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PSEUDO PARALLEL CR-SUBMANIFOLDS
IN A NON-FLAT COMPLEX SPACE FORM

Avik De and Tee-How Loo

Abstract. We classify pseudo parallel proper CR-submanifolds in a non-flat
complex space form with CR-dimension greater than one. With this result, the
non-existence of recurrent as well as semi parallel proper CR-submanifolds in
a non-flat complex space form with CR-dimension greater than one can also be
obtained.

1. INTRODUCTION

Let M be an isometrically immersed submanifold in a Riemannian manifold M̂ .
Denote by 〈, 〉 the metric tensor of M̂ as well as that induced on M . Then M is said to
be pseudo parallel if its second fundamental form h satisfies the following condition

R̄(X, Y )h = f((X ∧ Y )h)

for all vectors X, Y tangent to M , where f , called the associated function, is a smooth
function on M , R̄ is the curvature tensor corresponding to the van der Waerden-
Bortolotti connection ∇̄ and

(X ∧ Y )Z = 〈Y, Z〉X − 〈X, Z〉Y.

In particular, when the associated function f = 0, M is called a semi parallel subman-
ifold. It is called recurrent if and only if (∇̄Xh)(Y, Z) = τ(X)h(Y, Z), where τ is a
1-form.

Pseudo parallel submanifolds is a generalization of semi parallel and parallel sub-
manifolds. Parallel submanifolds in a real space form was completely classified in
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[12], [24]. Semi parallel and pseudo parallel submanifolds in a real space form were
also studied extensively by many researchers (cf. [1, 2, 9, 10, 19, 21]).

By n-dimensional complex space forms M̂n(c), we mean complete and simply con-
nected n-dimensional Kaehler manifolds with constant holomorphic sectional curvature
4c. For each real number c, up to holomorphic isometries, M̂n(c) is a complex projec-
tive space CPn, a complex Euclidean space Cn or a complex hyperbolic space CHn

depending on whether c is positive, zero or negative, respectively.
It is known that a parallel submanifold of a non-flat complex space form M̂n(c),

c �= 0, is either holomorphic or totally real (cf. [7]). As a result, there does not exist
any parallel real hypersurface in M̂n(c), c �= 0. Further, the non-existence of semi
parallel real hypersurfaces in M̂n(c), c �= 0, n ≥ 2, was proved by Ortega (cf. [23]).
Nevertheless, there do exist pseudo parallel real hypersurfaces in M̂n(c), c �= 0. Indeed,
Lobos and Ortega gave a classification of pseudo parallel real hypersurfaces in M̂n(c),
c �= 0, n ≥ 2, as below:

Theorem 1.1. ([17]). Let M be a connected pseudo parallel real hypersurface in
M̂n(c), n ≥ 2, c �= 0, with associated function f . Then f is constant and positive,
and M is an open part of one of the following real hypersurfaces:

(a) For c = −1 < 0:
(i) A geodesic hypersphere of radius r > 0 with f = coth2 r.
(ii) A tube of radius r > 0 over CHn−1 with f = tanh2 r.
(iii) A horoshpere with f = 1.

(b) For c = 1 > 0:
(i) A geodesic hypersphere of radius r ∈ ]0, π/2[ with f = cot2 r.

Note that a real hypersurface in a Kaehler manifold is a CR-submanifold of codi-
mension one. A natural problem arisen is to generalize these known results on real
hypersurfaces in M̂n(c) into the content of CR-submanifolds. For technical reasons,
certain additional restrictions such as the semi-flatness assumptions on the normal cur-
vature tensor (cf. [25]), or restriction on the CR-codimension (cf. [11], [20]), have
been imposed while dealing with CR-submanifolds of higher codimension. It would
be interesting to see if any nice results on CR-submanifolds could be obtained without
these restrictions.

In this paper, we study pseudo parallel proper CR-submanifolds in M̂n(c), c �= 0,
with none of the above mentioned restrictions. More precisely, we prove the following:

Theorem 1.2. Let M be a connected proper CR-submanifold in M̂n(c), c �= 0.
Suppose that dimC D = p ≥ 2. If M is pseudo parallel with associated function f ,
then f is a positive constant and M is an open part of one of the following spaces:

(a) For c = −1 < 0:
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(i) A geodesic hypersphere in CHp+1 ⊂ CHn of radius r > 0 with f =
coth2 r.

(ii) A tube over CHp in CHp+1 ⊂ CHn of radius r > 0 with f = tanh2 r.
(iii) A horoshpere in CHp+1 ⊂ CHn with f = 1.

(b) For c = 1 > 0:

(i) A geodesic hypersphere in CPp+1 ⊂ CPn of radius r ∈ ]0, π/2[ with
f = cot2 r.

(ii) An invariant submanifold in a geodesic hypersphere in CPn of radius
r ∈ ]0, π/2[ with f = cot2 r.

From the above theorem, we see that the associated function f is a non-zero constant
for pseudo parallel proper CR-submanifolds in M̂n(c), c �= 0. Hence we have

Corollary 1.1. There does not exist any semi parallel proper CR-submanifold M
in M̂n(c), c �= 0, with dimC D ≥ 2.

This corollary generalizes the non-existence of semi parallel real hypersurfaces in
M̂n(c), c �= 0 (cf. [23]) and improves a result in [16]: There does not exist any semi
parallel proper CR-submanifold in M̂n(c), c �= 0, with semi-flat normal connection.

By applying Corollary 1.1, we can then prove the non-existence of proper recurrent
CR-submanifolds in M̂n(c), c �= 0, with dimC D ≥ 2 (cf. Corollary 5.2).

The paper is organized as follows:
In Section 2, we fix some notations and recall some basic material of CR-

submanifolds in a Kaehler manifold which we use later. A fundamental property of
Hopf hypersurfaces in M̂n(c), c �= 0, is that the principal curvature α corresponding
to the Reeb vector field ξ is constant. Moreover, the other principal curvatures can
be related to α by a nice formula (cf. [22]). We generalize these results to mixed-
geodesic CR-submanifolds of maximal CR-dimension in M̃n(c) in Section 3. In Section
4 we present the proof of Theorem 1.2. In the last section, recurrence and semi-
parallelism have been discussed in the context of Riemannian vector bundles. We
show that for any homomorphism of Riemannian vector bundles, recurrence directly
implies semi-paralellism and thus conclude that there does not exist any proper recurrent
CR-submanifold M in M̃n(C), c �= 0, with dimC D ≥ 2 (cf. Corollary 5.2).

2. CR-SUBMANIFOLDS IN A KAEHLER MANIFOLD

Let M̂ be a Riemannian manifold, and let M be a connected Riemannian manifold
isometrically immersed in M̂ . For a vector bundle V over M , we denote by Γ(V) the
Ω0(M)-module of cross sections on V , where Ωk(M) denotes the space of k-forms on
M .

Denote by 〈, 〉 the Riemannian metric of M̂ and M as well, h the second funda-
mental form and Aσ the shape operator of M with respect to a vector σ normal to M .
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Also, let ∇ denote the Levi-Civita connection on the tangent bundle TM of M and
∇⊥, the induced normal connection on the normal bundle TM⊥ of M . The second
fundamental form h and the shape operator Aσ of M with respect to σ ∈ Γ(TM⊥) is
related by the following equation

〈h(X, Y ), σ〉 = 〈AσX, Y 〉

for any X, Y ∈ Γ(TM).
Let R and R⊥ be the curvature tensors associated with ∇ and ∇⊥ respectively.

We denote by ∇̄ the van der Waerden-Bortolotti connection and R̄ its corresponding
curvature tensor. Then we have

(R̄(X, Y )A)σZ = R(X, Y )AσZ − AσR(X, Y )Z − AR⊥(X,Y )σZ,

(R̄(X, Y )h)(Z, W ) = R⊥(X, Y )h(Z, W )− h(R(X, Y )Z, W )

−h(Z, R(X, Y )W ),

for any X, Y, Z, W ∈ Γ(TM) and σ ∈ Γ(TM⊥). It can be verified that

〈(R̄(X, Y )h)(Z, W ), σ〉= 〈(R̄(X, Y )A)σZ, W 〉.

A submanifold M is said to be pseudo parallel if

(R̄(X, Y )h)(Z, W ) = f [(X ∧ Y )h](Z, W )

for any X, Y, Z, W ∈ Γ(TM), where f ∈ Ω0(M), is called the associated function,
and

(X ∧ Y )Z = 〈Y, Z〉X − 〈X, Z〉Y,

[(X ∧ Y )h](Z, W ) = −h((X ∧ Y )Z, W )− h(Z, (X ∧ Y )W ),

[(X ∧ Y )A]σZ = (X ∧ Y )AσZ − Aσ(X ∧ Y )Z.

If the associated function f = 0 then the submanifold M is said to be semi parallel.
Now, let M̂ be a Kaehler manifold with complex structure J . For any X ∈ Γ(TM)

and σ ∈ Γ(TM⊥), we denote the tangential (resp. normal) part of JX and Jσ by φX
and Bσ (resp. ωX and Cσ) respectively. From the parallelism of J , we have (cf. [25,
pp. 77])

(∇̄Xφ)Y = AωY X + Bh(X, Y )(2.1)

(∇̄Xω)Y = −h(X, φY ) + Ch(X, Y )(2.2)
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for any X , Y ∈ Γ(TM).
The maximal J-invariant subspace Dx of the tangent space TxM , x ∈ M is given

by
Dx = TxM ∩ JTxM.

Definition 2.1. ([6]). A submanifold M in a Kaehler manifold M̂ is called a
generic submanifold if the dimension of Dx is constant along M . The distribution
D : x → Dx, x ∈ M is called the holomorphic distribution (or Levi distribution) on
M and the complex dimension of D is called the CR-dimension of M .

Definition 2.2. ([4]). A generic submanifold M in a Kaehler manifold M̂ is
called a CR-submanifold if the orthogonal complementary distribution D⊥ of D in
TM is totally real, i.e., JD⊥ ⊂ TM⊥. The real dimension of D⊥ is called the
CR-codimension of M .

If D⊥ = {0} (resp. D = {0}), the CR-submanifold M is said to be holomorphic
(resp. totally real). A CR-submanifold M is said to be proper if it is neither holomor-
phic nor totally real. Let ν be the orthogonal complementary distribution of JD⊥ in
TM⊥. Then an anti-holomorphic submanifold M is a CR-submanifold with ν = {0},
i.e., JD⊥ = TM⊥. A real hypersurface is a proper CR-submanifold of codimension
one.

For a local frame of orthonormal vectors E1, E2, · · · , E2p in Γ(D), where p =
dimC D, we define the D-mean curvature vector HD by

HD =
1
2p

2p∑
j=1

h(Ej, Ej).

Lemma 2.1. ([20]). Let M be a CR-submanifold in a Kaehler manifold M̂ . Then
〈(φAσ + Aσφ)X, Y 〉 = 0, for any X, Y ∈ Γ(D) and σ ∈ Γ(ν). Moreover, we have
CHD = 0.

If h(D⊥,D) = 0, the CR-submanifold M is said to be mixed totally geodesic. M
is said to be mixed foliate if it is mixed totally geodesic and D is integrable.

The following lemma characterizes mixed foliate CR-submanifolds in a Kaehler
manifold.

Lemma 2.2. ([5]). A CR-submanifold M in a Kaehler manifold is mixed foliate
if and only if Bh(φX, Y ) = Bh(X, φY ), for any X, Y ∈ Γ(D) and h(D⊥,D) = 0.

Now suppose the ambient space is an n-dimensional complex space form M̂n(c)
with constant holomorphic sectional curvature 4c. The curvature tensor R̂ of M̂n(c) is
given by

R̂(X, Y )Z = c(X ∧ Y + JX ∧ JY − 2〈JX, Y 〉J)Z
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for any X, Y, Z ∈ Γ(TM̂n(c)). The equations of Gauss, Codazzi and Ricci are then
given respectively by

R(X, Y )Z = c(X ∧ Y + φX ∧ φY − 2〈φX, Y 〉φ)Z + Ah(Y,Z)X

−Ah(X,Z)Y (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z)

= c{〈φY, Z〉ωX − 〈φX, Z〉ωY − 2〈φX, Y 〉ωZ}R⊥(X, Y )σ

= c(ωX ∧ ωY − 2〈φX, Y 〉C)σ + h(X, AσY ) − h(Y, AσX)

for any X , Y , Z ∈ Γ(TM) and σ ∈ Γ(TM⊥).
We now recall the following known result.

Theorem 2.1. ([5, 8]). There does not exist any proper mixed foliate CR-
submanifold in M̂n(c), c �= 0.

3. MIXED-TOTALLY GEODESIC CR-SUBMANIFOLDS IN A COMPLEX SPACE FORM

A real hypersurface M in a Kaehler manifold is said to be Hopf if it is mixed-
totally geodesic. A fundamental property of Hopf hypersurfaces in M̂n(c), c �= 0,
is that the principal curvature α corresponds to the Reeb vector field ξ is constant.
Moreover, the other principal curvatures could be related to α by a nice formula (cf.
[22]). In this section, we show that these properties hold for mixed-totally geodesic
proper CR-submanifolds of maximal CR-dimension.

Suppose M is a real (2p + 1)-dimensional CR-submanifold in M̂n(c) of maximal
CR-dimension, that is, dimC D = p and dimD⊥ = 1. Let N ∈ Γ(JD⊥) be a unit
vector field, ξ = −JN and η the 1-form dual to ξ. Then we have

φ2X = −X + η(X)ξ(3.1)

ωX = η(X)N ; Bσ = −〈σ, N 〉ξ(3.2)

for any X ∈ Γ(TM) and σ ∈ Γ(TM⊥). It follows from (2.1) and (2.2) that

(∇Xφ)Y = η(Y )ANX − 〈ANX, Y 〉ξ(3.3)

∇Xξ = φANX ; ∇⊥
XN = Ch(X, ξ)(3.4)

h(X, φY ) = −〈φANX, Y 〉N − η(Y )Ch(X, ξ) + Ch(X, Y )(3.5)

for any X , Y ∈ Γ(TM) and σ ∈ Γ(TM⊥).
The equations of Codazzi and Ricci can also be reduced to

(3.6)
(∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z) = c{η(X)〈φY,Z〉− η(Y )〈φX, Z〉

−2η(Z)〈φX, Y 〉}N
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R⊥(X, Y )σ = −2c〈φX, Y 〉Cσ + h(X, AσY ) − h(Y, AσX)(3.7)

for any X , Y , Z ∈ Γ(TM) and σ ∈ Γ(TM⊥).

Lemma 3.3. Let M be a mixed-totally geodesic proper CR-submanifold of maximal
CR-dimension in M̂n(c), c �= 0, and let α = 〈h(ξ, ξ), N 〉. Then

(a) 2ANφAN − α(φAN + ANφ) − 2cφ = 0;
(b) if ANY = λY and ANφY = λ∗φY , where Y ∈ Γ(D), then (2λ−α)(2λ∗−α) =

α2 + 4c;
(c) α is a constant.

Proof. By the hypothesis,

h(Y, ξ) = η(Y )h(ξ, ξ)(3.8)

for any Y ∈ Γ(TM). Differentiating covariantly both sides of (3.8) in the direction of
X ∈ Γ(TM), we get

(∇̄Xh)(Y, ξ) + h(φANX, Y ) = 〈φANX, Y 〉h(ξ, ξ) + η(Y )∇⊥
Xh(ξ, ξ).

By applying the Codazzi equation and this equation, we have

(3.9)
h(φANX, Y )−h(X, φANY )−〈(φAN+ANφ)X, Y 〉h(ξ, ξ)−2c〈φX, Y 〉N

= η(Y )∇⊥
Xh(ξ, ξ)−η(X)∇⊥

Y h(ξ, ξ).

By putting Y = ξ in this equation, we obtain

∇⊥
Xh(ξ, ξ) = η(X)∇⊥

ξ h(ξ, ξ)(3.10)

and

(3.11)
h(φANX, Y )− h(X, φANY ) − 〈(φAN + ANφ)X, Y 〉h(ξ, ξ)

= 2c〈φX, Y 〉N.

By taking inner product of (3.11) with N , we get

2ANφAN − α(φAN + ANφ) − 2cφ = 0.

Statement (b) is directly from this equation. Next, it follows from (3.4), (3.8), and
(3.10) that

Y α = Y 〈h(ξ, ξ), N 〉= gη(Y )
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for any Y ∈ Γ(TM), where g = ξα, i.e., dα = gη. Hence

0 = d2α = dg ∧ η + gdη.

Since 2dη(X, ξ) = 〈(φAN + ANφ)X, ξ〉 = 0 and Xg − (ξg)η(X) = dg ∧ η(X, ξ),
for any X ∈ Γ(TM), we have dg = (ξg)η. Hence we have gdη = 0. This implies
that g = 0 (for otherwise, if dη = 0 then D is integrable. It follows that M is mixed
foliate but this contradicts Theorem 2.1). Hence we have dα = 0 or α is a constant.

4. PROOF OF THEOREM 1.2

Throughout this section, suppose M is a (2p + q)-dimensional pseudo parallel
proper CR-submanifold in M̂n(c), c �= 0, where dimC D = p ≥ 2 and dimR D⊥ = q.

Note that SX,Y,Z((X ∧ Y )h)(Z, W ) = 0 and

SX,Y,Z(R̄(X, Y )h)(Z, W ) = SX,Y,Z{R⊥(X, Y )h(Z, W )− h(Z, R(X, Y )W )}

for any X, Y, Z, W ∈ Γ(TM), where SX,Y,Z denotes the cyclic sum over X, Y and
Z. By the Gauss and Ricci equations, we obtain the following equation

(4.1)

〈ωY, h(Z, W )〉〈ωX, σ〉−〈ωX, h(Z, W )〉〈ωY, σ〉−2〈φX, Y 〉〈Ch(Z, W ), σ〉
+〈ωZ, h(X, W )〉〈ωY, σ〉−〈ωY, h(X, W )〉〈ωZ, σ〉−2〈φY, Z〉〈Ch(X, W ), σ〉
+〈ωX, h(Y, W )〉〈ωZ, σ〉−〈ωZ, h(Y, W )〉〈ωX, σ〉−2〈φZ, X〉〈Ch(Y, W ), σ〉
−〈φY, W 〉〈h(Z, φX), σ〉+〈φX, W 〉〈h(Z, φY ), σ〉+2〈φX, Y 〉〈h(Z, φW ), σ〉
−〈φZ, W 〉〈h(X, φY ), σ〉+〈φY, W 〉〈h(X, φZ), σ〉+2〈φY, Z〉〈h(X, φW ), σ〉
−〈φX, W 〉〈h(Y, φZ), σ〉+〈φZ, W 〉〈h(Y, φX), σ〉+2〈φZ, X〉〈h(Y, φW ), σ〉
= 0.

for any X, Y, Z, W ∈ Γ(TM) and σ ∈ Γ(TM⊥). By putting Z ∈ Γ(TM), W ∈
Γ(D⊥), Y = φX , X ∈ Γ(D) with ||X || = 1 and X ⊥ Z, φZ in (4.1), we obtain

Ch(D⊥, TM) = 0.(4.2)

Let {E1, E2, · · · , E2p} be a local orthonormal frame on D. By putting X = Ej ,
Z = φEj for j ∈ {1, 2, · · · , 2p} in (4.1), and then summing up these equations, with
the help of (4.2), we obtain

(2p− 2)Ch(Y, W )− 2p〈φY, W 〉HD − h(φ2W, φY )

−2h(φ2Y, φW )− (2p + 1)h(Y, φW )= 0(4.3)
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for any Y, W ∈ Γ(TM). By virtue of (4.2), after putting Y ∈ Γ(D⊥) in the above
equation, we have

(4.4) h(D⊥,D) = 0.

This means that M is mixed-totally geodesic and so (4.3) reduces to

(4.5) (2p − 2)Ch(Y, W )− 2p〈φY, W 〉HD + h(W, φY ) − (2p − 1)h(Y, φW ) = 0

for any Y, W ∈ Γ(TM). Next, we put Y = W in the above equation to get Ch(Y, Y )−
h(Y, φY ) = 0, then, combining with the linearity of C, h and φ, we obtain

(4.6) 2Ch(Y, W ) − h(W, φY )− h(Y, φW ) = 0

for any Y, W ∈ Γ(TM). It follows from this equation and (4.5) that

(4.7) h(Y, φW ) = 〈Y, φW 〉HD + Ch(Y, W )

for any Y, W ∈ Γ(TM). From (4.1) and (4.7), we have

〈ωY, h(Z, W )〉ωX − 〈ωX, h(Z, W )〉ωY + 〈ωZ, h(X, W )〉ωY

− 〈ωY, h(X, W )〉ωZ + 〈ωX, h(Y, W )〉ωZ − 〈ωZ, h(Y, W )〉ωX = 0

for any X, Y, Z, W ∈ Γ(TM).
We claim that q = 1. Suppose the contrary that q ≥ 2. By putting Z = W ∈ Γ(D),

Y = BHD and X ⊥ BHD a unit vector field in D⊥ in this equation, with the help
of (4.6), we obtain BHD = 0. This, together with (4.6) imply that h(D,D) = 0 and
hence, by Lemma 2.2 and (4.4), M is mixed foliate. This contradicts Theorem 2.1.
Accordingly, q = 1.

Let N ∈ Γ(JD⊥) be a unit vector field normal to M , and (φ, η, ξ) the almost
contact structure on M as defined in Section 3. It follows from Lemma 2.1 and
equations (3.1), (3.2), (4.2) and (4.4) that

(4.8)
HD = λN,

h(X, ξ) = η(X)h(ξ, ξ) = αη(X)N

for any X ∈ Γ(TM), where λ = 〈HD, N 〉 and α = 〈h(ξ, ξ), N 〉. By using (4.6) and
the above two equations, we obtain

(4.9)
h(X, Y ) = h(X,−φ2Y + η(Y )ξ)

= {λ〈X, Y 〉 + bη(X)η(Y )}N − Ch(X, φY )

for any X, Y ∈ Γ(TM), where b = α − λ. From Lemma 3.3 and (4.9), we obtain

λ2 − αλ − c = 0(4.10)
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and so λ is a non-zero constant. Further, for any unit vector Y ∈ D, we have

0 = 〈(R̄(ξ, Y )h)(Y, ξ), N〉〉− f〈((ξ ∧ Y )h)(Y, ξ), N〉 = (α − λ)(f − αλ − c).

Hence, f = λ2 is a positive constant.
We consider two cases: Ch = 0 and Ch �= 0.

Case 1. Ch = 0.
By the hypothesis, (3.4) and the fact that λ �= 0, the first normal space N 1

x = RNx,
x ∈ M , and N 1 is a parallel normal subbundle of TM⊥. Since ν is J-invariant, by
Codimension Reduction Theorems (cf. [11], [15]), M is contained in a totally geodesic
holomorphic submanifold M̂p+1(c) as a real hypersurface.

Now, let ∇′, A′, etc denote the Levi-Civita connection on M induced by the Levi-
Civita connection of M̂p+1(c), the shape operator, etc, respectively. Since M̂p+1(c) is
totally geodesic in M̂n(c), we can see that ∇′

XY = ∇XY , A′ = AN and N ′ = N .
Further, as ∇⊥N = 0, we have R⊥(X, Y )N = 0 and so R′(X, Y )A = (R̄(X, Y )A)N ,
for any X, Y tangent to M . Then M is a pseudo parallel real hypersurface in M̂p+1(c)
and by Theorem 1.1, we obtain List (a) and (b-i) in Theorem 1.2.

Case 2. Ch �= 0.
Suppose Ch �= 0 at a point x ∈ M . There is a number a �= 0, σ ∈ νx and a unit

vector Y ∈ Dx such that AσY = aY . From Lemma 2.1, we have AσφY = −aφY .
Then from 〈(R̄(φY, Y )h)(Y, φY ), σ〉 = f〈((φY ∧ Y )h)(Y, φY ), σ〉, we obtain

a{3c− 2〈h(Y, φY ), h(Y, φY )〉 + 〈h(Y, Y ), h(φY, φY )〉} = af.

On the other hand, from (4.9), we have

〈h(Y, φY ), h(Y, φY )〉 = 〈Ch(Y, Y ), Ch(Y, Y )〉
〈h(Y, Y ), h(φY, φY )〉 = λ2 − 〈Ch(Y, Y ), Ch(Y, Y )〉.

Since a �= 0 and f = λ2, these equations give c = 〈Ch(Y, Y ), Ch(Y, Y )〉. Hence, we
conclude that c > 0 (without loss of generality, we assume c = 1) and ||Ch|| > 0 on
the whole of M .

Fixed r > 0 and let BM be the unit normal bundle over M . The focal map Φr is
given by

BM  σ
Φr−→ exp(rσ) ∈ CPn

where exp is the exponential map on CPn. For each x ∈ M and unit vector σ ∈
TxM

⊥, denote by γσ(s) the normalized geodesic in CPn passes through x ∈ M at
s = 0 with velocity σ. Let YX be the M -Jacobi field along γσ with initial values
YX(0) = X ∈ TxM and ẎX(0) = −AσX . Then (cf. [3, pp.225])

dΦr(σ)X = YX(r).
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In view of (4.9), AN has two distinct constant eigenvalues α and λ with eigenspaces
Rξ and Dx respectively at each x ∈ M . We put α = 2 cot 2r, 0 < r < π/2. Then
λ = cot r or λ = − cot(π

2 − r) by (4.10).

Subcase 2-a. λ = cot r.
Since λ is a nonzero constant, by (4.8), N = λ−1HD is globally defined on M .

We may immerse M in BM as a submanifold in a natural way: x �→ Nx, x ∈ M .
We claim that Φr(M) is a singleton for a suitable choice of r. This can be done

by showing that dΦr(Nx)TxM = {0}, for each x ∈ M . We first note that at each
z ∈ CPn, the Jacobi operator R̂σ := R̂(·, σ)σ, σ ∈ TzCPn, has eigenvalues 0, 4 and 1
with eigenspaces Rσ, RJσ and (Rσ ⊕ RJσ)⊥ respectively, To compute dΦr(Nx)X ,
X ∈ TxM , we select the Jacobi field

YX(t) =

{ (
cos 2t − α

2 sin 2t
) EX(t), X = ξ

(cos t − λ sin t)EX(t), X ∈ Dx

where EX is the parallel vector field along γNx with EX(0) = X . Then we have
dΦr(Nx)X = YX(r) = 0 and conclude that Φr(M) = {z0}.

Subcase 2-b. λ = − cot(π
2 − r).

Note that cot 2r = − cot 2(π
2 − r). By selecting the Jacobi field

YX(t) =

{ (
cos 2t + α

2 sin 2t
) EX(t), X = ξ

(cos t + λ sin t)EX(t), X ∈ Dx

we can see that dΦπ/2−r(−Nx)X = 0, for X ∈ TxM and hence Φπ/2−r(M) = {z0}.

We have shown that Φr(M) = {z0} for some r ∈]0, π/2[ in both cases. By
checking the Jacobi fields of CPn (cf. [13, pp.149]), there is no conjugate point for
z0 along any geodesic in CPn of length r ∈]0, π/2[ starting at z0, we conclude that
M lies in a geodesic hypersphere M ′ around z0 in CPn with almost contact structure
(φ′, η′, ξ′), where ξ′ = −JN ′, η′ the 1-form dual to ξ′, φ′ = J|TM ′ − η′ ⊗ N ′ and N ′

a unit vector field normal to M ′. By the construction of M ′, we have N = N ′, ξ = ξ′

and φ = φ′ on M . It follows that φ′TM ⊂ TM and so M is an invariant submanifold
of M ′ (cf. [25]). Hence we obtain List (b-ii) in Theorem 1.2.

5. RECURRENT CR-SUBMANIFOLDS IN A NON-FLAT COMPLEX SPACE FORM

In this section, we show that there are no proper recurrent CR-submanifolds in
M̂n(c), n �= 0. We first discuss the ideas of recurrence and semi-parallelism in a
general setting.

Let M be a Riemannian manifold and Ej a Riemannian vector bundle over M with
linear connection ∇j , j ∈ {1, 2}. It is known that E∗

1 ⊗ E2 is isomorphic to the vector
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bundle Hom(E1, E2), consisting of homomorphisms from E1 into E2. We denote by
the same 〈, 〉 the fiber metrics on E1 and E2 as well as that induced on Hom(E1, E2).
The connections ∇1 and ∇2 induce on Hom(E1, E2) a connection ∇̄, given by

(∇̄XF )V = (∇̄F )(V ; X) = ∇2
XFV − F∇1

XV

for any X ∈ Γ(TM), V ∈ Γ(E1) and F ∈ Γ(Hom(E1, E2)).
A section F in Hom(E1, E2) is said to be recurrent if there exists τ ∈ Ω1(M) such

that ∇̄F = F ⊗ τ . We may regard parallelism as a special case of recurrence, that is,
the case τ = 0. Let R̄, R1 and R2 be the curvature tensor corresponding to ∇̄, ∇1

and ∇2 respectively. Then we have

(R̄ · F )(V ; X, Y ) = (R̄(X, Y )F )V = R2(X, Y )FV − FR1(X, Y )V

for any X, Y ∈ Γ(TM), V ∈ Γ(E1) and F ∈ Γ(Hom(E1, E2)).
We begin with the following result.

Lemma 5.4. Let M be a connected Riemannian manifold, Ej a Riemannian vector
bundle over M , j ∈ {1, 2} and F ∈ Γ(Hom(E1, E2)). If F is recurrent then F is
semi-parallel.

Proof. Suppose F is recurrent, that is, ∇̄F = F ⊗ τ , for some τ ∈ Ω1(M). It
is trivial if F = 0. Suppose that μ := ||F || �= 0 on an open set U ⊂ M . Then the
line bundle R ⊗ F → U , spanned by F , is a parallel subbundle of Hom(E1, E2)|U .
Consider the unit section E := μ−1F of R ⊗ F . Then

∇̄E = μ−1∇̄F + F ⊗ d(μ−1) = F ⊗ (μ−1τ + d(μ−1)) = E ⊗ (τ − μ−1dμ).

Hence, E is also recurrent and ∇̄E = E ⊗ λ, where λ = τ − μ−1dμ ∈ Ω1(U). It
follows that

0 = d〈E, E〉= 2〈∇̄E, E〉= 2〈E, E〉λ = 2λ.

Hence E is a flat section. This implies that R ⊗ F is a flat bundle. Hence, R̄ · F = 0
on U . By a standard topological argument, we conclude that R̄ · F = 0 on M .

Geometrically, Lemma 5.4 tells us that the line subbundle of (Hom(E1, E2), ∇̄),
spanned by a nonvanishing recurrent section is a flat bundle.

A submanifold M of a Riemannian manifold M̂ is said to be recurrent if its
second fundamental form h is recurrent. Since every TxM⊥-valued bilinear map on
TxM naturally induces a homomorphism from TxM ⊗ TxM to TxM

⊥, x ∈ M , we
may identify h as a section of Hom(TM ⊗ TM, TM⊥). Accordingly, the following
result can be obtained immediately from Corollary 1.1 and Lemma 5.4.
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Corollary 5.2. There does not exist any proper recurrent CR-submanifold M in
M̂n(c), c �= 0, with dimC D ≥ 2.

Remark 5.1. The above corollary generalizes the non-existence of recurrent real
hypersurfaces in a non-flat complex space form (cf. [14, 18]).
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