with k edges. If $k=3$, then we call C_{3} a triangle and S_{3} a claw. In this paper, we show that for any nonnegative integers p and q and any positive integer n, there exists a decomposition of K_{n} into p copies of C_{3} and q copies of S_{3} if and only if $3(p+q)=\binom{n}{2}, q \neq 1,2$ if n is odd, $q=1$ if $n=4$, and $q \geq \max \left\{3,\left\lceil\frac{n}{4}\right\rceil\right\}$ if n is even and $n \geq 6$.

1. Introduction

All graphs considered here are finite and undirected, unless otherwise noted. For the standard graph-theoretic terminology the reader is referred to [3]. Let K_{n} be the complete graph with n vertices and $K_{m, n}$ be the complete bipartite graph with parts of sizes m and n. The cycle with k vertices is denoted by C_{k}. The k-star, denoted by S_{k}, consists of a vertex x of degree k, and k edges joining x to its neighbor. S_{k} is isomorphic to $K_{1, k}$. When $k=3$, we call C_{3} a triangle and S_{3} a claw. Let G be a simple graph and $\Gamma=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ be a family of subgraphs of G. A Γ-decomposition of G is an edge-disjoint decomposition of G into positive integer α_{i} copies of G_{i}, where $i \in\{1,2, \ldots, t\}$, denoted by $G=\alpha_{1} G_{1} \oplus \alpha_{2} G_{2} \oplus \ldots \oplus \alpha_{t} G_{t}$. Furthermore, if $\Gamma=\{H\}$, we say that G has an H-decomposition. It is easy to see that $\sum_{i=1}^{t} \alpha_{i} e\left(G_{i}\right)=e(G)$ is one of the necessary conditions for the existence of a $\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$-decomposition of G. In [7] Shyu obtained four necessary conditions for a decomposition of K_{n} into C_{l} and S_{k} and gave the necessary and sufficient conditions for $l=k=4$.

In this paper, we will prove the following result.
Main Theorem. For any nonnegative integers p and q and any positive integer $n, K_{n}=p C_{3} \oplus q S_{3}$ if and only if $3(p+q)=\binom{n}{2}, q \neq 1,2$ if n is odd, $q=1$ if $n=4$, and $q \geq \max \left\{3,\left\lceil\frac{n}{4}\right\rceil\right\}$ if $n \geq 6$ and n is even.

[^0]
2. Notation and Preliminaries

A Steiner triple system is an ordered pair (S, T), where S is a finite set of symbols, and T is a set of 3 -element subsets of S called triples, such that each pair of distinct elements of S occurs together in exactly one triple of T. The order of a Steiner triple system (S, T) is the size of the set S, denoted by $|S|$. A Steiner triple system (S, T) is equivalent to a complete graph $K_{|S|}$ in which the edges have been partitioned into triangles (corresponding to the triples in T). For convenience, we let $\operatorname{STS}(v)$ denote a Steiner triple system of order v. In 1847 Kirkman [5] proved the following result.

Theorem 2.1. $A \operatorname{STS}(v)$ exists if and only if $v \equiv 1,3(\bmod 6)$.
Therefore, K_{v} has a C_{3}-decomposition if and only if $v \equiv 1,3(\bmod 6)$.
A pairwise balanced design (or simply, PBD) is an ordered pair (S, B), where S is a finite set of symbols, and B is a collection of subsets of S called blocks, such that each pair of distinct elements of S occurs together in exactly one block of B. If $|S|=v$ and $K=\{|b| \mid b \in B\}$, then (S, B) is a PBD of order v with block sizes in K, denoted by $\operatorname{PBD}(v, K)$. A group divisible design (GDD) is an ordered triple (S, G, B) where S is a finite set, G is a collection of sets called groups which partition S, and B is a set of subsets of S called blocks, such that $(S, G \cup B)$ is a PBD. If $|S|=v$, $|G|>1$ and $|b|=3$, for each $b \in B$, then we call (S, G, B) is a 3-GDD of order v. If $v=a_{1} g_{1}+a_{2} g_{2}+\ldots+a_{s} g_{s}$ and there are a_{i} groups of size $g_{i}, i=1,2, \ldots, s$, then we call the 3-GDD is of type $g_{1}^{a_{1}} g_{2}^{a_{2}} \ldots g_{s}^{a_{s}}$.

Theorem 2.2. ([4]). Let g, t, and u be nonnegative integers. There exists a $3-G D D$ of type $g^{t} u^{1}$ if and only if the following conditions are all satisfied:

1. If $g>0$, then $t \geq 3$, or $t=2$ and $u=g$, or $t=1$ and $u=0$, or $t=0$;
2. $u \leq g(t-1)$ or $g t=0$;
3. $g(t-1)+u \equiv 0(\bmod 2)$ or $g t=0$;
4. $g t \equiv 0(\bmod 2)$ or $u=0$;
5. $g^{2} t(t-1) / 2+g t u \equiv 0(\bmod 3)$.

Let $Q=\{1,2, \ldots, 2 n\}$ and let $H=\{\{1,2\},\{3,4\}, \ldots,\{2 n-1,2 n\}\}$. In what follows, the two-element subsets $\{2 i-1,2 i\} \in H$ are called holes. A quasigroup with holes H is a quasigroup (Q, \circ) of order $2 n$ in which for each $h \in H,(h, \circ)$ is a subquasigroup of (Q, \circ). For clearness, we give the construction of a quasigroup with holes, which is shown in [6], as follows.

Theorem 2.3. ([6]). For all $n \geq 3$ there exists a commutative quasigroup of order $2 n$ with holes $H=\{\{1,2\},\{3,4\}, \ldots,\{2 n-1,2 n\}\}$.

Proof. Let $S=\{1,2, \ldots, 2 n+1\}$. If $2 n+1 \equiv 1$ or $3(\bmod 6)$ then let (S, B) be a Steiner triple system of order $2 n+1$, and if $2 n+1 \equiv 5(\bmod 6)$ then let (S, B)
be a PBD of order $2 n+1$ with exactly one block, say b, of size 5 , and the rest of size 3. By renaming the symbols in the triples (blocks) if necessary, we can assume that the only triples containing symbol $2 n+1$ are:

$$
\{1,2,2 n+1\},\{3,4,2 n+1\}, \ldots,\{2 n-1,2 n, 2 n+1\}
$$

(In forming the quasigroup, these triples are ignored.) Define a quasigroup $(Q, \circ)=$ $(\{1,2, \ldots, 2 n\}, \circ)$ as follows:
(a) for each $h \in H=\{\{1,2\},\{3,4\}, \ldots,\{2 n-1,2 n\}\}$ let (h, \circ) be a subquasigroup of (Q, \circ);
(b) for $1 \leq i \neq j \leq 2 n,\{i, j\} \notin H$ and $\{i, j\} \not \subset b$, let $\{i, j, k\}$ be the triple in B containing symbols i and j and define $i \circ j=k=j \circ i$; and
(c) if $2 n+1 \equiv 5(\bmod 6)$ then let (b, \otimes) be an idempotent commutative quasigroup of order 5 and for each $\{i, j\} \subseteq b$ define $i \circ j=i \otimes j=j \circ i$.

By using commutative quasigroups with holes, Lindner et al. give a constructon for STS and PBD in [6], stated as follows. L-Construction. Let ($\{1,2, \ldots, 2 n\}, \circ$) be a commutative quasigroup of order $2 n$ with holes H. Then
(a) $\left(\{\infty\} \cup(\{1,2, \ldots, 2 n\} \times\{1,2,3\}), B^{\prime}\right)$ is a $\operatorname{STS}(6 n+1)$, where B^{\prime} is defined by:
(1) for $1 \leq i \leq n$ let B_{i}^{\prime} contain the triples in a $\operatorname{STS}(7)$ on the symbols $\{\infty\} \cup(\{2 i-1,2 i\} \times\{1,2,3\})$ and let $B_{i}^{\prime} \subseteq B^{\prime}$, and
(2) for $1 \leq i \neq j \leq 2 n,\{i, j\} \notin H$, place the triples $\{(i, 1),(j, 1),(i \circ j, 2)\}$, $\{(i, 2),(j, 2),(i \circ j, 3)\}$, and $\{(i, 3),(j, 3),(i \circ j, 1)\}$ in B^{\prime}.
(b) $\left(\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup(\{1,2, \ldots, 2 n\} \times\{1,2,3\}), B^{\prime \prime}\right)$ is a $\operatorname{STS}(6 n+3)$, where $B^{\prime \prime}$ is defined by replacing (1) in (a) with:
(1^{\prime}) for $1 \leq i \leq n$ let $B_{i}^{\prime \prime}$ contain the triples in a $\operatorname{STS}(9)$ on the symbols $\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup(\{2 i-1,2 i\} \times\{1,2,3\})$ in which $\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\}$ is a triple, and let $B_{i}^{\prime \prime} \subseteq B^{\prime \prime}$, and
(c) $\left(\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(\{1,2, \ldots, 2 n\} \times\{1,2,3\}), B^{\prime \prime \prime}\right)$ is a $\operatorname{PBD}(6 n+5)$ with one block of size 5 , the rest of size 3 , where $B^{\prime \prime \prime}$ is defined by replacing (1) in (a) with:
($1^{\prime \prime}$) for $1 \leq i \leq n$ let $B_{i}^{\prime \prime \prime}$ contain the blocks in a $\operatorname{PBD}(11)$ on the symbols $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(\{2 i-1,2 i\} \times\{1,2,3\})$ in which $\left\{\infty_{1}, \infty_{2}, \infty_{3}\right.$, $\left.\infty_{4}, \infty_{5}\right\}$ is a block, and let $B_{i}^{\prime \prime \prime} \subseteq B^{\prime \prime \prime}$.

In 1975 Yamamoto et al. [10], and independently in 1979 Tarsi [9] got the following result.

Theorem 2.4. ([9]). Let n and k be positive integers. There is an S_{k}-decomposition of K_{n} if and only if $n \geq 2 k$ and $n(n-1) \equiv 0(\bmod 2 k)$.

In [7], Shyu showed the necessary condition for decomposing K_{n} into p copies of C_{3} and q copies of S_{3} as follows.

Theorem 2.5. ([7]). Let n be an integer. If $K_{n}=p C_{3} \oplus q S_{3}$ for any nonnegative integers p and q, then $3(p+q)=\binom{n}{2}, q \neq 1,2$ if n is odd, $q=1$ if $n=4$, and $q \geq \max \left\{3,\left\lceil\frac{n}{4}\right\rceil\right\}$ if $n \geq 6$ and n is even.

Next we will show that given any nonnegative integers p and q if they satisfy the necessary condition in Theorem 2.5, then there is a $\left\{C_{3}, S_{3}\right\}$-decomposition of K_{n}.

By counting the edges of K_{n}, we can get the necessary condition for the existence of a $\left\{C_{3}, S_{3}\right\}$-decomposition of K_{n} as follows.

Theorem 2.6. Let n be a positive integer. If there is a $\left\{C_{3}, S_{3}\right\}$-decomposition of K_{n}, then $n \equiv 0,1(\bmod 3)$.

For convenience, we define $I(G)=\left\{q \mid G=p C_{3} \oplus q S_{3}\right.$, for any nonnegative integers p and $q\}$,
$J_{n}=\left\{q \left\lvert\, p+q=\frac{n(n-1)}{6}\right., p, q \geq 0\right.$ and $\left.q \neq 1,2\right\}$ if n is odd, and
$J_{n}=\left\{q \left\lvert\, p+q=\frac{n(n-1)}{6}\right., p, q \geq 0\right.$ and $\left.q \geq \max \left\{3,\left\lceil\frac{n}{4}\right\rceil\right\}\right\}$ if n is even and $n \geq 6$.
Then $I\left(K_{n}\right) \subseteq J_{n}$. Let $A+B=\{a+b \mid a \in A, b \in B\}$, and $k \cdot A=A+A+\ldots+A$ (the addition of $k A$'s).

Example 2.7. $n=4$. It is easy to see that K_{4} can be decomposed into one C_{3} and one S_{3}, there is neither C_{3}-decomposition nor S_{3}-decomposition of K_{4}. Thus $I\left(K_{4}\right)=\{1\}$.

It is easy to see that if $K_{n}=G_{1} \oplus G_{2}$, then $I\left(G_{1}\right)+I\left(G_{2}\right) \subseteq I\left(K_{n}\right)$. Next we just only need to prove $I\left(K_{n}\right) \supseteq J_{n}$, for $n \equiv 0,1(\bmod 3)$ and $n \geq 6$.

3. Some Small Cases

In this section, we will show that $I\left(K_{n}\right)=J_{n}$, for $n \equiv 0,1(\bmod 3)$ and $6 \leq n \leq$ 15. For convenience, we let $V\left(K_{n}\right)=Z_{n}=\{1,2, \ldots, n\}$, (a,b,c) means a 3-cycle with vertices a,b,c and $S(\mathrm{a} ; \mathrm{b}, \mathrm{c}, \mathrm{d})$ means a $\operatorname{star}($ or claw) with center vertex a and end vertices b,c,d.

Example 3.1. $J_{6}=\{3,4,5\}$ and there are following decompositions of K_{6}.
(1) (1, 2, 3), (4, 5, 6), $S(1 ; 4,5,6), S(2 ; 4,5,6), S(3 ; 4,5,6)$. Then $3 \in I\left(K_{6}\right)$.
(2) $(1,2,3), S(3 ; 4,5,6), S(4 ; 1,2,5), S(5 ; 1,2,6), S(6 ; 1,2,4)$. Then $4 \in$ $I\left(K_{6}\right)$.
(3) By Theorem 2.4, $5 \in I\left(K_{6}\right)$.

Therefore, $I\left(K_{6}\right) \supseteq J_{6}$.
Example 3.2. $J_{7}=\{0,3,4,5,6,7\}$ and there are following decompositions of K_{7}.
(1) By Theorem 2.1 and 2.4 , we have $0,7 \in I\left(K_{7}\right)$.
(2) (1, 2, 3), (1, 4, 7), (2, 5, 7), (3, 6, 7), $S(4 ; 2,3,6), S(5 ; 1,3,4), S(6 ; 1,2,5)$. Then $3 \in I\left(K_{7}\right)$.
(3) $(1,2,3),(3,4,5),(5,6,7), S(1 ; 4,5,7), S(2 ; 4,5,6), S(6 ; 1,3,4), S(7 ; 2,3$, 4). Then $4 \in I\left(K_{7}\right)$.
(4) (1, 2, 3), (4, 5, 6), $S(1 ; 4,5,6), S(2 ; 4,5,6), S(3 ; 4,5,6), S(7 ; 1,2,3), S(7$; $4,5,6)$. Then $5 \in I\left(K_{7}\right)$.
(5) (1, 2, 3), $S(1 ; 4,6,7), S(2 ; 4,6,7), S(3 ; 4,5,7), S(5 ; 1,2,4), S(6 ; 3,4,5)$, $S(7 ; 4,5,6)$. Then $6 \in I\left(K_{7}\right)$.

Therefore, $I\left(K_{7}\right) \supseteq J_{7}$.
Example 3.3. $J_{9}=\{i \mid i=0$ or $3 \leq i \leq 12\}$ and there are following decompositions of K_{9}.
(1) $(1,2,3),(4,5,6),(7,8,9),(1,4,7),(2,5,8),(3,6,9),(1,5,9),(2,6,7),(3$, $4,8),(1,6,8),(2,4,9),(3,5,7)$. Then $0 \in I\left(K_{9}\right)$.
(2) $(1,5,9),(1,6,8),(2,4,9),(2,5,8),(3,4,8),(3,5,7),(3,6,9),(4,5,6),(7$, $8,9), S(1 ; 2,3,4), S(2 ; 3,6,7), S(7 ; 1,4,6)$. Then $3 \in I\left(K_{9}\right)$.
(3) $(1,2,3),(3,4,5),(5,6,7),(7,8,9),(1,6,9),(1,5,8),(1,4,7),(2,6,8), S(2 ;$ $5,7,9), S(3 ; 6,7,8), S(4 ; 2,6,8), S(9 ; 3,4,5)$. Then $4 \in I\left(K_{9}\right)$.
(4) $(1,2,3),(3,4,5),(5,6,7),(7,8,9),(1,6,9),(1,5,8),(1,4,7), S(2 ; 4,5,7)$, $S(3 ; 7,8,9), S(6 ; 2,3,4), S(8 ; 2,4,6), S(9 ; 2,4,5)$. Then $5 \in I\left(K_{9}\right)$.
(5) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (1, 6, 9), (1, 5, 8), $S(2 ; 5,8,9), S(4 ; 1$, $2,7), S(6 ; 2,3,4), S(7 ; 1,2,3), S(8 ; 3,4,6), S(9 ; 3,4,5)$. Then $6 \in I\left(K_{9}\right)$.
(6) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (1, 6, 9), $S(1 ; 4,5,7), S(2 ; 4,5,6)$, $S(2 ; 7,8,9), S(3 ; 6,7,8), S(4 ; 6,7,8), S(8 ; 1,5,6), S(9 ; 3,4,5)$. Then $7 \in$ $I\left(K_{9}\right)$.
(7) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), $S(1 ; 4,5,6), S(2 ; 4,5,7), S(6 ; 2,3$, 4), $S(7 ; 1,3,4), S(8 ; 1,2,3), S(8 ; 4,5,6), S(9 ; 1,2,3), S(9 ; 4,5,6)$. Then $8 \in I\left(K_{9}\right)$.
(8) (1, 2, 3), (3, 4, 5), (5, 6, 7), $S(1 ; 4,5,6), S(1 ; 7,8,9), S(2 ; 4,5,6), S(2 ; 7,8$, 9), $S(3 ; 6,7,8), S(4 ; 6,7,8), S(8 ; 5,6,7), S(9 ; 3,4,5), S(9 ; 6,7,8)$. Then $9 \in I\left(K_{9}\right)$.
(9) $(1,2,3),(3,4,5), S(1 ; 4,5,6), S(1 ; 7,8,9), S(2 ; 4,5,7), S(5 ; 6,7,9), S(6 ;$ $2,3,4), S(7 ; 3,4,6), S(8 ; 2,3,4), S(8 ; 5,6,7), S(9 ; 2,3,4), S(9 ; 6,7,8)$. Then $10 \in I\left(K_{9}\right)$.
(10) (1, 2, 3), $S(1 ; 4,5,6), S(2 ; 4,5,9), S(3 ; 4,5,9), S(4 ; 5,6,8), S(6 ; 2,3,5)$, $S(7 ; 1,2,3), S(7 ; 4,5,6), S(8 ; 1,2,3), S(8 ; 5,6,7), S(9 ; 1,4,5), S(9 ; 6,7$, 8). Then $11 \in I\left(K_{9}\right)$.
(11) By Theorem 2.4, $12 \in I\left(K_{9}\right)$.

Therefore, $I\left(K_{9}\right) \supseteq J_{9}$.
Example 3.4. $J_{10}=\{i \mid 3 \leq i \leq 15\}$. Let $V\left(K_{10}\right)=\{\infty\} \cup Z_{9}$.
Since $K_{10}=K_{1,9} \oplus K_{9}$, we have $I\left(K_{10}\right) \supseteq I\left(K_{1,9}\right)+I\left(K_{9}\right)=\{3\}+\{i \mid i=0$ or $3 \leq i \leq 12\}=\{i \mid i=3$ or $6 \leq i \leq 15\}=J_{10}-\{4,5\}$.

From Example 3.3 (1), there are 4 triangles (1, 2, 3), (4, 5, 6), (7, 8, 9), and (3, 6, 9) in the decomposition of K_{9}, see Figure 3.1. Consider the union of these 4 triangles and 3 stars $S(\infty ; 1,2,3), S(\infty ; 4,5,6), S(\infty ; 7,8,9)$, it can be viewed as $3 C_{3} \oplus 4 S_{3}$ or $2 C_{3} \oplus 5 S_{3}$ as follows:
$(\infty, 1,2),(\infty, 4,5),(\infty, 7,8), S(\infty ; 3,6,9), S(3 ; 1,2,6), S(6 ; 4,5,9), S(9 ; 3$, 7,8) or $(4,5,6),(7,8,9), S(\infty ; 4,5,6), S(\infty ; 2,7,8), S(1 ; \infty, 2,3), S(3 ; \infty, 2$, 6), $S(9 ; \infty, 3,6)$. Therefore $I\left(K_{10}\right) \supseteq J_{10}$.

Figure 3.1. $4 C_{3} \oplus 3 S_{3}$.

Example 3.5. $J_{12}=\{i \mid 3 \leq i \leq 22\}$ and if $K_{12}=K_{3} \oplus K_{3,9} \oplus K_{9}$, then $I\left(K_{12}\right) \supseteq$ $I\left(K_{3}\right)+I\left(K_{3,9}\right)+I\left(K_{9}\right)=\{9\}+\{i \mid i=0$ or $3 \leq i \leq 12\}=\{i \mid i=9$ or $12 \leq i \leq 21\}$.

Do the same process as in Example 3.4, we can get $10,11 \in I\left(K_{12}\right)$. For $q=$ $3,4, \ldots, 8$, we discuss them as follows.
(1) Take $K_{12}=3 K_{4} \oplus K_{4,4,4}$.

Let $V\left(K_{4,4,4}\right)=\{1,2,3,4\} \cup\{5,6,7,8\} \cup\{9,10,11,12\}$.
(i) There is a C_{3}-decomposition of $K_{4,4,4}$ as follows: $(1,5,9),(1,6,10)$, (1, $7,11),(1,8,12),(2,5,10),(2,6,11),(2,7,12),(2,8,9),(3,5,11),(3$, $6,12),(3,7,9),(3,8,10),(4,5,12),(4,6,9),(4,7,10),(4,8,11)$. We can get 3 copies of S_{3} from $3 K_{4}$. Thus $3 \in I\left(K_{12}\right)$.
(ii) Take $5 C_{3}$: $(3,5,11),(3,6,12),(4,5,12),(4,6,9),(4,8,11)$ from (i) and $3 S_{3}: S(4 ; 1,2,3), S(8 ; 5,6,7), S(12 ; 9,10,11)$ from $3 K_{4}$, we can get the following results:
(a) $(3,4,6),(3,11,12),(4,5,11)$ and $S(4 ; 1,2,8), S(5 ; 3,8,12), S(8$; $6,7,11), S(9 ; 4,6,12), S(12 ; 4,6,10)$. Thus $5 \in I\left(K_{12}\right)$.
(b) ($3,4,6$), (3, 11, 12) and $S(4 ; 1,2,8), S(5 ; 3,4,12), S(8 ; 5,6,7)$, $S(9 ; 4,6,12), S(11 ; 4,5,8), S(12 ; 4,6,10)$. Thus $6 \in I\left(K_{12}\right)$.
(c) $(3,11,12)$ and $S(3 ; 4,5,6), S(4 ; 1,2,12), S(4 ; 5,6,8), S(8 ; 5,6$, 7), $S(9 ; 4,6,12), S(11 ; 4,5,8), S(12 ; 5,6,10)$. Thus $7 \in I\left(K_{12}\right)$.
(d) $S(3 ; 4,6,11), S(4 ; 1,2,8), S(4 ; 5,9,11), S(5 ; 3,8,11), S(6 ; 4,9$, 12), $S(8 ; 6,7,11), S(12 ; 3,4,5), S(12 ; 9,10,11)$. Thus $8 \in I\left(K_{12}\right)$.
(2) Take $K_{12}=K_{8} \oplus K_{4,8} \oplus K_{4}$. Let $V\left(K_{8}\right)=\{1,2,3, \ldots, 8\}$ and $V\left(K_{4}\right)=$ $\{9,10,11,12\}$. We can decompose K_{8} into $S(1 ; 4,7,8), S(2 ; 5,7,8), S(3 ; 6$, $7,8),(4,5,6)$, and 41 -factors: $\{12,34,57,68\},\{13,26,47,58\},\{15,23$, $48,67\}$ and $\{16,24,35,78\}$. The union of these four 1 -factors and $K_{4,8}$ has a C_{3}-decomposition. In K_{4}, we have one copy of S_{3}, thus $4 \in I\left(K_{12}\right)$.
(3) By Theorem 2.4, $22 \in I\left(K_{12}\right)$.

Therefore $I\left(K_{12}\right) \supseteq J_{12}$.
Lemma 3.6. Let the graph M_{1} be the union of seven cycles, $(1,2,7),(1,3,5)$, $(1,4,6),(2,3,4),(5,6,8),(5,7,10)$, and $(6,7,9)$, see Figure 3.2. Then $I\left(M_{1}\right) \supseteq$ $\{0,3,4,5,6,7\}$.

Figure 3.2. M_{1}.
Proof. We can decompose M_{1} as follows:
(1) $(1,3,5),(5,6,8),(5,7,10),(6,7,9), S(1 ; 2,6,7), S(2 ; 3,4,7), S(4 ; 1,3,6)$. Then $3 \in I\left(M_{1}\right)$.
(2) $(5,6,8),(5,7,10),(6,7,9), S(1 ; 5,6,7), S(2 ; 1,4,7), S(3 ; 1,2,5), S(4 ; 1$, 3, 6). Then $4 \in I\left(M_{1}\right)$.
(3) $(5,6,8),(6,7,9), S(1 ; 3,6,7), S(2 ; 1,3,4), S(4 ; 1,3,6), S(5 ; 1,3,10), S(7$; $2,5,10)$. Then $5 \in I\left(M_{1}\right)$.
(4) $(5,6,8), S(1 ; 4,6,7), S(2 ; 1,4,7), S(3 ; 1,2,4), S(5 ; 1,3,10), S(6 ; 4,7,9)$, $S(7 ; 5,9,10)$. Then $6 \in I\left(M_{1}\right)$.
(5) $S(1 ; 5,6,7), S(2 ; 1,4,7), S(3 ; 1,2,5), S(4 ; 1,3,6), S(5 ; 7,8,10), S(6 ; 5$, $8,9), S(7 ; 6,9,10)$. Then $7 \in I\left(M_{1}\right)$.

Therefore, $I\left(M_{1}\right) \supseteq\{i \mid i=0$ or $3 \leq i \leq 7\}$.
Lemma 3.7. $I\left(K_{13}\right)=J_{13}$.
Proof. Let (S, T) be a $\operatorname{STS}(13)$, where $S=(\{1,2,3,4\} \times\{1,2,3\}) \cup\{\infty\}$ and the elements of T is defined as follows.

Type $1:\{(1,1),(1,2),(1,3)\},\{(2,1),(2,2),(2,3)\}$;
Type $2:\{\infty,(3, i),(1, i+1)\},\{\infty,(4, i),(2, i+1)\}, 1 \leq i \leq 3$;
Type $3:\{(1, i),(2, i),(3, i+1)\},\{(1, i),(3, i),(2, i+1)\}$,
$\{(1, i),(4, i),(4, i+1)\},\{(2, i),(3, i),(4, i+1)\}$,
$\{(2, i),(4, i),(1, i+1)\},\{(3, i),(4, i),(3, i+1)\}$, for $1 \leq i \leq 3$.
(1) Pick two 7 copies of C_{3} from T :
$\{(1,1),(1,2),(1,3)\},\{\infty,(3, i),(1, i+1)\},\{(3, i),(4, i),(3, i+1)\}$, for $1 \leq$ $i \leq 3$, and $\{(2,1),(2,2),(2,3)\},\{\infty,(4, i),(2, i+1)\},\{(1, i),(4, i),(4, i+1)\}$, for $1 \leq i \leq 3$. The union of each 7 copies of C_{3} forms a graph isomorphic to M_{1} as in Figure 3.2, respectively.

By Lemma 3.6, $I\left(M_{1}\right) \supseteq\{0,3,4,5,6,7\}$.

Figure 3.3. W.

Figure 3.4. $W=6 S_{3}$.
(2) Pick two 6 copies of C_{3} from T :
$\{(1, i),(2, i),(3, i+1)\},\{(2, i),(3, i),(4, i+1)\}$, for $1 \leq i \leq 3$, and $\{(1, i),(3, i)$, $(2, i+1)\},\{(2, i),(4, i),(1, i+1)\}$, for $1 \leq i \leq 3$. The union of these 6 copies of C_{3} forms a graph isomorphic to W as in Figure 3.3.
From Figure 3.4, there is a S_{3}-decomposition of W. Thus $I(W) \supseteq\{0,6\}$. Since $K_{13}=2 M_{1} \oplus 2 W$, we conclude that $I\left(K_{13}\right) \supseteq 2 \cdot I\left(M_{1}\right)+2 \cdot I(W) \supseteq\{0,3,4, \ldots, 26\}=$ $\{i \mid i=0$ or $3 \leq i \leq 26\}=J_{13}$.

Lemma 3.8. Let the graph M_{2} be the union of 11 cycles, $(1,2,3),(1,4,14)$, $(1,5,7),(1,8,10),(2,5,15),(2,6,8),(2,9,11),(3,4,9),(3,6,13),(3,7,12)$, and (4, $5,6)$, as in Figure 3.5. Then $I\left(M_{2}\right) \supseteq\{0,3,4, \ldots, 11\}$.

Figure 3.5. M_{2}.
Proof. We can decompose M_{2} as follows:
(1) $(1,4,14),(1,5,7),(1,8,10),(2,5,15),(2,9,11),(3,4,9),(3,7,12),(4,5$, 6), $S(2 ; 1,6,8), S(3 ; 1,2,13), S(6 ; 3,8,13)$. Then $3 \in I\left(M_{2}\right)$.
(2) $(1,4,14),(1,8,10),(2,5,15),(2,9,11),(3,4,9),(3,6,13),(3,7,12), S(1$; $3,5,7), S(2 ; 1,3,8), S(5 ; 4,6,7), S(6 ; 2,4,8)$. Then $4 \in I\left(M_{2}\right)$.
(3) $(1,4,14),(1,8,10),(2,5,15),(2,9,11),(3,7,12),(3,4,9), S(1 ; 3,5,7)$, $S(2 ; 1,6,8), S(3 ; 2,6,13), S(5 ; 4,6,7), S(6 ; 4,8,13)$. Then $5 \in I\left(M_{2}\right)$.
(4) $(1,8,10),(2,5,15),(2,9,11),(3,6,13),(3,7,12), S(1 ; 4,7,14), S(2 ; 1,3$, 8), $S(3 ; 1,4,9), S(4 ; 5,9,14), S(5 ; 1,6,7), S(6 ; 2,4,8)$. Then $6 \in I\left(M_{2}\right)$.
(5) (1, 8, 10), (2, 9, 11), (3, 6, 13), (3, 7, 12), $S(1 ; 2,3,4), S(1 ; 5,7,14), S(2 ;$ $5,8,15), S(3 ; 2,4,9), S(4 ; 5,9,14), S(5 ; 6,7,15), S(6 ; 2,4,8)$. Then $7 \in$ $I\left(M_{2}\right)$.
(6) $(1,8,10),(2,9,11),(3,7,12), S(1 ; 2,7,14), S(2 ; 6,8,15), S(3 ; 1,2,4), S(3 ;$ $6,9,13), S(4 ; 1,9,14), S(5 ; 1,2,4), S(5 ; 6,7,15), S(6 ; 4,8,13)$. Then $8 \in I\left(M_{2}\right)$.
(7) (1, 8, 10), (2, 9, 11), $S(1 ; 2,3,4), S(1 ; 5,7,14), S(2 ; 6,8,15), S(3 ; 2,4,6)$, $S(3 ; 9,12,13), S(4 ; 6,9,14), S(5 ; 2,4,15), S(6 ; 5,8,13), S(7 ; 3,5,12)$. Then $9 \in I\left(M_{2}\right)$.
(8) (2, 9, 11), $S(1 ; 4,5,7), S(1 ; 8,10,14), S(2 ; 1,6,15), S(3 ; 1,2,6), S(3 ; 9,12$, 13), $S(4 ; 3,9,14), S(5 ; 2,4,15), S(6 ; 4,5,13), S(7 ; 3,5,12), S(8 ; 2,6,10)$. Then $10 \in I\left(M_{2}\right)$.
(9) $S(1 ; 3,5,7), S(1 ; 8,10,14), S(2 ; 1,3,6), S(2 ; 9,11,15), S(3 ; 6,12,13), S(4$; $1,3,14), S(5 ; 2,4,15), S(6 ; 4,5,13), S(7 ; 3,5,12), S(8 ; 2,6,10), S(9 ; 3,4$, 11). Then $11 \in I\left(M_{2}\right)$.

Therefore, $I\left(M_{2}\right) \supseteq\{0,3,4, \ldots, 11\}$.
Lemma 3.9. $I\left(K_{15}\right)=J_{15}$.
Proof. Let (S, T) be a $\operatorname{STS}(15)$, where $S=\{1,2,3,4,5\} \times\{1,2,3\}$ and the elements of T is defined as follows.
Type $1:\{(i, 1),(i, 2),(i, 3)\}$, for $1 \leq i \leq 5$;
Type $2:\{\{(1, i),(2, i),(4, i+1)\},\{(1, i),(3, i),(2, i+1)\},\{(1, i),(4, i),(5, i+1)\}$, $\{(1, i),(5, i),(3, i+1)\},\{(2, i),(3, i),(5, i+1)\},\{(2, i),(4, i),(3, i+1)\}$, $\{(2, i),(5, i),(1, i+1)\},\{(3, i),(4, i),(1, i+1)\},\{(3, i),(5, i),(4, i+1)\}$, $\{(4, i),(5, i),(2, i+1)\}\}$, for $1 \leq i \leq 3$.
(1) We pick 11 copies of $C_{3}:\{(1,1),(1,2),(1,3)\},\{(2,1),(2,2),(2,3)\},\{(1, i),(2, i)$, $(4, i+1)\},\{(1, i),(3, i),(2, i+1)\},\{(1, i),(4, i),(5, i+1)\}$, for $1 \leq i \leq 3$. The union of these $11 C_{3}$ forms a copy of M_{2} as in Figure 3.5. By Lemma 3.8, we have $I\left(M_{2}\right) \supseteq\{0,3,4, \ldots, 11\}$.
(2) Since $K_{15}=K_{2} \oplus K_{2,13} \oplus K_{13}$ and $K_{2} \oplus K_{2,13}$ can be decomposed into one C_{3} and 8 copies of S_{3}, we have $8 \in I\left(K_{2} \oplus K_{2,13}\right)$. By Example 3.4, we have $I\left(K_{13}\right)=\{0,3,4, \ldots, 26\}$. Thus $I\left(K_{15}\right) \supseteq I\left(K_{2} \oplus K_{2,13}\right)+I\left(K_{13}\right) \supseteq$ $\{8,11,12, \ldots, 34)\}$.
(3) By Theorem 2.4, $35 \in I\left(K_{15}\right)$.

From (1), (2), and (3), we conclude that $I\left(K_{15}\right) \supseteq\{0,3,4, \ldots, 35\}=\{i \mid i=0$ or $3 \leq i \leq 35\}=J_{15}$.

4. Main Theorem for Odd n

In this section, we will consider $n \geq 19$ and $n \equiv 0,1(\bmod 3)$. From Theorem 2.3, we get a commutative quasigroup of order $2 n$ with holes H by using $\operatorname{STS}(2 n+1)$ or $\operatorname{PBD}(2 n+1,\{3,5\})$. In the L-Construction, we use a commutative quasigroup of order $2 n$ with holes H to get a $\operatorname{STS}(6 n+1)$, a $\operatorname{STS}(6 n+3)$ and a $\operatorname{PBD}(6 n+5,\{3,5\})$.

In the proof of Theorem 2.3 (b), we have that for $1 \leq i \neq j \leq 2 n,\{i, j\} \notin H$ and $\{i, j\} \not \subset b$, let $\{i, j, k\}$ be the triple in B containing symbols i and j and define $i \circ j=k=j \circ i$, and in L-Construction (a)(2), for $1 \leq i \neq j \leq 2 n,\{i, j\} \notin H$, place the triples $\{(i, 1),(j, 1),(i \circ j, 2)\},\{(i, 2),(j, 2),(i \circ j, 3)\}$, and $\{(i, 3),(j, 3),(i \circ j, 1)\}$ in B^{\prime}. Thus for each $\{i, j\} \notin H$ if $\{i, j, k\}$ is a triple in B, then we obtain three triangles: $((i, 1),(j, 1),(k, 2)),((k, 1),(j, 1),(i, 2))$, and $((i, 1),(k, 1),(j, 2))$. The graph G corresponding to this three triangles is shown in Figure 3.6.

Figure 3.6. G.
Lemma 4.1. Let the graph G be the union of three cycles, $((i, 1),(j, 1),(k, 2))$, $((k, 1),(j, 1),(i, 2))$, and $((i, 1),(k, 1),(j, 2))$, shown in Figure 3.6. Then there is an S_{3}-decomposition of G, i.e., $I(G) \supseteq\{0,3\}$.

Proof. There is an S_{3}-decomposition of $G: S((i, 1) ;(j, 1),(j, 2),(k, 2)), S((j, 1)$; $(i, 2),(k, 1),(k, 2)), S((k, 1) ;(i, 1),(i, 2),(j, 2))$.

Lemma 4.2. If $n \equiv 1(\bmod 6)$ and $n \geq 19$, then $I\left(K_{n}\right)=J_{n}=\{i \mid i=0$ or $\left.3 \leq i \leq \frac{n(n-1)}{6}\right\}$.

Proof. Let $n=6 k+1$ and $k \geq 3$.
(a) If $2 k \equiv 0,2(\bmod 6)$, then $2 k+1 \equiv 1,3(\bmod 6)$. There exists a $\operatorname{STS}(2 k+1)$. Using this $\operatorname{STS}(2 k+1)$, we can get a commutative quasigroup (Q, \circ) with holes of order $2 k$. By L-Construction, there are k edge-disjoint copies of STS(7) and there are $\frac{2 k(k-1)}{3}$ triples not containing $2 k+1$ in $\operatorname{STS}(2 k+1)$. For each triple $\{r, s, t\}$ not containing $2 k+1$, there are three copies of G which is shown in Figure 3.6. By Example 3.2 and Lemma 4.1, we have $I\left(K_{7}\right)=\{0,3,4,5,6,7\}$ and $I(G) \supseteq\{0,3\}$. Thus, we obtain that

$$
\begin{aligned}
I\left(K_{n}\right) & \supseteq k \cdot I\left(K_{7}\right)+\frac{2 k(k-1)}{3} \cdot(3 \cdot I(G)) \\
& \supseteq k \cdot\{0,3,4,5,6,7\}+2 k(k-1) \cdot\{0,3\} \\
& =\{i \mid i=0 \text { or } 3 \leq i \leq k(6 k+1)\}=\left\{i \mid i=0 \text { or } 3 \leq i \leq \frac{n(n-1)}{6}\right\}=J_{n} .
\end{aligned}
$$

(b) If $2 k \equiv 4(\bmod 6)$, then $2 k+1 \equiv 5(\bmod 6)$. There exists a $\operatorname{PBD}(2 k+1)$ with only one block size 5 and the rest of 3 . By L-Construction, there are k edgedisjoint copies of $\operatorname{STS}(7)$, and there are $\frac{2}{3}\left(k^{2}-k-5\right)$ triples in $\operatorname{PBD}(2 k+1)$ not containing $2 k+1$. Let $\{1,2,3,4,5\}$ be the block of size 5 in $\operatorname{PBD}(2 k+1)$. Let $(\{1,2,3,4,5\}, \otimes)$ be defined as follows.

\otimes	1	2	3	4	5
1	1	4	2	5	3
2	4	2	5	3	1
3	2	5	3	1	4
4	5	3	1	4	2
5	3	1	4	2	5

The triples corresponding to this idempotent commutative quasigroup of order 5 can be grouped into 5 pairs: $\{\{1,2,4\},\{1,3,2\}\}$, $\{\{1,4,5\},\{1,5,3\}\}$, $\{\{2,3,5\},\{2,4,3\}\},\{\{3,4,1\},\{3,5,4\}\}$, and $\{\{2,5,1\},\{4,5,2\}\}$ where the pair $\{\{a, b, c\},\{d, e, f\}\}$ means $\{\{(a, i),(b, i),(c, i+1)\},\{(d, i),(e, i),(f, i+$ 1) $\}\}$ for
$1 \leq i \leq 3$. The graph corresponding to each pair is isomorphic to the graph W, (see Figure 3.3) and $I(W) \supseteq\{0,6\}$.

Thus, we obtain that

$$
\begin{aligned}
I\left(K_{n}\right) & \supseteq k \cdot I\left(K_{7}\right)+\frac{2}{3}\left(k^{2}-k-5\right) \cdot(3 \cdot I(G))+5 \cdot I(W) \\
& \supseteq k \cdot\{0,3,4,5,6,7\}+2\left(k^{2}-k-5\right) \cdot\{0,3\}+5 \cdot\{0,6\} \\
& =\{i \mid i=0 \text { or } 3 \leq i \leq k(6 k+1)\}=\left\{i \mid i=0 \text { or } 3 \leq i \leq \frac{n(n-1)}{6}\right\}=J_{n} .
\end{aligned}
$$

Lemma 4.3. If $n \equiv 3(\bmod 6)$ and $n \geq 21$, then $I\left(K_{n}\right)=J_{n}=\{i \mid i=0$ or $\left.3 \leq i \leq \frac{n(n-1)}{6}\right\}$.

Proof. Let $n=6 k+3$ and $k \geq 3$.
(a) If $2 k \equiv 0,2(\bmod 6)$, then $2 k+1 \equiv 1,3(\bmod 6)$. There exists an $\operatorname{STS}(2 k+1)$. By L-Construction, there are k copies of $\operatorname{STS}(9)$ in which $\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\}$ is a common triple and there are $\frac{2 k(k-1)}{3}$ copies of triple not containing $2 k+1$ in $\operatorname{STS}(2 k+1)$. By Example 3.3, $I\left(K_{9}\right)=\{0,3,4, \ldots, 12\}$ and $I\left(K_{9} \backslash C_{3}\right)=$ $\{0,3,4, \ldots, 11\}$. Thus, we have

$$
\begin{aligned}
I\left(K_{n}\right) & \supseteq 1 \cdot I\left(K_{9}\right)+(k-1) \cdot I\left(K_{9} \backslash C_{3}\right)+\frac{2}{3} k(k-1) \cdot(3 \cdot I(G)) \\
& \supseteq\{0,3,4, \ldots, 12\}+(k-1) \cdot\{0,3,4, \ldots, 11\}+2 k(k-1) \cdot\{0,3\} \\
& \supseteq\{i \mid i=0 \text { or } 3 \leq i \leq(2 k+1)(3 k+1)\}=\left\{i \mid i=0 \text { or } 3 \leq i \leq \frac{n(n-1)}{6}\right\} \\
& =J_{n} .
\end{aligned}
$$

(b) If $2 k \equiv 4(\bmod 6)$, then $2 k+1 \equiv 5(\bmod 6)$. There exists a $\operatorname{PBD}(2 k+1)$ with only one block size 5 and the rest of size 3 . By L-Construction, there are k edge-disjoint copies of $\operatorname{STS}(9)$ containing a common triple and there are $\frac{2}{3}\left(k^{2}-k-5\right)$ triples in $\operatorname{PBD}(2 k+1)$ not containing $2 k+1$. As in the proof of Lemma 4.2 (b), we have

$$
\begin{aligned}
& I\left(K_{n}\right) \\
\supseteq & 1 \cdot I\left(K_{9}\right)+(k-1) \cdot I\left(K_{9} \backslash C_{3}\right)+\frac{2}{3}\left(k^{2}-k-5\right) \cdot(3 \cdot I(G))+5 \cdot I(W) \\
\supseteq & \{0,3,4, \ldots, 12\}+(k-1) \cdot\{0,3,4, \ldots, 11\}+2\left(k^{2}-k-5\right) \cdot\{0,3\} \\
& +5 \cdot\{0,6\} \\
= & \{i \mid i=0 \text { or } 3 \leq i \leq(2 k+1)(3 k+1)\} \\
= & \left\{i \mid i=0 \text { or } 3 \leq i \leq \frac{n(n-1)}{6}\right\}=J_{n} .
\end{aligned}
$$

By Examples 3.2, 3.3, and Lemmas 3.7, 3.9, 4.2 and 4.3, we have the following result.

Theorem 4.4. If $n \equiv 1,3(\bmod 6)$ and $n \geq 7$, then $I\left(K_{n}\right)=J_{n}=\{i \mid i=0$ or $\left.3 \leq i \leq \frac{n(n-1)}{6}\right\}$.

5. Main Theorem for Even n

In this section we will concern that n is an even integer. A Skolem triple system of order t is a partition of the set $\{1,2, \ldots, 3 t\}$ into triples $\left\{a_{i}, b_{i}, c_{i}\right\}$ such that $a_{i}+b_{i}=c_{i}$ for each $i=1,2, \ldots, t$.

Theorem 5.1. ([8]). A Skolem triple system of order t exists if and only if $t \equiv 0$ or $1(\bmod 4)$.

Let $n \geq 2$ be an integer and let $D \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$. The circulant graph $\langle D\rangle_{n}$ is the graph with vertices $V=Z_{n}$ and edges $E=\{\{i, j\}| | i-j \mid \in D$ or $n-|i-j| \in D\}$. For all $t \equiv 0,1(\bmod 4)$, A Skolem triple system provides a partition of $\{1,2, \ldots, 3 t\}$ into t triples giving a cyclic 3 -cycle system of $K_{6 t+1}=\langle\{1,2, \ldots, 3 t\}\rangle_{6 t+1}$.

Theorem 5.2. ([2]). Let s, t and n be integers with $s<t<n / 2$. If $\operatorname{gcd}(s, t, n)=$ 1 , then the graph $\langle\{s, t\}\rangle_{n}$ can be decomposed into two Hamilton cycles. If n is even, then the graph $\langle\{s, t\}\rangle_{n}$ can be decomposed into four 1-factors.

Lemma 5.3. Let k be a positive integer and $k \geq 1$.
(i) If $n=6 k+4$, then $I\left(K_{n}\right) \supseteq\left\{2 k+1,2 k+2,2 k+3,2 k+4, \ldots, 6 k^{2}+7 k+2\right\}$.
(ii) If $n=6 k+6$, then $I\left(K_{n}\right) \supseteq\{6 k+3,6 k+4,6 k+5,6 k+6,6 k+7,6 k+8$, $\left.\ldots, 6 k^{2}+11 k+4,6 k^{2}+11 k+5\right\}$.

Proof.

(i) It is easy to see that $I\left(K_{1,6 k+3}\right)=\{2 k+1\}$. By Theorem 4.4, we have $I\left(K_{6 k+3}\right)=\left\{0,3,4,5, \ldots, 6 k^{2}+5 k+1\right\}$. If we take $K_{6 k+4}=K_{1,6 k+3} \oplus K_{6 k+3}$, then $I\left(K_{6 k+4}\right) \supseteq I\left(K_{1,6 k+3}\right)+I\left(K_{6 k+3}\right)=\{2 k+1,2 k+4,2 k+5,2 k+$ $\left.6, \ldots, 6 k^{2}+7 k+2\right\}$.
(ii) It is easy to see that $I\left(K_{3,6 k+3}\right)=\{6 k+3\}$. If we take $K_{6 k+6}=K_{3} \oplus$ $K_{3,6 k+3} \oplus K_{6 k+3}$, then $I\left(K_{6 k+6}\right) \supseteq I\left(K_{3}\right)+I\left(K_{3,6 k+3}\right)+I\left(K_{6 k+3}\right)$. By Theorem 2.4, there is an S_{3}-decomposition of $K_{6 k+6}$, thus $6 k^{2}+11 k+5 \in$ $I\left(K_{6 k+6}\right)$. Therefore, $I\left(K_{6 k+6}\right) \supseteq\left\{6 k+3,6 k+6,6 k+7,6 k+8, \ldots, 6 k^{2}+\right.$ $\left.11 k+4,6 k^{2}+11 k+5\right\}$.

By L-Construction, there is a subsystem $\operatorname{STS}(9)$ in $\operatorname{STS}(6 k+3)$. As in Example 3.4, we can get a subgraph which is the union of 4 triangles and three S_{3} in $K_{6 k+4}$. Thus $2 k+2,2 k+3 \in I\left(K_{6 k+4}\right)$ and $6 k+4,6 k+5 \in I\left(K_{6 k+6}\right)$.

Lemma 5.4. Let k be a positive integer, $n=6 k+4$, and $n \geq 40$. Then $I\left(K_{n}\right) \supseteq$ $\left\{q \left\lvert\,\left\lceil\frac{n}{4}\right\rceil \leq q \leq 2 k\right., q\right.$ is an integer $\}$.

Proof.

(1) If k is odd and $k=2 m+1$, where m is an integer, then $n=12 m+10$. Since $n \geq$ 40, we have $m \geq 3$. By Theorem 2.2, there is a 3-GDD of type $12^{m} 10^{1}$, i.e., there is a $\operatorname{PBD}(n,\{12,10,3\})$. By Examples 3.4 and $3.5, I\left(K_{12}\right)=\{3,4,5, \ldots, 22\}$ and $I\left(K_{10}\right)=\{3,4,5, \ldots, 15\}$. Thus,

$$
\begin{aligned}
I\left(K_{12 m+10}\right) & \supseteq m \cdot I\left(K_{12}\right)+I\left(K_{10}\right)=\{3 m+3,3 m+4, \ldots, 22 m+15\} \\
& \supseteq\left\{q \left\lvert\,\left\lceil\frac{n}{4}\right\rceil \leq q \leq 2 k\right.\right\} .
\end{aligned}
$$

(2) If k is even and $k=2 m$, where m is an integer, then $n=12 m+4$. Since $n \geq 40$, we have $m \geq 3$. By Theorem 2.2 , there is a 3-GDD of type $12^{m} 4^{1}$, i.e., there is a $\operatorname{PBD}(n,\{12,4,3\})$. By Example 3.5, $I\left(K_{12}\right)=\{3,4,5, \ldots, 22\}$. Thus,

$$
\begin{aligned}
I\left(K_{12 m+4}\right) & \supseteq m \cdot I\left(K_{12}\right)+I\left(K_{4}\right)=\{3 m+1,3 m+2, \ldots, 22 m+1\} \\
& \supseteq\left\{q \left\lvert\,\left\lceil\frac{n}{4}\right\rceil \leq q \leq 2 k\right.\right\} .
\end{aligned}
$$

Lemma 5.5. Let $n=6 k+4$ and $16 \leq n \leq 34$. Then $I\left(K_{n}\right)=J_{n}$.

Proof.

(1) $n=16$. Take $K_{16}=4 K_{4} \oplus K_{4(4)}$. By Theorem 2.2, $K_{4(4)}$ has a C_{3} decomposition, we conclude that $4 \in I\left(K_{16}\right)$.
(2) $n=22$.
(a) By Lemma 5.3 (i), we have $I\left(K_{22}\right) \supseteq\{7,8, \ldots, 77\}$.
(b) K_{22} can be decomposed as follows: $S(2 ; 1,5,6), S(3 ; 1,7,8), S(4 ; 1,9$, 10), $S(11 ; 12,13,14), S(15 ; 16,17,18), S(19 ; 20,21,22),(1,5,11),(1$, $6,12),(1,7,13),(1,8,15),(1,9,19),(1,10,16),(1,14,18),(1,17,20)$, $(1,21,22),(2,3,17),(2,4,11),(2,7,10),(2,8,18),(2,9,15),(2,12$, 20), (2, 13, 21), (2, 14, 22), (2, 16, 19), (3, 4, 12), (3, 5, 22), (3, 6, 18), (3, 9, 10), (3, 11, 19), (3, 13, 20), (3, 14, 16), (3, 15, 21), (4, 5, 7), (4, 6, $8),(4,13,18),(4,14,19),(4,15,20),(4,16,22),(4,17,21),(5,6,9)$, (5, 8, 20), (5, 10, 15), (5, 12, 18), (5, 13, 19), (5, 14, 21), (5, 16, 17), (6, $7,16),(6,10,21),(6,11,17),(6,13,14),(6,15,19),(6,20,22),(7,8$, 19), (7, 9, 12), (7, 11, 15), (7, 14, 17), (7, 18, 22), (7, 20, 21), (8, 9, 21), $(8,10,14),(8,11,16),(8,12,22),(8,13,17),(9,11,22),(9,13,16),(9$, $14,20),(9,17,18),(10,11,20),(10,12,13),(10,17,22),(10,18,19)$, (11, 18, 21), (12, 14, 15), (12, 16, 21), (12, 17, 19), (13, 15, 22), (16, 18, 20). Thus $6 \in I\left(K_{22}\right)$.
(3) $n=28$.
(a) By Lemma 5.3 (i), we have $I\left(K_{28}\right) \supseteq\{9,10, \ldots, 126\}$.
(b) Take $K_{28}=4 K_{4} \oplus K_{12} \oplus K_{4(4), 12}$. By Theorem 2.2, there is a 3-GDD of type $4^{4} 12^{1}$, i.e., there is a $\operatorname{PBD}(28,\{12,4,3\})$, Since $4 \in I\left(4 K_{4}\right)$ and $3,4 \in I\left(K_{12}\right)$ we have $7,8 \in I\left(K_{28}\right)$.
(4) $n=34$.
(a) By Lemma 5.3 (i), we have $I\left(K_{34}\right) \supseteq\{11,12, \ldots, 187\}$.
(b) Take $K_{34}=K_{10} \oplus K_{10,24} \oplus K_{24}$. Partition the difference set $D=$ $\{1,2, \ldots, 12\}$ of K_{24} into $\{1,7,9,10,11\},\{2,3,5\},\{4,8\}$, and $\{6,12\}$. By Theorem 5.2, $\langle\{1,7,9,10,11\}\rangle_{24}$ can be decomposed into 10 1-factors. Then $\langle\{1,7,9,10,11\}\rangle_{24} \cup K_{10,24}$ has a C_{3}-decomposition. Both $\langle\{2,3,5\}\rangle_{24}$ and $\langle\{4,8\}\rangle_{24}$ have a C_{3}-decomposition. $\langle\{6,12\}\rangle_{24}$ is a K_{4}-factor (6 copies of $\left.K_{4}\right)$. Since $3 \in I\left(K_{10}\right)$, we have $9 \in I\left(K_{34}\right)$.
(c) Take $K_{34}=K_{6} \oplus K_{6,28} \oplus K_{28}$. Partition the difference set $D=\{1,2, \ldots$, $14\}$ of K_{28} into $\{1,12,13\},\{2,6,8\},\{4,5,9\},\{3,10,11\}$, and $\{7,14\}$. By Theorem 5.2, $\langle\{3,10,11\}\rangle_{28}$ can be decomposed into 6 1-factors. $\langle\{3,10$, $11\}\rangle_{28} \cup K_{6,28}$ has a C_{3}-decomposition. $\langle\{1,12,13\}\rangle_{28},\langle\{2,6,8\}\rangle_{28}$, and $\langle\{4,5,9\}\rangle_{28}$ have a C_{3}-decomposition. $\langle\{7,14\}\rangle_{28}$ is a K_{4} factor (7 copies of $\left.K_{4}\right)$. Since $3 \in I\left(K_{6}\right)$, we have $10 \in I\left(K_{34}\right)$.

Combine Example 3.4, Lemmas 5.3, 5.4 and 5.5, we get the following result.
Theorem 5.6. Let n be a positive integer, $n \equiv 4(\bmod 6)$ and $n \geq 10$. Then $I\left(K_{n}\right)=J_{n}=\left\{q \left\lvert\,\left\lceil\frac{n}{4}\right\rceil \leq q \leq \frac{n(n-1)}{6}\right., q\right.$ is an integer $\}$.

Lemma 5.7. Let k be a positive integer, $n=6 k+6$, and $n \geq 36$. Then $I\left(K_{n}\right) \supseteq$ $\left\{\left\lceil\frac{n}{4}\right\rceil,\left\lceil\frac{n}{4}\right\rceil+1, \ldots, 6 k+2\right\}$.

Proof.

(1) If k is odd and $k=2 m+1$, where m is an integer, then $n=12(m+1)$. Since $n \geq 36$, we have $m \geq 2$. By Theorem 2.2, there is a 3-GDD of type 12^{m+1}, i.e., there is a $\operatorname{PBD}(n,\{12,3\})$. By Example 3.5, $I\left(K_{12}\right)=\{3,4,5, \ldots, 22\}$. Thus $I\left(K_{12 m+12}\right) \supseteq(m+1) \cdot I\left(K_{12}\right)=\{3 m+3,3 m+4, \ldots, 22 m+22\} \supseteq$ $\left\{\left\lceil\frac{n}{4}\right\rceil,\left\lceil\frac{n}{4}\right\rceil+1, \ldots, 6 k+2\right\}$.
(2) If k is even and $k=2 m$, where m is an integer, then $n=12 m+6$. Since $n \geq 36$, we have $m \geq 3$. By Theorem 2.2, there is a 3-GDD of type $12^{m} 6^{1}$, i.e., there is a $\operatorname{PBD}(n,\{12,6,3\})$. By Examples 3.5 and $3.1, I\left(K_{12}\right)=\{3,4,5, \ldots, 22\}$ and $I\left(K_{6}\right)=\{3,4,5\}$. Thus $I\left(K_{12 m+6}\right) \supseteq m \cdot I\left(K_{12}\right)+I\left(K_{6}\right)=\{3 m+3,3 m+$ $4, \ldots, 22 m+5\}$. Next, we will get $3 m+2 \in I\left(K_{12 m+6}\right)$.

By [1, Theorem 8.3.3], we can get a Skolem triple system of order $4 r+1$, for $r \geq 1$. Let T be a Skolem triple system of order $4 r+1$ where T is $\{\{1,12 r+2,12 r+3\},\{2 t+1,10 r-t, 10 r+t+1\},\{2 r+2 t-1,5 r-t+1,7 r+t\}$, $\{4 r-1,5 r+1,9 r\},\{4 r+1,8 r, 12 r+1\},\{2 r, 10 r, 12 r\},\{2 t, 6 r-t+1,6 r+t+1\}$, $\{2 r+2 t, 9 r-t, 11 r+t\},\{4 r, 6 r+1,10 r+1\} \mid 1 \leq t \leq r-1\}$.
(a) If $m=2 r+1$, then $n=24 r+18$. Let $K_{24 r+18}=K_{10} \oplus K_{10,24 r+8} \oplus$ $K_{24 r+8}$. Since T is a partition of $\{1,2, \ldots, 12 r+3\}$ into $4 r+1$ triples, $K_{24 r+7}$ has a C_{3}-decomposition. Since the difference set of $K_{24 r+8}$ is $D=\{1,2, \ldots, 12 r+4\}, D$ can be partitioned into T and $\{12 r+4\}$. From T, pick two triples $(1,12 r+2,12 r+3),(2,6 r, 6 r+2)$ with $\{12 r+4\}$, we can get two sets $\{1,6 r, 12 r+2,12 r+3,2\}$ and $\{6 r+2,12 r+4\}$. By Theorem 5.2, the graphs $\langle\{1,6 r\}\rangle_{24 r+8}$ and $\langle\{12 r+2,12 r+3\}\rangle_{24 r+8}$ can be decomposed into two Hamilton cycles, i.e., four 1 -factors respectively. Thus $\langle\{1,6 r, 12 r+2,12 r+3,2\}\rangle_{24 r+8} \cup K_{10,24 r+8}$ has a C_{3}-decomposition. The graph $\langle\{6 r+2,12 r+4\}\rangle_{24 r+8}$ is a K_{4}-factor. Thus there are $6 r+2$ copies
of S_{3} in the decomposition of one K_{4}-factor and $3 \in I\left(K_{10}\right)$. Therefore, $6 r+5=3 m+2=\left\lceil\frac{n}{4}\right\rceil \in I\left(K_{12 m+6}\right)$.
(b) If $m=2 r$, then $n=24 r+6 . K_{24 r+6}=K_{10} \oplus K_{24 r-4} \oplus K_{10,24 r-4}$. The difference set of $K_{24 r-4}$ is $D=\{1,2, \ldots, 12 r-2\}$. D can be partitioned into triples in T except those triples containing $12 r-1,12 r, \ldots, 12 r+3$ and $R=\{1,4 r+1,8 r, 2 r, 10 r, 4 r-2,8 r+1\}$. Pick two triples $(4,6 r-1$, $6 r+3)$ and $(4 r-4,8 r+2,12 r-2\}$ from D union R to get the set $A=$ $\{1,4 r+1,8 r, 2 r, 10 r, 4 r-2,8 r+1,4,6 r-1,6 r+3,4 r-4,8 r+2,12 r-2\}$. Then A can be partitioned into 6 subsets: $\{2 r, 8 r, 10 r\},\{1,8 r+1,8 r+2\}$, $\{4 r-4,6 r+3\},\{4,4 r+1\},\{4 r-2\},\{6 r-1,12 r-2\} .\langle\{2 r, 8 r, 10 r\}\rangle_{24 r-4}$ and $\langle\{1,8 r+1,8 r+2\}\rangle_{24 r-4}$ have C_{3}-decomposition. By Theorem 5.2, $\langle\{4 r-4,6 r+3,4,4 r+1,4 r-2\}\rangle_{24 r-4}$ can be decomposed into 10 1factors, thus $\langle\{4 r-4,6 r+3,4,4 r+1,4 r-2\}\rangle_{24 r-4} \cup K_{10,24 r-4}$ has a C_{3}-decomposition. $\langle\{6 r-1,12 r-2\}\rangle_{24 r-4}$ is a K_{4}-factor (contains $6 r-1$ copies of K_{4}) and $3 \in I\left(K_{10}\right)$. Therefore, $6 r+2=3 m+2=\left\lceil\frac{n}{4}\right\rceil \in$ $I\left(K_{12 m+6}\right)$.

From (a), and (b), we get $I\left(K_{12 m+6}\right) \supseteq\{3 m+2,3 m+3,3 m+4, \ldots, 22 m+5\} \supseteq$ $\left\{\left\lceil\frac{n}{4}\right\rceil,\left\lceil\frac{n}{4}\right\rceil+1, \ldots, 6 k+2\right\}$.
Lemma 5.8. Let $n \equiv 0(\bmod 6)$ and $18 \leq n \leq 30$. Then $I\left(K_{n}\right)=J_{n}$.

Proof.

(1) $n=18$.
(a) By Lemma 5.3 (ii), we have $I\left(K_{18}\right) \supseteq\{15,16, \ldots, 51\}$.
(b) Let $K_{18}=K_{6} \oplus K_{6,12} \oplus K_{12}$. Partition the difference set $D=\{1,2, \ldots, 6\}$ of K_{12} into $\{1,2,5\},\{3,6\},\{4\}$. By Theorem $5.2,\langle\{1,2,5\}\rangle_{12}$ can be decomposed into 61 -factors, thus $\langle\{1,2,5\}\rangle_{12} \cup K_{6,12}$ has a C_{3}-decomposition. $\langle\{4\}\rangle_{12}$ has a C_{3}-decomposition. $\langle\{3,6\}\rangle_{12}$ is a K_{4}-factor (3 copies of K_{4}). Since $I\left(K_{6}\right)=\{3,4,5\}$, we have $6,7,8 \in I\left(K_{18}\right)$.
(c) Let $K_{18}=3 K_{6} \oplus K_{6,6,6}$. By Theorem 2.2, $K_{6,6,6}$ has a C_{3}-decomposition. Since $I\left(K_{6}\right)=\{3,4,5\}$, we have $I\left(K_{18}\right) \supseteq 3 \cdot I\left(K_{6}\right)=\{9,10,11, \ldots, 15\}$.
(d) K_{18} can be decomposed as follows: $S(1 ; 2,3,4), S(4 ; 8,9,10), S(5 ; 4$, $6,7), S(11 ; 12,13,14), S(15 ; 16,17,18)(1,5,9),(1,6,11),(1,7,13)$, $(1,8,15),(1,10,16),(1,12,18),(1,14,17),(2,3,18),(2,4,17),(2,5$, 16), $(2,6,12),(2,7,14),(2,8,13),(2,9,15),(2,10,11),(3,4,12),(3,5$, 17), $(3,6,14),(3,7,15),(3,8,16),(3,9,11),(3,10,13),(4,6,15),(4,7$, 18), $(4,11,16),(4,13,14),(5,8,10),(5,11,15),(5,12,14),(5,13,18)$ $(6,7,16),(6,8,18),(6,9,13),(6,10,17),(7,8,11),(7,9,17),(7,10$, 12), ($8,9,14$), $(8,12,17),(9,10,18),(9,12,16),(10,14,15),(11,17$,
18), (12, 13, 15), (13, 16, 17), (14, 16, 18). Thus $5 \in I\left(K_{18}\right)$. Therefore, $I\left(K_{18}\right) \supseteq\{5,6,7, \ldots, 51\}=J_{18}$.
(2) $n=24$.
(a) By Lemma 5.3 (ii), we have $I\left(K_{24}\right) \supseteq\{21,22, \ldots, 92\}$.
(b) Let $K_{24}=6 K_{4} \oplus K_{6(4)}$. By Theorem 2.2, $K_{6(4)}$ can be decomposed into C_{3}. Thus $6 \in I\left(K_{24}\right)$.
(c) Let $K_{24}=K_{12} \oplus K_{1,12} \oplus\left(K_{11,12} \oplus K_{12}\right)$. Since K_{12} can be decomposed into 11 1-factors, $K_{11,12} \oplus K_{12}$ has a C_{3}-decomposition. By Example 3.5, $I\left(K_{12}\right)=\{3,4,5, \ldots, 22\}$ and $4 \in I\left(K_{1,12}\right)$, we have $7,8,9, \ldots, 26 \in$ $I\left(K_{24}\right)$. Therefore $I\left(K_{24}\right) \supseteq\{6,7,8, \ldots, 92\}=J_{24}$.
(3) $n=30$.
(a) By Lemma 5.3 (ii), we have $I\left(K_{30}\right) \supseteq\{27,28, \cdots, 145\}$.
(b) Let $K_{30}=3 K_{10} \oplus K_{10,10,10}$. By Example 3.4, $I\left(K_{10}\right)=\{3,4,5, \ldots, 15\}$. Thus $9,10,11, \ldots, 45 \in I\left(K_{30}\right)$.
(c) Let $K_{30}=K_{10} \oplus K_{10,20} \oplus K_{20}$. Partition the difference set $D=\{1,2, \ldots$, $10\}$ of K_{20} into $\{1,3,4\},\{2,6,7,8,9\},\{5,10\} .\langle\{1,3,4\}\rangle_{20}$ has a C_{3} -decom-position. $\langle\{2,6,7,8,9\}\rangle_{20}$ can be decomposed into 10 1-factors, thus $\langle\{1,3,7,8,9\}\rangle_{20} \cup K_{10,20}$ has a C_{3}-decomposition. $\langle\{5,10\}\rangle_{20}$ is a K_{4}-factor (5 copies of K_{4}). Since $3 \in I\left(K_{10}\right)$, we have $8 \in I\left(K_{30}\right)$. Therefore, $I\left(K_{30}\right) \supseteq\{8,9, \ldots, 145\}=J_{30}$.

Combine Examples 3.1, 3.5, Lemmas 5.3, 5.7 and 5.8, we get the following result.
Theorem 5.9. Let $n \equiv 0(\bmod 6)$ and $n \geq 6$. Then

$$
I\left(K_{n}\right)=J_{n}=\left\{q \left\lvert\, \max \left\{3,\left\lceil\frac{n}{4}\right\rceil\right\} \leq q \leq \frac{n(n-1)}{6}\right., q \text { is an integer }\right\}
$$

References

1. I. Anderson, Combinatorial Designs: Construction Methods, Ellis Horwood Limited, England, 1990.
2. J. C. Bermond, O. Favaron and M. Matheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B, 46 (1989), 142-153.
3. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
4. C. J. Colbourn, D. G. Hoffman and R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A, 59 (1992), 73-89.
5. T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. Journal, 2 (1847), 191-204.
6. C. C. Lindner and C. A. Rodger, Design Theory, Boca Raton, Florida, CRC Press, 1997.
7. T. W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs and Combinatorics, 2011, pp. 1-13, doi:10.1007/s00373-011-1105-3.
8. T. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand., 5 (1957), 57-68.
9. M. Tarsi, Decomposition of complete multigraph into stars, Discrete Math., 26 (1979), 273-278.
10. S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartite graphs, Hiroshima Math. J., 5 (1975), 33-42.
[^1]
[^0]: Received April 9, 2013, accepted February 20, 2014.
 Communicated by Gerard Jennhwa Chang.
 2010 Mathematics Subject Classification: 05C51.
 Key words and phrases: Graph decomposition, Complete graph, Cycle, Star.
 *This research is supported by NSC 101-2115-M-032-002.

[^1]: Chin-Mei Fu ${ }^{1}$, Yuan-Lung Lin, Shu-Wen Lo^{2} and Yu-Fong Hsu Department of Mathematics Tamkang University New Taipei City 251
 Taiwan
 ${ }^{1}$ E-mail: cmfu@mail.tku.edu.tw
 ${ }^{2}$ E-mail: shuwen4477@yahoo.com.tw

