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DECOMPOSITION OF COMPLETE GRAPHS INTO
TRIANGLES AND CLAWS

Chin-Mei Fu*, Yuan-Lung Lin, Shu-Wen Lo and Yu-Fong Hsu

Abstract. Let Kn be a complete graph with n vertices, Ck denote a cycle of
length k, and Sk denote a star with k edges. If k = 3, then we call C3 a triangle
and S3 a claw. In this paper, we show that for any nonnegative integers p and q
and any positive integer n, there exists a decomposition of Kn into p copies of
C3 and q copies of S3 if and only if 3(p + q) =

(
n
2

)
, q �= 1, 2 if n is odd, q = 1

if n = 4, and q ≥ max{3, �n
4
�} if n is even and n ≥ 6.

1. INTRODUCTION

All graphs considered here are finite and undirected, unless otherwise noted. For
the standard graph-theoretic terminology the reader is referred to [3]. Let Kn be the
complete graph with n vertices and Km,n be the complete bipartite graph with parts
of sizes m and n. The cycle with k vertices is denoted by Ck. The k-star, denoted
by Sk, consists of a vertex x of degree k, and k edges joining x to its neighbor. Sk

is isomorphic to K1,k. When k = 3, we call C3 a triangle and S3 a claw. Let G
be a simple graph and Γ = {G1, G2, . . . , Gt} be a family of subgraphs of G. A
Γ-decomposition of G is an edge-disjoint decomposition of G into positive integer αi

copies of Gi, where i ∈ {1, 2, . . . , t}, denoted by G = α1G1 ⊕ α2G2 ⊕ . . .⊕ αtGt.
Furthermore, if Γ = {H}, we say that G has an H-decomposition. It is easy to see
that

∑t
i=1 αie(Gi) = e(G) is one of the necessary conditions for the existence of a

{G1, G2, . . . , Gt}-decomposition of G. In [7] Shyu obtained four necessary conditions
for a decomposition of Kn into Cl and Sk and gave the necessary and sufficient
conditions for l = k = 4.

In this paper, we will prove the following result.

Main Theorem. For any nonnegative integers p and q and any positive integer
n, Kn = pC3 ⊕ qS3 if and only if 3(p+ q) =

(
n
2

)
, q �= 1, 2 if n is odd, q = 1 if n = 4,

and q ≥ max{3, �n
4�} if n ≥ 6 and n is even.
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2. NOTATION AND PRELIMINARIES

A Steiner triple system is an ordered pair (S, T ), where S is a finite set of symbols,
and T is a set of 3-element subsets of S called triples, such that each pair of distinct
elements of S occurs together in exactly one triple of T . The order of a Steiner triple
system (S, T ) is the size of the set S, denoted by |S|. A Steiner triple system (S, T )
is equivalent to a complete graph K|S| in which the edges have been partitioned into
triangles (corresponding to the triples in T ). For convenience, we let STS(v) denote a
Steiner triple system of order v. In 1847 Kirkman [5] proved the following result.

Theorem 2.1. A STS(v) exists if and only if v ≡ 1, 3 (mod 6).

Therefore, Kv has a C3-decomposition if and only if v ≡ 1, 3 (mod 6).
A pairwise balanced design (or simply, PBD) is an ordered pair (S, B), where S

is a finite set of symbols, and B is a collection of subsets of S called blocks, such
that each pair of distinct elements of S occurs together in exactly one block of B. If
|S| = v and K = {|b||b ∈ B}, then (S, B) is a PBD of order v with block sizes in K,
denoted by PBD(v, K). A group divisible design (GDD) is an ordered triple (S, G, B)
where S is a finite set, G is a collection of sets called groups which partition S, and
B is a set of subsets of S called blocks, such that (S, G ∪ B) is a PBD. If |S| = v,
|G| > 1 and |b| = 3, for each b ∈ B, then we call (S, G, B) is a 3-GDD of order v. If
v = a1g1 + a2g2 + . . . + asgs and there are ai groups of size gi, i = 1, 2, . . . , s, then
we call the 3-GDD is of type ga1

1 ga2
2 . . . gas

s .

Theorem 2.2. ([4]). Let g, t, and u be nonnegative integers. There exists a 3-GDD
of type gtu1 if and only if the following conditions are all satisfied:

1. If g > 0, then t ≥ 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;
2. u ≤ g(t − 1) or gt = 0;
3. g(t − 1) + u ≡ 0 (mod 2) or gt = 0;
4. gt ≡ 0 (mod 2) or u = 0;
5. g2t(t − 1)/2 + gtu ≡ 0 (mod 3).

Let Q = {1, 2, . . . , 2n} and let H = {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}}. In what
follows, the two-element subsets {2i − 1, 2i} ∈ H are called holes. A quasigroup
with holes H is a quasigroup (Q, ◦) of order 2n in which for each h ∈ H , (h, ◦) is a
subquasigroup of (Q, ◦). For clearness, we give the construction of a quasigroup with
holes, which is shown in [6], as follows.

Theorem 2.3. ([6]). For all n ≥ 3 there exists a commutative quasigroup of order
2n with holes H = {{1, 2}, {3, 4}, . . . , {2n− 1, 2n}}.

Proof. Let S = {1, 2, . . . , 2n + 1}. If 2n + 1 ≡ 1 or 3 (mod 6) then let (S, B)
be a Steiner triple system of order 2n + 1, and if 2n + 1 ≡ 5 (mod 6) then let (S, B)
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be a PBD of order 2n + 1 with exactly one block, say b, of size 5, and the rest of size
3. By renaming the symbols in the triples (blocks) if necessary, we can assume that
the only triples containing symbol 2n + 1 are:

{1, 2, 2n + 1}, {3, 4, 2n + 1}, . . . , {2n− 1, 2n, 2n + 1}.

(In forming the quasigroup, these triples are ignored.) Define a quasigroup (Q, ◦) =
({1, 2, . . . , 2n}, ◦) as follows:

(a) for each h ∈ H = {{1, 2}, {3, 4}, . . . , {2n−1, 2n}} let (h, ◦) be a subquasigroup
of (Q, ◦);

(b) for 1 ≤ i �= j ≤ 2n, {i, j} /∈ H and {i, j} �⊂ b, let {i, j, k} be the triple in B

containing symbols i and j and define i ◦ j = k = j ◦ i; and

(c) if 2n+1 ≡ 5 (mod 6) then let (b,⊗) be an idempotent commutative quasigroup
of order 5 and for each {i, j} ⊆ b define i ◦ j = i ⊗ j = j ◦ i.

By using commutative quasigroups with holes, Lindner et al. give a constructon
for STS and PBD in [6], stated as follows. L-Construction. Let ({1, 2, . . . , 2n}, ◦)
be a commutative quasigroup of order 2n with holes H . Then

(a) ({∞}∪({1, 2, . . . , 2n}×{1, 2, 3}), B′) is a STS(6n+1), where B′ is defined by:

(1) for 1 ≤ i ≤ n let B′
i contain the triples in a STS(7) on the symbols

{∞} ∪ ({2i− 1, 2i}× {1, 2, 3}) and let B′
i ⊆ B′ , and

(2) for 1 ≤ i �= j ≤ 2n, {i, j} /∈ H , place the triples {(i, 1), (j, 1), (i ◦ j, 2)},
{(i, 2), (j, 2), (i ◦ j, 3)}, and {(i, 3), (j, 3), (i ◦ j, 1)} in B′ .

(b) ({∞1,∞2,∞3}∪ ({1, 2, . . . , 2n}×{1, 2, 3}), B′′) is a STS(6n+3), where B′′

is defined by replacing (1) in (a) with:

(1′) for 1 ≤ i ≤ n let B′′
i contain the triples in a STS(9) on the symbols

{∞1,∞2,∞3} ∪ ({2i − 1, 2i} × {1, 2, 3}) in which {∞1,∞2,∞3} is a
triple, and let B′′

i ⊆ B′′, and

(c) ({∞1,∞2,∞3,∞4,∞5} ∪ ({1, 2, . . . , 2n}× {1, 2, 3}), B′′′) is a PBD(6n + 5)
with one block of size 5, the rest of size 3, where B′′′ is defined by replacing
(1) in (a) with:

(1′′) for 1 ≤ i ≤ n let B′′′
i contain the blocks in a PBD(11) on the symbols

{∞1,∞2,∞3,∞4,∞5}∪({2i−1, 2i}×{1, 2, 3}) in which {∞1,∞2,∞3,
∞4,∞5} is a block, and let B′′′

i ⊆ B′′′.

In 1975 Yamamoto et al. [10], and independently in 1979 Tarsi [9] got the following
result.
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Theorem 2.4. ([9]). Let n and k be positive integers. There is an Sk-decomposition
of Kn if and only if n ≥ 2k and n(n − 1) ≡ 0 (mod 2k).

In [7], Shyu showed the necessary condition for decomposing Kn into p copies of
C3 and q copies of S3 as follows.

Theorem 2.5. ([7]). Let n be an integer. If Kn = pC3 ⊕ qS3 for any nonnegative
integers p and q, then 3(p + q) =

(
n
2

)
, q �= 1, 2 if n is odd, q = 1 if n = 4, and

q ≥ max{3, �n
4�} if n ≥ 6 and n is even.

Next we will show that given any nonnegative integers p and q if they satisfy the
necessary condition in Theorem 2.5, then there is a {C3, S3}-decomposition of Kn.

By counting the edges of Kn, we can get the necessary condition for the existence
of a {C3, S3}-decomposition of Kn as follows.

Theorem 2.6. Let n be a positive integer. If there is a {C3, S3}-decomposition of
Kn, then n ≡ 0, 1 (mod 3).

For convenience, we define I(G) = {q|G = pC3 ⊕ qS3, for any nonnegative
integers p and q} ,

Jn =
{

q

∣∣∣∣p+q =
n(n − 1)

6
, p, q ≥ 0 and q �= 1, 2

}
if n is odd, and

Jn =
{

q

∣∣∣∣p+q =
n(n − 1)

6
, p, q ≥ 0 and q ≥ max

{
3,

⌈n

4

⌉}}
if n is even and n≥6.

Then I(Kn) ⊆ Jn. Let A + B = {a + b|a ∈ A, b ∈ B}, and k ·A = A + A + . . .+ A

(the addition of k A’s).

Example 2.7. n = 4. It is easy to see that K4 can be decomposed into one C3

and one S3, there is neither C3-decomposition nor S3-decomposition of K4. Thus
I(K4) = {1}.

It is easy to see that if Kn = G1 ⊕ G2, then I(G1) + I(G2) ⊆ I(Kn). Next we
just only need to prove I(Kn) ⊇ Jn, for n ≡ 0, 1 (mod 3) and n ≥ 6.

3. SOME SMALL CASES

In this section, we will show that I(Kn) = Jn, for n ≡ 0, 1 (mod 3) and 6 ≤ n ≤
15. For convenience, we let V (Kn) = Zn = {1, 2, . . . , n}, (a,b,c) means a 3-cycle
with vertices a,b,c and S(a;b,c,d) means a star(or claw) with center vertex a and end
vertices b,c,d.

Example 3.1. J6 = {3, 4, 5} and there are following decompositions of K6.
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(1) (1, 2, 3), (4, 5, 6), S(1; 4, 5, 6), S(2; 4, 5, 6), S(3; 4, 5, 6). Then 3 ∈ I(K6).
(2) (1, 2, 3), S(3; 4, 5, 6), S(4; 1, 2, 5), S(5; 1, 2, 6), S(6; 1, 2, 4). Then 4 ∈

I(K6).
(3) By Theorem 2.4, 5 ∈ I(K6).

Therefore, I(K6) ⊇ J6.

Example 3.2. J7 = {0, 3, 4, 5, 6, 7} and there are following decompositions of K7.

(1) By Theorem 2.1 and 2.4, we have 0, 7 ∈ I(K7).
(2) (1, 2, 3), (1, 4, 7), (2, 5, 7), (3, 6, 7), S(4; 2, 3, 6), S(5; 1, 3, 4), S(6; 1, 2, 5).

Then 3 ∈ I(K7).
(3) (1, 2, 3), (3, 4, 5), (5, 6, 7), S(1; 4, 5, 7), S(2; 4, 5, 6), S(6; 1, 3, 4), S(7; 2, 3,

4). Then 4 ∈ I(K7).
(4) (1, 2, 3), (4, 5, 6), S(1; 4, 5, 6), S(2; 4, 5, 6), S(3; 4, 5, 6), S(7; 1, 2, 3), S(7;

4, 5, 6). Then 5 ∈ I(K7).
(5) (1, 2, 3), S(1; 4, 6, 7), S(2; 4, 6, 7), S(3; 4, 5, 7), S(5; 1, 2, 4), S(6; 3, 4, 5),

S(7; 4, 5, 6). Then 6 ∈ I(K7).

Therefore, I(K7) ⊇ J7.

Example 3.3. J9 = {i|i = 0 or 3 ≤ i ≤ 12} and there are following decomposi-
tions of K9.

(1) (1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), (1, 5, 9), (2, 6, 7), (3,
4, 8), (1, 6, 8), (2, 4, 9), (3, 5, 7). Then 0 ∈ I(K9).

(2) (1, 5, 9), (1, 6, 8), (2, 4, 9), (2, 5, 8), (3, 4, 8), (3, 5, 7), (3, 6, 9), (4, 5, 6), (7,
8, 9), S(1; 2, 3, 4), S(2; 3, 6, 7), S(7; 1, 4, 6). Then 3 ∈ I(K9).

(3) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (1, 6, 9), (1, 5, 8), (1, 4, 7), (2, 6, 8), S(2;
5, 7, 9), S(3; 6, 7, 8), S(4; 2, 6, 8), S(9; 3, 4, 5). Then 4 ∈ I(K9).

(4) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (1, 6, 9), (1, 5, 8), (1, 4, 7), S(2; 4, 5, 7),
S(3; 7, 8, 9), S(6; 2, 3, 4), S(8; 2, 4, 6), S(9; 2, 4, 5). Then 5 ∈ I(K9).

(5) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (1, 6, 9), (1, 5, 8), S(2; 5, 8, 9), S(4; 1,
2, 7), S(6; 2, 3, 4), S(7; 1, 2, 3), S(8; 3, 4, 6), S(9; 3, 4, 5). Then 6 ∈ I(K9).

(6) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (1, 6, 9), S(1; 4, 5, 7), S(2; 4, 5, 6),
S(2; 7, 8, 9), S(3; 6, 7, 8), S(4; 6, 7, 8), S(8; 1, 5, 6), S(9; 3, 4, 5). Then 7 ∈
I(K9).

(7) (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), S(1; 4, 5, 6), S(2; 4, 5, 7), S(6; 2, 3,
4), S(7; 1, 3, 4), S(8; 1, 2, 3), S(8; 4, 5, 6), S(9; 1, 2, 3), S(9; 4, 5, 6). Then
8 ∈ I(K9).
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(8) (1, 2, 3), (3, 4, 5), (5, 6, 7), S(1; 4, 5, 6), S(1; 7, 8, 9), S(2; 4, 5, 6), S(2; 7, 8,
9), S(3; 6, 7, 8), S(4; 6, 7, 8), S(8; 5, 6, 7), S(9; 3, 4, 5), S(9; 6, 7, 8). Then
9 ∈ I(K9).

(9) (1, 2, 3), (3, 4, 5), S(1; 4, 5, 6), S(1; 7, 8, 9), S(2; 4, 5, 7), S(5; 6, 7, 9), S(6;
2, 3, 4), S(7; 3, 4, 6), S(8; 2, 3, 4), S(8; 5, 6, 7), S(9; 2, 3, 4), S(9; 6, 7, 8).
Then 10 ∈ I(K9).

(10) (1, 2, 3), S(1; 4, 5, 6), S(2; 4, 5, 9), S(3; 4, 5, 9), S(4; 5, 6, 8), S(6; 2, 3, 5),
S(7; 1, 2, 3), S(7; 4, 5, 6), S(8; 1, 2, 3), S(8; 5, 6, 7), S(9; 1, 4, 5), S(9; 6, 7,
8). Then 11 ∈ I(K9).

(11) By Theorem 2.4, 12 ∈ I(K9).

Therefore, I(K9) ⊇ J9.

Example 3.4. J10 = {i|3 ≤ i ≤ 15}. Let V (K10) = {∞} ∪ Z9.
Since K10 = K1,9 ⊕ K9, we have I(K10) ⊇ I(K1,9) + I(K9) = {3} + {i|i = 0

or 3 ≤ i ≤ 12} = {i|i = 3 or 6 ≤ i ≤ 15} = J10 − {4, 5}.
From Example 3.3 (1), there are 4 triangles (1, 2, 3), (4, 5, 6), (7, 8, 9), and (3, 6,

9) in the decomposition of K9, see Figure 3.1. Consider the union of these 4 triangles
and 3 stars S(∞; 1, 2, 3), S(∞; 4, 5, 6), S(∞; 7, 8, 9), it can be viewed as 3C3⊕4S3

or 2C3 ⊕ 5S3 as follows:
(∞, 1, 2), (∞, 4, 5), (∞, 7, 8), S(∞; 3, 6, 9), S(3; 1, 2, 6), S(6; 4, 5, 9), S(9; 3,

7, 8) or (4, 5, 6), (7, 8, 9), S(∞; 4, 5, 6), S(∞; 2, 7, 8), S(1; ∞, 2, 3), S(3; ∞, 2,
6), S(9; ∞, 3, 6). Therefore I(K10) ⊇ J10.

Figure 3.1. 4C3 ⊕ 3S3.

Example 3.5. J12 = {i|3 ≤ i ≤ 22} and if K12 = K3⊕K3,9⊕K9, then I(K12) ⊇
I(K3) + I(K3,9) + I(K9) ={9}+{i|i = 0 or 3 ≤ i ≤ 12} = {i|i = 9 or 12 ≤ i ≤ 21}.

Do the same process as in Example 3.4, we can get 10, 11 ∈ I(K12). For q =
3, 4, . . . , 8, we discuss them as follows.

(1) Take K12 = 3K4 ⊕ K4,4,4.
Let V (K4,4,4) = {1, 2, 3, 4}∪ {5, 6, 7, 8}∪ {9, 10, 11, 12}.



Decomposition of Complete Graphs into Triangles and Claws 1569

(i) There is a C3-decomposition of K4,4,4 as follows: (1, 5, 9), (1, 6, 10), (1,
7, 11), (1, 8, 12), (2, 5, 10), (2, 6, 11), (2, 7, 12), (2, 8, 9), (3, 5, 11), (3,
6, 12), (3, 7, 9), (3, 8, 10), (4, 5, 12), (4, 6, 9), (4, 7, 10), (4, 8, 11). We
can get 3 copies of S3 from 3K4. Thus 3 ∈ I(K12).

(ii) Take 5C3: (3, 5, 11), (3, 6, 12), (4, 5, 12), (4, 6, 9), (4, 8, 11) from (i) and
3S3: S(4; 1, 2, 3), S(8; 5, 6, 7), S(12; 9, 10, 11) from 3K4, we can get
the following results:
(a) (3, 4, 6), (3, 11, 12), (4, 5, 11) and S(4; 1, 2, 8), S(5; 3, 8, 12), S(8;

6, 7, 11), S(9; 4, 6, 12), S(12; 4, 6, 10). Thus 5 ∈ I(K12).
(b) (3, 4, 6), (3, 11, 12) and S(4; 1, 2, 8), S(5; 3, 4, 12), S(8; 5, 6, 7),

S(9; 4, 6, 12), S(11; 4, 5, 8), S(12; 4, 6, 10). Thus 6 ∈ I(K12).
(c) (3, 11, 12) and S(3; 4, 5, 6), S(4; 1, 2, 12), S(4; 5, 6, 8), S(8; 5, 6,

7), S(9; 4, 6, 12), S(11; 4, 5, 8), S(12; 5, 6, 10). Thus 7 ∈ I(K12).
(d) S(3; 4, 6, 11), S(4; 1, 2, 8), S(4; 5, 9, 11), S(5; 3, 8, 11), S(6; 4, 9,

12), S(8; 6, 7, 11), S(12; 3, 4, 5), S(12; 9, 10, 11). Thus 8 ∈ I(K12).

(2) Take K12 = K8 ⊕ K4,8 ⊕ K4. Let V (K8) = {1, 2, 3, . . . , 8} and V (K4) =
{9, 10, 11, 12}. We can decompose K8 into S(1; 4, 7, 8), S(2; 5, 7, 8), S(3; 6,
7, 8), (4, 5, 6), and 4 1-factors: {12, 34, 57, 68}, {13, 26, 47, 58}, {15, 23,
48, 67} and {16, 24, 35, 78}. The union of these four 1-factors and K4,8 has a
C3-decomposition. In K4, we have one copy of S3, thus 4 ∈ I(K12).

(3) By Theorem 2.4, 22 ∈ I(K12).

Therefore I(K12) ⊇ J12.

Lemma 3.6. Let the graph M1 be the union of seven cycles, (1, 2, 7), (1, 3, 5),
(1, 4, 6), (2, 3, 4), (5, 6, 8), (5, 7, 10), and (6, 7, 9), see Figure 3.2. Then I(M1) ⊇
{0, 3, 4, 5, 6, 7}.

Figure 3.2. M1.

Proof. We can decompose M1 as follows:

(1) (1, 3, 5), (5, 6, 8), (5, 7, 10), (6, 7, 9), S(1; 2, 6, 7), S(2; 3, 4, 7), S(4; 1, 3, 6).
Then 3 ∈ I(M1).
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(2) (5, 6, 8), (5, 7, 10), (6, 7, 9), S(1; 5, 6, 7), S(2; 1, 4, 7), S(3; 1, 2, 5), S(4; 1,
3, 6). Then 4 ∈ I(M1).

(3) (5, 6, 8), (6, 7, 9), S(1; 3, 6, 7), S(2; 1, 3, 4), S(4; 1, 3, 6), S(5; 1, 3, 10), S(7;
2, 5, 10). Then 5 ∈ I(M1).

(4) (5, 6, 8), S(1; 4, 6, 7), S(2; 1, 4, 7), S(3; 1, 2, 4), S(5; 1, 3, 10), S(6; 4, 7, 9),
S(7; 5, 9, 10). Then 6 ∈ I(M1).

(5) S(1; 5, 6, 7), S(2; 1, 4, 7), S(3; 1, 2, 5), S(4; 1, 3, 6), S(5; 7, 8, 10), S(6; 5,
8, 9), S(7; 6, 9, 10). Then 7 ∈ I(M1).

Therefore, I(M1) ⊇ {i|i = 0 or 3 ≤ i ≤ 7}.

Lemma 3.7. I(K13) = J13.

Proof. Let (S, T ) be a STS(13), where S = ({1, 2, 3, 4}× {1, 2, 3})∪{∞} and
the elements of T is defined as follows.

Type 1 : {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (2, 3)};
Type 2 : {∞, (3, i), (1, i+ 1)}, {∞, (4, i), (2, i+ 1)}, 1 ≤ i ≤ 3;
Type 3 : {(1, i), (2, i), (3, i+ 1)}, {(1, i), (3, i), (2, i+ 1)},

{(1, i), (4, i), (4, i+ 1)}, {(2, i), (3, i), (4, i+ 1)},
{(2, i), (4, i), (1, i+ 1)}, {(3, i), (4, i), (3, i+ 1)}, for 1 ≤ i ≤ 3.

(1) Pick two 7 copies of C3 from T :

{(1, 1), (1, 2), (1, 3)}, {∞, (3, i), (1, i + 1)}, {(3, i), (4, i), (3, i + 1)}, for 1 ≤
i ≤ 3, and {(2, 1), (2, 2), (2, 3)}, {∞, (4, i), (2, i+1)}, {(1, i), (4, i), (4, i+1)},
for 1 ≤ i ≤ 3. The union of each 7 copies of C3 forms a graph isomorphic to
M1 as in Figure 3.2, respectively.

By Lemma 3.6, I(M1) ⊇ {0, 3, 4, 5, 6, 7}.

Figure 3.3. W . Figure 3.4. W = 6S3.



Decomposition of Complete Graphs into Triangles and Claws 1571

(2) Pick two 6 copies of C3 from T :
{(1, i), (2, i), (3, i+1)}, {(2, i), (3, i), (4, i+1)}, for 1 ≤ i ≤ 3, and {(1, i), (3, i),
(2, i+ 1)}, {(2, i), (4, i), (1, i+ 1)}, for 1 ≤ i ≤ 3. The union of these 6 copies
of C3 forms a graph isomorphic to W as in Figure 3.3.

From Figure 3.4, there is a S3-decomposition of W . Thus I(W ) ⊇ {0, 6}. Since
K13= 2M1⊕2W , we conclude that I(K13) ⊇ 2·I(M1)+2·I(W ) ⊇ {0, 3, 4, . . . , 26} =
{i|i = 0 or 3 ≤ i ≤ 26} = J13.

Lemma 3.8. Let the graph M2 be the union of 11 cycles, (1, 2, 3), (1, 4, 14),
(1, 5, 7), (1, 8, 10), (2, 5, 15), (2, 6, 8), (2, 9, 11), (3, 4, 9), (3, 6, 13), (3, 7, 12), and (4,
5, 6), as in Figure 3.5. Then I(M2) ⊇ {0, 3, 4, . . . , 11}.

Figure 3.5. M2.

Proof. We can decompose M2 as follows:

(1) (1, 4, 14), (1, 5, 7), (1, 8, 10), (2, 5, 15), (2, 9, 11), (3, 4, 9), (3, 7, 12), (4, 5,
6), S(2; 1, 6, 8), S(3; 1, 2, 13), S(6; 3, 8, 13). Then 3 ∈ I(M2).

(2) (1, 4, 14), (1, 8, 10), (2, 5, 15), (2, 9, 11), (3, 4, 9), (3, 6, 13), (3, 7, 12), S(1;
3, 5, 7), S(2; 1, 3, 8), S(5; 4, 6, 7), S(6; 2, 4, 8). Then 4 ∈ I(M2).

(3) (1, 4, 14), (1, 8, 10), (2, 5, 15), (2, 9, 11), (3, 7, 12), (3, 4, 9), S(1; 3, 5, 7),
S(2; 1, 6, 8), S(3; 2, 6, 13), S(5; 4, 6, 7), S(6; 4, 8, 13). Then 5 ∈ I(M2).

(4) (1, 8, 10), (2, 5, 15), (2, 9, 11), (3, 6, 13), (3, 7, 12), S(1; 4, 7, 14), S(2; 1, 3,
8), S(3; 1, 4, 9), S(4; 5, 9, 14), S(5; 1, 6, 7), S(6; 2, 4, 8). Then 6 ∈ I(M2).

(5) (1, 8, 10), (2, 9, 11), (3, 6, 13), (3, 7, 12), S(1; 2, 3, 4), S(1; 5, 7, 14), S(2;
5, 8, 15), S(3; 2, 4, 9), S(4; 5, 9, 14), S(5; 6, 7, 15), S(6; 2, 4, 8). Then 7 ∈
I(M2).

(6) (1, 8, 10), (2, 9, 11), (3, 7, 12),S(1; 2, 7, 14), S(2; 6, 8, 15), S(3; 1, 2, 4), S(3;
6, 9, 13), S(4; 1, 9, 14), S(5; 1, 2, 4), S(5; 6, 7, 15), S(6; 4, 8, 13). Then
8 ∈ I(M2).
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(7) (1, 8, 10), (2, 9, 11), S(1; 2, 3, 4),S(1; 5, 7, 14), S(2; 6, 8, 15), S(3; 2, 4, 6),
S(3; 9, 12, 13), S(4; 6, 9, 14), S(5; 2, 4, 15), S(6; 5, 8, 13), S(7; 3, 5, 12).
Then 9 ∈ I(M2).

(8) (2, 9, 11), S(1; 4, 5, 7), S(1; 8, 10, 14), S(2; 1, 6, 15), S(3; 1, 2, 6), S(3; 9, 12,
13), S(4; 3, 9, 14), S(5; 2, 4, 15), S(6; 4, 5, 13), S(7; 3, 5, 12), S(8; 2, 6, 10).
Then 10 ∈ I(M2).

(9) S(1; 3, 5, 7), S(1; 8, 10, 14), S(2; 1, 3, 6), S(2; 9, 11, 15), S(3; 6, 12, 13), S(4;
1, 3, 14), S(5; 2, 4, 15), S(6; 4, 5, 13), S(7; 3, 5, 12), S(8; 2, 6, 10), S(9; 3, 4,
11). Then 11 ∈ I(M2).

Therefore, I(M2) ⊇ {0, 3, 4, . . . , 11}.

Lemma 3.9. I(K15) = J15.

Proof. Let (S, T ) be a STS(15), where S = {1, 2, 3, 4, 5}× {1, 2, 3} and the
elements of T is defined as follows.

Type 1 : {(i, 1), (i, 2), (i, 3)}, for 1 ≤ i ≤ 5;
Type 2 : {{(1, i), (2, i), (4, i+ 1)}, {(1, i), (3, i), (2, i+ 1)}, {(1, i), (4, i), (5, i+ 1)},

{(1, i), (5, i), (3, i+ 1)}, {(2, i), (3, i), (5, i+ 1)}, {(2, i), (4, i), (3, i+ 1)},
{(2, i), (5, i), (1, i+ 1)}, {(3, i), (4, i), (1, i+ 1)}, {(3, i), (5, i), (4, i+ 1)},
{(4, i), (5, i), (2, i+ 1)}}, for 1 ≤ i ≤ 3.

(1) We pick 11 copies of C3: {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (2, 3)}, {(1, i), (2, i),
(4, i + 1)}, {(1, i), (3, i), (2, i + 1)}, {(1, i), (4, i), (5, i + 1)}, for 1 ≤ i ≤ 3.
The union of these 11 C3 forms a copy of M2 as in Figure 3.5. By Lemma 3.8,
we have I(M2) ⊇ {0, 3, 4, . . . , 11}.

(2) Since K15 = K2 ⊕ K2,13 ⊕ K13 and K2 ⊕ K2,13 can be decomposed into one
C3 and 8 copies of S3, we have 8 ∈ I(K2 ⊕ K2,13). By Example 3.4, we
have I(K13) = {0, 3, 4, . . . , 26}. Thus I(K15) ⊇ I(K2 ⊕ K2,13) + I(K13) ⊇
{8, 11, 12, . . . , 34)}.

(3) By Theorem 2.4, 35 ∈ I(K15).

From (1), (2), and (3), we conclude that I(K15) ⊇ {0, 3, 4, . . . , 35} = {i|i = 0 or
3 ≤ i ≤ 35} = J15.

4. MAIN THEOREM FOR ODD n

In this section, we will consider n ≥ 19 and n ≡ 0, 1 (mod 3). From Theorem 2.3,
we get a commutative quasigroup of order 2n with holes H by using STS(2n + 1) or
PBD(2n+1, {3, 5}). In the L-Construction, we use a commutative quasigroup of order
2n with holes H to get a STS(6n + 1), a STS(6n + 3) and a PBD(6n + 5, {3, 5}).
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In the proof of Theorem 2.3 (b), we have that for 1 ≤ i �= j ≤ 2n, {i, j} /∈ H

and {i, j} �⊂ b, let {i, j, k} be the triple in B containing symbols i and j and define
i ◦ j = k = j ◦ i, and in L-Construction (a)(2), for 1 ≤ i �= j ≤ 2n, {i, j} /∈ H , place
the triples {(i, 1), (j, 1), (i◦ j, 2)}, {(i, 2), (j, 2), (i◦j, 3)}, and {(i, 3), (j, 3), (i◦ j, 1)}
in B′ . Thus for each {i, j} /∈ H if {i, j, k} is a triple in B, then we obtain three
triangles: ((i, 1), (j, 1), (k, 2)), ((k, 1), (j, 1), (i, 2)), and ((i, 1), (k, 1), (j, 2)). The
graph G corresponding to this three triangles is shown in Figure 3.6.

Figure 3.6. G.

Lemma 4.1. Let the graph G be the union of three cycles, ((i, 1), (j, 1), (k, 2)),
((k, 1), (j, 1), (i, 2)), and ((i, 1), (k, 1), (j, 2)), shown in Figure 3.6. Then there is an
S3-decomposition of G, i.e., I(G) ⊇ {0, 3}.

Proof. There is an S3-decomposition of G: S((i, 1); (j, 1), (j, 2), (k, 2)), S((j, 1);
(i, 2), (k, 1), (k, 2)), S((k, 1); (i, 1), (i, 2), (j, 2)).

Lemma 4.2. If n ≡ 1 (mod 6) and n ≥ 19, then I(Kn) = Jn = {i|i = 0 or
3 ≤ i ≤ n(n−1)

6 }.

Proof. Let n = 6k + 1 and k ≥ 3.

(a) If 2k ≡ 0, 2 (mod 6), then 2k+1 ≡ 1, 3 (mod 6). There exists a STS(2k+1).
Using this STS(2k+1), we can get a commutative quasigroup (Q, ◦) with holes
of order 2k. By L-Construction, there are k edge-disjoint copies of STS(7) and
there are 2k(k−1)

3 triples not containing 2k + 1 in STS(2k + 1). For each triple
{r, s, t} not containing 2k + 1, there are three copies of G which is shown in
Figure 3.6. By Example 3.2 and Lemma 4.1, we have I(K7) = {0, 3, 4, 5, 6, 7}
and I(G) ⊇ {0, 3}. Thus, we obtain that

I(Kn) ⊇ k · I(K7) +
2k(k − 1)

3
· (3 · I(G))

⊇ k · {0, 3, 4, 5, 6, 7}+ 2k(k − 1) · {0, 3}

= {i|i = 0 or 3≤i≤k(6k+1)} =
{

i|i = 0 or 3≤i≤ n(n−1)
6

}
= Jn.
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(b) If 2k ≡ 4 (mod 6), then 2k+1 ≡ 5 (mod 6). There exists a PBD(2k+1) with
only one block size 5 and the rest of 3. By L-Construction, there are k edge-
disjoint copies of STS(7), and there are 2

3(k2 − k − 5) triples in PBD(2k + 1)
not containing 2k + 1. Let {1, 2, 3, 4, 5} be the block of size 5 in PBD(2k + 1).
Let ({1, 2, 3, 4, 5},⊗) be defined as follows.

The triples corresponding to this idempotent commutative quasigroup of or-
der 5 can be grouped into 5 pairs: {{1, 2, 4}, {1, 3, 2}}, {{1, 4, 5}, {1, 5, 3}},
{{2, 3, 5}, {2, 4, 3}}, {{3, 4, 1}, {3, 5, 4}}, and {{2, 5, 1}, {4, 5, 2}} where the
pair {{a, b, c}, {d, e, f}} means {{(a, i), (b, i), (c, i + 1)},{(d, i), (e, i), (f, i +
1)}} for
1 ≤ i ≤ 3. The graph corresponding to each pair is isomorphic to the graph W ,
(see Figure 3.3) and I(W ) ⊇ {0, 6}.

Thus, we obtain that

I(Kn) ⊇ k · I(K7) +
2
3
(k2 − k − 5) · (3 · I(G)) + 5 · I(W )

⊇ k · {0, 3, 4, 5, 6, 7}+ 2(k2 − k − 5) · {0, 3}+ 5 · {0, 6}

= {i|i = 0 or 3≤i≤k(6k+1)}=
{

i|i = 0 or 3≤i≤ n(n−1)
6

}
=Jn.

Lemma 4.3. If n ≡ 3 (mod 6) and n ≥ 21, then I(Kn) = Jn = {i|i = 0 or
3 ≤ i ≤ n(n−1)

6 }.

Proof. Let n = 6k + 3 and k ≥ 3.

(a) If 2k ≡ 0, 2 (mod 6), then 2k+1 ≡ 1, 3 (mod 6). There exists an STS(2k+1).
By L-Construction, there are k copies of STS(9) in which {∞1,∞2,∞3} is a
common triple and there are 2k(k−1)

3 copies of triple not containing 2k + 1 in
STS(2k + 1). By Example 3.3, I(K9) = {0, 3, 4, . . . , 12} and I(K9\C3) =
{0, 3, 4, . . . , 11}. Thus, we have
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I(Kn) ⊇ 1 · I(K9) + (k − 1) · I(K9\C3) +
2
3
k(k − 1) · (3 · I(G))

⊇ {0, 3, 4, . . . , 12}+ (k − 1) · {0, 3, 4, . . . , 11}+ 2k(k − 1) · {0, 3}

⊇ {i|i = 0 or 3≤i ≤ (2k+1)(3k+1)}=
{

i|i=0 or 3≤i≤ n(n−1)
6

}

= Jn.

(b) If 2k ≡ 4 (mod 6), then 2k + 1 ≡ 5 (mod 6). There exists a PBD(2k + 1)
with only one block size 5 and the rest of size 3. By L-Construction, there
are k edge-disjoint copies of STS(9) containing a common triple and there are
2
3 (k2 − k− 5) triples in PBD(2k + 1) not containing 2k + 1. As in the proof of
Lemma 4.2 (b), we have

I(Kn)

⊇ 1 · I(K9) + (k − 1) · I(K9\C3) +
2
3
(k2 − k − 5) · (3 · I(G)) + 5 · I(W )

⊇ {0, 3, 4, . . . , 12}+ (k − 1) · {0, 3, 4, . . . , 11}+ 2(k2 − k − 5) · {0, 3}
+ 5 · {0, 6}

= {i|i = 0 or 3 ≤ i ≤ (2k + 1)(3k + 1)}

=
{

i

∣∣∣∣i = 0 or 3 ≤ i ≤ n(n − 1)
6

}
= Jn.

By Examples 3.2, 3.3, and Lemmas 3.7, 3.9, 4.2 and 4.3, we have the following
result.

Theorem 4.4. If n ≡ 1, 3 (mod 6) and n ≥ 7, then I(Kn) = Jn = {i|i = 0 or
3 ≤ i ≤ n(n−1)

6 }.

5. MAIN THEOREM FOR EVEN n

In this section we will concern that n is an even integer. A Skolem triple system of
order t is a partition of the set {1, 2, . . . , 3t} into triples {ai, bi, ci} such that ai+bi = ci

for each i = 1, 2, . . . , t.

Theorem 5.1. ([8]). A Skolem triple system of order t exists if and only if t ≡ 0
or 1 (mod 4).

Let n ≥ 2 be an integer and let D ⊆ {1, 2, . . . , �n/2�}. The circulant graph 〈D〉n
is the graph with vertices V = Zn and edges E = {{i, j}||i−j| ∈ D or n−|i−j| ∈ D}.
For all t ≡ 0, 1 (mod 4), A Skolem triple system provides a partition of {1, 2, . . . , 3t}
into t triples giving a cyclic 3-cycle system of K6t+1 = 〈{1, 2, . . . , 3t}〉6t+1.



1576 Chin-Mei Fu, Yuan-Lung Lin, Shu-Wen Lo and Yu-Fong Hsu

Theorem 5.2. ([2]). Let s, t and n be integers with s < t < n/2. If gcd(s, t, n) =
1, then the graph 〈{s, t}〉n can be decomposed into two Hamilton cycles. If n is even,
then the graph 〈{s, t}〉n can be decomposed into four 1-factors.

Lemma 5.3. Let k be a positive integer and k ≥ 1.

(i) If n = 6k+4, then I(Kn) ⊇ {2k+1, 2k+2, 2k+3, 2k+4, . . . , 6k2+7k+2}.
(ii) If n = 6k + 6, then I(Kn) ⊇ {6k + 3, 6k + 4, 6k + 5, 6k + 6, 6k + 7, 6k + 8,

. . . , 6k2 + 11k + 4, 6k2 + 11k + 5}.

Proof.

(i) It is easy to see that I(K1,6k+3) = {2k + 1}. By Theorem 4.4, we have
I(K6k+3) = {0, 3, 4, 5, . . . , 6k2+5k+1}. If we take K6k+4 = K1,6k+3⊕K6k+3,
then I(K6k+4) ⊇ I(K1,6k+3) + I(K6k+3) = {2k + 1, 2k + 4, 2k + 5, 2k +
6, . . . , 6k2 + 7k + 2}.

(ii) It is easy to see that I(K3,6k+3) = {6k + 3}. If we take K6k+6 = K3 ⊕
K3,6k+3 ⊕ K6k+3, then I(K6k+6) ⊇ I(K3) + I(K3,6k+3) + I(K6k+3). By
Theorem 2.4, there is an S3-decomposition of K6k+6, thus 6k2 + 11k + 5 ∈
I(K6k+6). Therefore, I(K6k+6) ⊇ {6k + 3, 6k + 6, 6k + 7, 6k + 8, . . . , 6k2 +
11k + 4, 6k2 + 11k + 5}.

By L-Construction, there is a subsystem STS(9) in STS(6k + 3). As in Example 3.4,
we can get a subgraph which is the union of 4 triangles and three S3 in K6k+4. Thus
2k + 2, 2k + 3 ∈ I(K6k+4) and 6k + 4, 6k + 5 ∈ I(K6k+6).

Lemma 5.4. Let k be a positive integer, n = 6k + 4, and n ≥ 40. Then I(Kn) ⊇
{q|�n

4� ≤ q ≤ 2k, q is an integer}.

Proof.

(1) If k is odd and k = 2m+1, where m is an integer, then n = 12m+10. Since n ≥
40, we have m ≥ 3. By Theorem 2.2, there is a 3-GDD of type 12m101, i.e., there
is a PBD(n, {12, 10, 3}). By Examples 3.4 and 3.5, I(K12) = {3, 4, 5, . . . , 22}
and I(K10) = {3, 4, 5, . . . , 15}. Thus,

I(K12m+10) ⊇ m · I(K12) + I(K10) = {3m + 3, 3m + 4, . . . , 22m + 15}
⊇

{
q
∣∣∣⌈n

4

⌉
≤ q ≤ 2k

}
.

(2) If k is even and k = 2m, where m is an integer, then n = 12m + 4. Since
n ≥ 40, we have m ≥ 3. By Theorem 2.2, there is a 3-GDD of type 12m41,
i.e., there is a PBD(n, {12, 4, 3}). By Example 3.5, I(K12) = {3, 4, 5, . . . , 22}.
Thus,
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I(K12m+4) ⊇ m · I(K12) + I(K4) = {3m + 1, 3m + 2, . . . , 22m + 1}
⊇

{
q
∣∣∣⌈n

4

⌉
≤ q ≤ 2k

}
.

Lemma 5.5. Let n = 6k + 4 and 16 ≤ n ≤ 34. Then I(Kn) = Jn.

Proof.

(1) n = 16. Take K16 = 4K4 ⊕ K4(4). By Theorem 2.2, K4(4) has a C3-
decomposition, we conclude that 4 ∈ I(K16).

(2) n = 22.

(a) By Lemma 5.3 (i), we have I(K22) ⊇ {7, 8, . . . , 77}.
(b) K22 can be decomposed as follows: S(2; 1, 5, 6), S(3; 1, 7, 8), S(4; 1, 9,

10), S(11; 12, 13, 14), S(15; 16, 17, 18), S(19; 20, 21, 22), (1, 5, 11), (1,
6, 12), (1, 7, 13), (1, 8, 15), (1, 9, 19), (1, 10, 16), (1, 14, 18), (1, 17, 20),
(1, 21, 22), (2, 3, 17), (2, 4, 11), (2, 7, 10), (2, 8, 18), (2, 9, 15), (2, 12,
20), (2, 13, 21), (2, 14, 22), (2, 16, 19), (3, 4, 12), (3, 5, 22), (3, 6, 18),
(3, 9, 10), (3, 11, 19), (3, 13, 20), (3, 14, 16), (3, 15, 21), (4, 5, 7), (4, 6,
8), (4, 13, 18), (4, 14, 19), (4, 15, 20), (4, 16, 22), (4, 17, 21), (5, 6, 9),
(5, 8, 20), (5, 10, 15), (5, 12, 18), (5, 13, 19), (5, 14, 21), (5, 16, 17), (6,
7, 16), (6, 10, 21), (6, 11, 17), (6, 13, 14), (6, 15, 19), (6, 20, 22), (7, 8,
19), (7, 9, 12), (7, 11, 15), (7, 14, 17), (7, 18, 22), (7, 20, 21), (8, 9, 21),
(8, 10, 14), (8, 11, 16), (8, 12, 22), (8, 13, 17), (9, 11, 22), (9, 13, 16), (9,
14, 20), (9, 17, 18), (10, 11, 20), (10, 12, 13), (10, 17, 22), (10, 18, 19),
(11, 18, 21), (12, 14, 15), (12, 16, 21), (12, 17, 19), (13, 15, 22), (16, 18,
20). Thus 6 ∈ I(K22).

(3) n = 28.

(a) By Lemma 5.3 (i), we have I(K28) ⊇ {9, 10, . . . , 126}.
(b) Take K28 = 4K4 ⊕ K12 ⊕ K4(4),12. By Theorem 2.2, there is a 3-GDD

of type 44121, i.e., there is a PBD(28, {12, 4, 3}), Since 4 ∈ I(4K4) and
3, 4 ∈ I(K12) we have 7, 8 ∈ I(K28).

(4) n = 34.

(a) By Lemma 5.3 (i), we have I(K34) ⊇ {11, 12, . . . , 187}.
(b) Take K34 = K10 ⊕ K10,24 ⊕ K24. Partition the difference set D =

{1, 2, . . . , 12} of K24 into {1, 7, 9, 10, 11}, {2, 3, 5}, {4, 8}, and {6, 12}.
By Theorem 5.2, 〈{1, 7, 9, 10, 11}〉24 can be decomposed into 10 1-factors.
Then 〈{1, 7, 9, 10, 11}〉24∪K10,24 has a C3-decomposition. Both 〈{2, 3, 5}〉24

and 〈{4, 8}〉24 have a C3-decomposition. 〈{6, 12}〉24 is a K4-factor (6
copies of K4). Since 3 ∈ I(K10), we have 9 ∈ I(K34).
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(c) Take K34 = K6⊕K6,28⊕K28. Partition the difference set D = {1, 2, . . . ,

14} of K28 into {1, 12, 13}, {2, 6, 8}, {4, 5, 9}, {3, 10, 11}, and {7, 14}. By
Theorem 5.2, 〈{3, 10, 11}〉28 can be decomposed into 6 1-factors. 〈{3, 10,

11}〉28 ∪K6,28 has a C3-decomposition. 〈{1, 12, 13}〉28, 〈{2, 6, 8}〉28, and
〈{4, 5, 9}〉28 have a C3-decomposition. 〈{7, 14}〉28 is a K4 factor (7 copies
of K4). Since 3 ∈ I(K6), we have 10 ∈ I(K34).

Combine Example 3.4, Lemmas 5.3, 5.4 and 5.5, we get the following result.

Theorem 5.6. Let n be a positive integer, n ≡ 4 (mod 6) and n ≥ 10. Then
I(Kn) = Jn = {q|�n

4� ≤ q ≤ n(n−1)
6 , q is an integer}.

Lemma 5.7. Let k be a positive integer, n = 6k + 6, and n ≥ 36. Then I(Kn) ⊇
{�n

4 �, �n
4 � + 1, . . . , 6k + 2}.

Proof.

(1) If k is odd and k = 2m + 1, where m is an integer, then n = 12(m + 1). Since
n ≥ 36, we have m ≥ 2. By Theorem 2.2, there is a 3-GDD of type 12m+1,
i.e., there is a PBD(n, {12, 3}). By Example 3.5, I(K12) = {3, 4, 5, . . . , 22}.
Thus I(K12m+12) ⊇ (m + 1) · I(K12) = {3m + 3, 3m + 4, . . . , 22m + 22} ⊇
{�n

4 �, �n
4 � + 1, . . . , 6k + 2}.

(2) If k is even and k = 2m, where m is an integer, then n = 12m+6. Since n ≥ 36,
we have m ≥ 3. By Theorem 2.2, there is a 3-GDD of type 12m61, i.e., there is
a PBD(n, {12, 6, 3}). By Examples 3.5 and 3.1, I(K12) = {3, 4, 5, . . . , 22} and
I(K6) = {3, 4, 5}. Thus I(K12m+6) ⊇ m · I(K12) + I(K6) = {3m + 3, 3m +
4, . . . , 22m + 5}. Next, we will get 3m + 2 ∈ I(K12m+6).

By [1, Theorem 8.3.3], we can get a Skolem triple system of order 4r + 1,
for r ≥ 1. Let T be a Skolem triple system of order 4r + 1 where T is
{{1, 12r+2, 12r+3}, {2t+1, 10r−t, 10r+t+1}, {2r+2t−1, 5r−t+1, 7r+t},
{4r−1, 5r+1, 9r}, {4r+1, 8r, 12r+1}, {2r, 10r, 12r}, {2t, 6r−t+1, 6r+t+1},
{2r + 2t, 9r − t, 11r + t}, {4r, 6r + 1, 10r + 1}|1 ≤ t ≤ r − 1}.

(a) If m = 2r + 1, then n = 24r + 18. Let K24r+18 = K10 ⊕ K10,24r+8 ⊕
K24r+8. Since T is a partition of {1, 2, . . . , 12r + 3} into 4r + 1 triples,
K24r+7 has a C3-decomposition. Since the difference set of K24r+8 is
D = {1, 2, . . . , 12r+4}, D can be partitioned into T and {12r+4}. From
T , pick two triples (1, 12r + 2, 12r + 3), (2, 6r, 6r + 2) with {12r + 4},
we can get two sets {1, 6r, 12r+ 2, 12r+ 3, 2} and {6r + 2, 12r + 4}. By
Theorem 5.2, the graphs 〈{1, 6r}〉24r+8 and 〈{12r+2, 12r+3}〉24r+8 can be
decomposed into two Hamilton cycles, i.e., four 1-factors respectively. Thus
〈{1, 6r, 12r+2, 12r+3, 2}〉24r+8∪K10,24r+8 has a C3-decomposition. The
graph 〈{6r+2, 12r+4}〉24r+8 is a K4-factor. Thus there are 6r+2 copies
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of S3 in the decomposition of one K4-factor and 3 ∈ I(K10). Therefore,
6r + 5 = 3m + 2 = �n

4 � ∈ I(K12m+6).
(b) If m = 2r, then n = 24r + 6. K24r+6 = K10 ⊕ K24r−4 ⊕ K10,24r−4. The

difference set of K24r−4 is D = {1, 2, . . . , 12r − 2}. D can be partitioned
into triples in T except those triples containing 12r − 1, 12r, . . . , 12r + 3
and R = {1, 4r+1, 8r, 2r, 10r, 4r−2, 8r+1}. Pick two triples (4, 6r−1,

6r + 3) and (4r − 4, 8r + 2, 12r − 2} from D union R to get the set A =
{1, 4r+1, 8r, 2r, 10r, 4r−2, 8r+1, 4, 6r−1, 6r+3, 4r−4, 8r+2, 12r−2}.
Then A can be partitioned into 6 subsets: {2r, 8r, 10r}, {1, 8r+1, 8r+2},
{4r−4, 6r+3}, {4, 4r+1}, {4r−2}, {6r−1, 12r−2}. 〈{2r, 8r, 10r}〉24r−4

and 〈{1, 8r + 1, 8r + 2}〉24r−4 have C3-decomposition. By Theorem 5.2,
〈{4r − 4, 6r + 3, 4, 4r + 1, 4r − 2}〉24r−4 can be decomposed into 10 1-
factors, thus 〈{4r − 4, 6r + 3, 4, 4r + 1, 4r − 2}〉24r−4 ∪ K10,24r−4 has a
C3-decomposition. 〈{6r−1, 12r−2}〉24r−4 is a K4-factor (contains 6r−1
copies of K4) and 3 ∈ I(K10). Therefore, 6r + 2 = 3m + 2 = �n

4 � ∈
I(K12m+6).

From (a), and (b), we get I(K12m+6) ⊇ {3m+2, 3m+3, 3m+4, . . . , 22m+5} ⊇
{�n

4 �, �n
4 � + 1, . . . , 6k + 2}.

Lemma 5.8. Let n ≡ 0 (mod 6) and 18 ≤ n ≤ 30. Then I(Kn) = Jn.

Proof.

(1) n = 18.
(a) By Lemma 5.3 (ii), we have I(K18) ⊇ {15, 16, . . . , 51}.
(b) Let K18 = K6⊕K6,12⊕K12. Partition the difference set D = {1, 2, . . . , 6}

of K12 into {1, 2, 5}, {3, 6}, {4}. By Theorem 5.2, 〈{1, 2, 5}〉12 can be de-
composed into 6 1-factors, thus 〈{1, 2, 5}〉12∪K6,12 has a C3-decomposition.
〈{4}〉12 has a C3-decomposition. 〈{3, 6}〉12 is a K4-factor (3 copies of K4).
Since I(K6) = {3, 4, 5}, we have 6, 7, 8 ∈ I(K18).

(c) Let K18 = 3K6⊕K6,6,6. By Theorem 2.2, K6,6,6 has a C3-decomposition.
Since I(K6) = {3, 4, 5}, we have I(K18) ⊇ 3·I(K6) = {9, 10, 11, . . . , 15}.

(d) K18 can be decomposed as follows: S(1; 2, 3, 4), S(4; 8, 9, 10), S(5; 4,
6, 7), S(11; 12, 13, 14), S(15; 16, 17, 18) (1, 5, 9), (1, 6, 11), (1, 7, 13),
(1, 8, 15), (1, 10, 16), (1, 12, 18), (1, 14, 17), (2, 3, 18), (2, 4, 17), (2, 5,
16), (2, 6, 12), (2, 7, 14), (2, 8, 13), (2, 9, 15), (2, 10, 11), (3, 4, 12), (3, 5,
17), (3, 6, 14), (3, 7, 15), (3, 8, 16), (3, 9, 11), (3, 10, 13), (4, 6, 15), (4, 7,
18), (4, 11, 16), (4, 13, 14), (5, 8, 10), (5, 11, 15), (5, 12, 14), (5, 13, 18)
(6, 7, 16), (6, 8, 18), (6, 9, 13), (6, 10, 17), (7, 8, 11), (7, 9, 17), (7, 10,
12), (8, 9, 14), (8, 12, 17), (9, 10, 18), (9, 12, 16), (10, 14, 15), (11, 17,
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18), (12, 13, 15), (13, 16, 17), (14, 16, 18). Thus 5 ∈ I(K18). Therefore,
I(K18) ⊇ {5, 6, 7, . . . , 51} = J18.

(2) n = 24.
(a) By Lemma 5.3 (ii), we have I(K24) ⊇ {21, 22, . . . , 92}.
(b) Let K24 = 6K4 ⊕ K6(4). By Theorem 2.2, K6(4) can be decomposed into

C3. Thus 6 ∈ I(K24).

(c) Let K24 = K12 ⊕K1,12 ⊕ (K11,12 ⊕K12). Since K12 can be decomposed
into 11 1-factors, K11,12 ⊕ K12 has a C3-decomposition. By Example 3.5,
I(K12) = {3, 4, 5, . . . , 22} and 4 ∈ I(K1,12), we have 7, 8, 9, . . . , 26 ∈
I(K24). Therefore I(K24) ⊇ {6, 7, 8, . . . , 92} = J24.

(3) n = 30.

(a) By Lemma 5.3 (ii), we have I(K30) ⊇ {27, 28, · · · , 145}.

(b) Let K30 = 3K10⊕K10,10,10. By Example 3.4, I(K10) = {3, 4, 5, . . . , 15}.
Thus 9, 10, 11, . . . , 45 ∈ I(K30).

(c) Let K30 = K10⊕K10,20⊕K20. Partition the difference set D = {1, 2, . . . ,

10} of K20 into {1, 3, 4}, {2, 6, 7, 8, 9}, {5, 10}. 〈{1, 3, 4}〉20 has a C3-
decom-position. 〈{2, 6, 7, 8, 9}〉20 can be decomposed into 10 1-factors,
thus 〈{1, 3, 7, 8, 9}〉20 ∪ K10,20 has a C3-decomposition. 〈{5, 10}〉20 is a
K4-factor (5 copies of K4). Since 3 ∈ I(K10), we have 8 ∈ I(K30).
Therefore, I(K30) ⊇ {8, 9, . . . , 145} = J30.

Combine Examples 3.1, 3.5, Lemmas 5.3, 5.7 and 5.8, we get the following result.

Theorem 5.9. Let n ≡ 0 (mod 6) and n ≥ 6. Then

I(Kn) = Jn =
{

q

∣∣∣∣max
{
3,

⌈n

4

⌉}
≤ q ≤ n(n − 1)

6
, q is an integer

}
.
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