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TWO COMPLEX COMBINATIONS
AND COMPLEX INTERSECTION BODIES

Denghui Wu, Zhenhui Bu and Tongyi Ma*

Abstract. This paper devotes to establish complex dual Brunn-Minkowski theory.
At first, we introduce the concepts of complex radial combination and complex
radial-Blaschke combination, and obtain the relations between those two combina-
tions and dual mixed volumes. Then, we extend the properties of real intersection
body to the complex case. Finally, we prove some complex geometric inequalities
about complex intersection bodies and complex mixed intersection bodies, such as
dual Brunn-Minkowski type, dual Aleksandrov-Fenchel type and dual Minkowski
type inequality. Moreover, as applications, we get some corollaries including an
isoperimetric type inequality and a uniqueness theorem.

1. INTRODUCTION

A compact, convex set in Rn is said to be a convex body if it has non empty
interior. A compact set K with non-empty interior in R

n (n ≥ 2) is called a star body
if tK ⊆ K, ∀t ∈ [0, 1], and the radial function ρK(θ) = sup{λ ≥ 0 : λθ ∈ K} is
continuous on the unit sphere Sn−1. The Minkowski functional of a star body K in
Rn is defined by ‖x‖K = min{a ≥ 0 : x ∈ aK}, so that ‖θ‖K = ρ−1

K (θ), θ ∈ Sn−1.
We use K(W ) to denote the set of convex bodies in W and Kc(W ) to denote the

subset of K(W ) that contains the centered (centrally symmetric with respect to the
origin) bodies. We denote by S(W ) and Sc(W ) the set of all star bodies and the set of
centered star bodies in W . For W = R

n, we shall usually write Kn and Kn
c as K(W )

and Kc(W ), and write Sn and Sn
c instead of S(W ) and Sc(W ). We shall use Voli(·)

to denote the i-dimensional volume function (which is the volume restricted to bodies
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of dimension i). Instead of Voln(·) we usually write V (·). The volume of the standard
unit ball Bn and unit sphere Sn−1 in R

n are denoted by ωn and σn−1, respectively.
At the beginning of the late nineteenth century, the classical Brunn-Minkowski

theory was developed by Minkowski, Blaschke, Aleksandrov, Fenchel, and others. The
Brunn-Minkowski inequality, combining volume and Minkowski addition, became an
extremely powerful tool in convex geometry with important applications to various other
areas of mathematics. The concept of projection body was introduced by Minkowski
as one of the core concepts within Brunn-Minkowski theory. See Schneider’s classic
book [36]. One extension of the core Brunn-Minkowski theory, Lp-Brunn-Minkowski
theory, was first studied by Lutwak in the 1990’s and then by Lutwak, Yang, and
Zhang, and many others. It has allowed many of the already potent sharp affine
isoperimetric inequalities of the classical theory, as well as related analytic inequalities,
to be strengthened. It also provided tools and methods for studying the unsolved
problems such as the slicing problem of Bourgain, and connections between convex
geometry and information theory (see e.g. [8, 17, 18, 26, 27, 28, 29, 30, 37]). There
is more recent extension, Orlicz-Brunn-Minkowski theory, initiated by Lutwak, Yang,
and Zhang [31, 32].

The concept of intersection body was introduced by Lutwak in [23], as dual Brunn-
Minkowski theory. The family of intersection bodies and mixed intersection bodies are
valuable in geometry, especially in the study of the famous Busemann-Petty problem
(see books [11, 19, 21] and references therein). In recent years, intersection bodies and
their generalizations received a fast growing attention and naturally appeared in various
contexts (see [5, 14, 15, 19, 22, 35]).

In real Brunn-Minkowski theory and its dual, the Brunn-Minkowski inequalities and
its generalizations are important and have significant applications in convex geometric
analysis, information theory, partial differential equations, probability theory and other
fields (see e.g. [4, 6, 7, 10, 12, 13, 33, 34, 36]). However, for complex-affine geometric
inequalities it seems that not too much work has been done (see e.g. [1, 2, 3, 20]).

Let W be a complex space with complex dimension m ≥ 3, and K,K1, K2, · · · ,
K2n−2 ∈ K(W ) and C ∈ K(C). In [3], Abardia and Bernig introduced the concepts
of complex projection bodies ΠCK and complex mixed projection bodies ΠC(K1, · · · ,
K2n−2) as complex Brunn-Minkowski theory, and established the following three im-
portant inequalities.

Theorem A. (Brunn-Minkowski type inequality). Let K,L ∈ K(W ), C ∈ K(C).
We have

V
(
ΠC(K + L)

) 1
2n(2n−1) ≥ V

(
ΠCK

) 1
2n(2n−1) + V

(
ΠCL

) 1
2n(2n−1) ,

if K and L have non-empty interior and C is not a point then equality holds if and
only if K and L are homothetic.

Theorem B. (Aleksandrov-Fenchel type inequality). Let K1, K2, · · · , K2n−2 ∈
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K(W ) and C ∈ K(C). If 0 ≤ i ≤ 2n− 1, 2 ≤ k ≤ 2n− 2, then

Wi

(
ΠC(K1, K2, · · · , K2n−2)

)k ≥
k∏

j=1

Wi

(
ΠC(Kj, · · · , Kj, Kk+1, · · · , K2n−2)

)
.

Theorem C. (Minkowski type inequality). Let K,L ∈ K(W ) and C ∈ K(C). If
0 ≤ i < 2n− 1, then

Wi

(
ΠC(K[2n− 2], L)

)2n−1 ≥Wi

(
ΠCK

)2n−2
Wi

(
ΠCL

)
,

if K and L have non-empty interior and C is not a point then equality holds if and
only if K and L are homothetic.

In this paper, we study complex intersection bodies as complex dual Brunn-Minkowski
theory, and obtain the dual type of Theorem A, B and C.

Following [23], we say that K ∈ Sn
c is the intersection body of L ∈ Sn

c and write
K = IL if for each ξ ∈ Sn−1,

ρK(ξ) = Voln−1(L ∩ ξ⊥),

here ξ⊥ is the central hyperplane which is perpendicular to ξ.
To formulate the complex version, we need some additional definitions.
Let ξ ∈ C

n with |ξ| = 1. We denote by

Hξ =
{
z ∈ C

n : (z, ξ) =
n∑

k=1

zkξ̄k = 0
}

the complex central hyperplane which is orthogonal to ξ.
In order to define volume, we identify Cn with R2n using the mapping

ξ = (ξ1, · · · , ξn) = (ξ11 + iξ12, · · · , ξn1 + iξn2) −→ (ξ11, ξ12, · · · , ξn1, ξn2)

and observe that under this mapping the complex hyperplane Hξ turns into a (2n−2)-
dimensional subspace of R

2n which is orthogonal to the vectors

ξ = (ξ11, ξ12, · · · , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, · · · ,−ξn2, ξn1).

Origin symmetric complex convex bodies are defined as those origin symmetric
convex bodies K in R

2n that are invariant with respect to any coordinate-wise two-
dimensional rotation, i.e., for each θ ∈ [0, 2π] and each x = (ξ11, ξ12, · · · , ξn1, ξn2) ∈
R

2n

‖x‖K = ‖Rθ(x11, x12), · · · , Rθ(xn1, xn2)‖K,(1.1)

here Rθ stands for the counterclockwise rotation of R2 by the angle θ with respect to
the origin. Origin symmetric complex convex bodies in C

n are the unit balls of norms
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on Cn. If a convex body satisfies (1.1), we will say that it is invariant with respect to
all Rθ.

In [20], Koldobsky introduced the concept of complex intersection body of origin
symmetric complex star body. Here, we remove ”origin symmetric”, and obtain the
extended concept.

Definition 1.1. Let K ∈ Sc(Cn), L ∈ S(Cn). We say that K is the complex
intersection body of L and write K = IcL if for every ξ ∈ S2n−1,

Vol2(K ∩H⊥
ξ ) = Vol2n−2(L ∩Hξ).(1.2)

Since K ∩ H⊥
ξ is the two-dimensional Euclidean circle with radius ρK(ξ), (1.2)

can be written as

πρK(ξ)2 = Vol2n−2(L ∩Hξ).

Using the polar coordinates transform, we get

Vol2n−2(L ∩Hξ) =
1

2n− 2

∫
S2n−1∩Hξ

ρL(u)2n−2du.

Therefore, the concept of the complex intersection body can be formulated by

ρIcL(ξ)2 =
1

2π(n− 1)

∫
S2n−1∩Hξ

ρL(u)2n−2du.(1.3)

We note that from (1.3), we have IcB2n = (ω2n−2

π )
1
2B2n.

Now, we extend the concept to complex mixed intersection body.

Definition 1.2. Let K ∈ Sc(Cn), L1, L2, · · · , L2n−2 ∈ S(Cn). We say that
K is the complex mixed intersection body of L1, L2, · · · , L2n−2 and write K =
Ic(L1, L2, · · · , L2n−2) if for every ξ ∈ S2n−1,

(1.4)
ρIc(L1,L2,··· ,L2n−2)(ξ)

2

=
1

2π(n− 1)

∫
S2n−1∩Hξ

ρL1(u)ρL2(u) · · ·ρL2n−2(u)du.

For L1 = L2 = · · · = L2n−i−2 = K,L2n−i−1 = · · · = L2n−2 = L, Ic(L1, L2, · · · ,
L2n−2) is denoted by Ic,i(K,L). And if L = B2n in Ic,i(K,L), then we write Ic,iK.

We now describe our main results.
In order to study the complex intersection body, we introduce two linear combi-

nations, the complex radial combination and complex radial-Blaschke combination, in
Section 2.
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In Section 3, we obtain the relations of those two combinations to dual mixed
volumes. For complex radial combination, we firstly obtain the linear property about
dual mixed volume, and use it to obtain the dual Brunn-Minkowski inequality for
complex radial addition. Then, we use the complex radial combination to define a
centered body Δ̃K for K. We show that the volume of Δ̃K is not bigger than that
of K. However, the dual mixed volume Ṽ2(C, Δ̃K) is always equal to Ṽ2(C,K) for
C ∈ Sc(Cn). For complex radial Blaschke combination, we obtain the related linear
property and dual Knesser-Süss inequality. By defining the centered body ∇̌K for
K, we show the corresponding results about the volume and the dual mixed volume.
We will also define the complex dual surface area. As an application of dual Brunn-
Minkowski inequality for complex radial addition, we obtain the related complex dual
isoperimetric inequality.

In Section 4, we study the complex intersection operator. We firstly obtain that the
complex intersection body of the complex radial-Blaschke combination is equal to the
complex radial combination of complex intersection bodies, i.e., Ic(α ·K+̌cβ · L) =
α · IcK+̃cβ · IcL, and show that Ic(−K) = IcK . Using this property, we obtain the
identity Ic∇̌K = IcK. Combinating this and the fact that the complex intersection
operator is injective, we obtain that Ic∇̌K is the unique centered star body in complex
class of K, and it is characterized by having smaller volume. We will also prove an
identity which will be useful in the later proof.

In Section 5, we shall establish the complex-affine geometric inequalities for com-
plex intersection bodies and complex mixed intersection bodies.

Theorem 1.3. (dual Brunn-Minkowski type inequality). LetK,L ∈ S(Cn), n ≥ 2.
We have

(1.5) V
(
Ic(K+̌cL)

) 1
n ≤ V

(
IcK

) 1
n + V

(
IcL

) 1
n ,

with equality if and only if K is a dilation of L (with the origin as the center of
dilation).

Theorem 1.4. (dual Aleksandrov-Fenchel type inequality). Let K1, K2, · · · ,
K2n−2 ∈ S(Cn), n ≥ 2. If 0 ≤ i ≤ 2n − 1, 2 ≤ k ≤ 2n− 2, then

(1.6)

W̃i

(
Ic(K1, K2, · · · , K2n−2)

)k

≤
k∏

j=1

W̃i

(
Ic(Kj, · · · , Kj, Kk+1, · · · , K2n−2)

)
,

with equality if and only if K1, K2, · · · , Kk are all dilations of each other.
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Theorem 1.5. (dual Minkowski type inequality). Let K,L ∈ S(Cn), n ≥ 2. If
0 ≤ i ≤ 2n− 1, then

(1.7) W̃i

(
Ic,1(K,L)

)2n−2 ≤ W̃i

(
IcK

)2n−3
W̃i

(
IcL

)
,

with equality if and only if K is a dilation of L.

The proof of Brunn-Minkowski type inequality for complex projection body in-
volves the use of mixed volumes, whereas in our proof of dual Brunn-Minkowski
inequality for complex intersection body, we use dual mixed volumes. We will also use
Minkowski inequality for dual mixed volume and the identity obtained in Section 4.

In the proof of dual Aleksandrov-Fenchel type inequality, we use Hölder’s integral
inequality. Theorem 1.5 holds taking K1 = K2 = · · · = K2n−3 = K,K2n−2 = L, and
k = 2n− 2 in Aleksandrov-Fenchel type inequality, and applying the dual Minkowski
type inequality.

As applications, we obtain some corollaries including an isoperimetric type inequal-
ity and a uniqueness theorem.

2. NOTATION AND PRELIMINARIES

We note that some of our definitions and formulas are given in n-dimensional
Euclidean space, however, we will use them in 2n-dimensional space as n-dimensional
complex space.

We extend the domain of the radial function from Sn−1 to R
n. Let K be a

compact star-shaped set (about the origin) in Rn, its radial function, ρK = ρ(K, ·) :
R

n → [0,+∞), is defined by

ρK(x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n.

Let K ∈ Sn, and c be a real number, the Minkowski scalar multiplication cK is
defined by

cK = {cx : x ∈ K}.
From the definition of the radial function, it is easy to verify that: if K is a star body,
and c ≥ 0, then

ρcK(u) = cρK(u), ρK(cu) = c−1ρK(u).(2.1)

We say that two bodies K,L ∈ Sn are dilations (of each other) if ρ(K, u)/ρ(L, u)
is independent of u ∈ Sn−1.

Following [23], for K,L ∈ S(Rn) and α, β ≥ 0, the radial linear combination
α ·K+̃β · L and the radial-Blaschke linear combination α ·K+̌β · L are defined by:

ρ(α ·K+̃β · L, ·) = αρ(K, ·) + βρ(L, ·);
ρ(α ·K+̌β · L, ·)n−1 = αρ(K, ·)n−1 + βρ(L, ·)n−1.
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Now, we extend those definitions to the complex case. For K,L ∈ S(Cn) and
α, β ≥ 0, we define the complex radial linear combination, α ·K+̃cβ · L, as the star
body whose radial function is given by:

ρ(α ·K+̃cβ · L, ·)2 = αρ(K, ·)2 + βρ(L, ·)2.(2.2)

The addition and scalar multiplication are called complex radial addition and com-
plex scalar multiplication. Obviously, the complex radial scalar multiplication and the
Minkowski scalar multiplication are related by α ·K = α

1
2K.

For K,L ∈ S(Cn) and α, β ≥ 0, we define the complex radial-Blaschke linear
combination, α ·K+̌cβ · L, as the star body whose radial function is given by:

ρ(α ·K+̌cβ · L, ·)2n−2 = αρ(K, ·)2n−2 + βρ(L, ·)2n−2.(2.3)

The addition and scalar multiplication are called complex radial-Blaschke addition and
scalar multiplication. It is easy to verify that α ·K = α

1
2n−2K .

Note that ” · ” rather than ”̃·c” or ”̌·c” is written for complex scalar multiplication
or complex radial-Blaschke scalar multiplication. This create no confusion.

We note that complex radial combination and complex radial-Blaschke combination
are associative. From their definitions, it follows that for K,L ∈ S(Cn) and α, β ≥ 0,

α · (K+̃cL) = α ·K+̃cα · L, (α+ β) ·K = α ·K+̃cβ ·K;(2.4)

α · (K+̌cL) = α ·K+̌cα · L, (α+ β) ·K = α ·K+̌cβ ·K.(2.5)

In (2.4), ” · ” denotes complex radial multiplication, however in (2.5), ” · ” denotes
complex radial-Blaschke multiplication.

Let Kj ∈ Sn(1 ≤ j ≤ n). The dual-mixed volume Ṽ (K1, K2, · · · , Kn) is defined
by Lutwak in [23, 24] by

Ṽ (K1, K2, · · · , Kn) =
1
n

∫
Sn−1

ρK1(u)ρK2(u) · · ·ρKn(u)dS(u).(2.6)

For K1 = K2 = · · · = Kn−i = K,Kn−i+1 = Kn−i+2 = · · · = Kn = L, the dual-
mixed volume is written as Ṽi(K,L). In particular, the dual-mixed volume Ṽi(K,B)
is written as W̃i(K) and is called the ith dual quermassintegral of K. From (2.6), it
is obvious that for K ∈ Sn, Ṽ (K, · · · , K) = V (K).

Let Λ be a nonsingular linear transform. It follows that for K1, K2, · · · , Kn,

Ṽ (ΛK1,ΛK2, · · · ,ΛKn) = |Λ|Ṽ (K1, K2, · · · , Kn).(2.7)

In the following, we need the following dual Minkowski inequality for dual-mixed
volumes, which was proved in [24].
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Lemma 2.1. If A,B ∈ Sn, 0 < i < n, i ∈ R, then

Ṽi(A,B) ≤ V
n−i

n (A)V
i
n (B),(2.8)

with equality if and only if K is a dilation of L.

We denote by Cc(S2n−1) the space of Rθ−invariant continuous functions, i.e.,
continuous real-functions f on the unit sphere S2n−1 in R

2n such that f(ξ) = f(Rθ(ξ))
for all ξ ∈ S2n−1 and all θ ∈ [0, 2π]. The complex spherical Radon transform is an
operator Rc : Cc(S2n−1) → Cc(S2n−1) defined by

Rcf(ξ) =
∫

S2n−1∩Hξ

f(u)du.

It is proved in [19] that the complex spherical Radon transform is self-dual, i.e.,
for any even functions f, g ∈ Cc(S2n−1)

∫
S2n−1

Rcf(ξ)g(ξ)dξ =
∫

S2n−1

f(ξ)Rcg(ξ)dξ.(2.9)

For origin symmetric complex star bodies, we can use complex spherical Radon
transform to reformulate the concepts of the complex intersection bodies and complex
mixed intersection bodies. From Definition 1.1, we say that IcL ∈ Sc(Cn) is the
complex intersection body of L ∈ Sc(Cn) if for every ξ ∈ S2n−1,

ρIcL(ξ)2 =
1

2π(n− 1)
Rc

(
ρL(·)2n−2

)
(ξ).(2.10)

From Definition 1.2, we say that Ic(L1, L2, · · · , L2n−2) ∈ Sc(Cn) is the complex
mixed intersection body of L1, L2, · · · , L2n−2 ∈ Sc(Cn) if for every ξ ∈ S2n−1,

(2.11) ρIc(L1,L2,··· ,L2n−2)(ξ)
2 =

1
2π(n− 1)

Rc

(
ρL1(·)ρL2(·) · · ·ρL2n−2(·)

)
(ξ).

3. DUAL MIXED VOLUME FOR COMPLEX COMBINATIONS

First, we study the complex radial combination. For complex radial combination,
we firstly establish the linear property about dual mixed volume, and use it to prove
the complex dual Brunn-Minkowski inequality.

From (2.2) and (2.6), it follows that

Ṽ2(M,α ·K+̃cβ · L) =
1
2n

∫
S2n−1

ρ2n−2
M (u)ρ2

α·K+̃cβ·L(u)dS(u)

= αṼ2(M,K) + βṼ2(M,L).
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Thus, we obtain the following linear property.

Proposition 3.1. If K,L and M are complex star bodies in C
n (n ≥ 2), and

α, β ≥ 0, then

Ṽ2(M,α ·K+̃cβ · L) = αṼ2(M,K) + βṼ2(M,L).

Now we establish the complex version of dual Brunn-Minkowski inequality.

Theorem 3.2. If K,L ∈ S(Cn), then

V (K+̃cL)
1
n ≤ V (K)

1
n + V (L)

1
n ,

with equality if and only if K is a dilation of L.
Proof. From Proposition 3.1 and dual Minkowski inequality (2.8), it follows that

Ṽ2(M,K+̃cL) = Ṽ2(M,K) + Ṽ2(M,L)

≤ V (M)
2n−2
2n

(
V (K)

2
2n + V (L)

2
2n

)
.

Taking M = K+̃cL, we obtain the desired inequality.
Now suppose that the equality holds. Since equality in dual Minkowski inequal-

ity holds if and only if two bodies are dilations of each other, convex bodies M =
K+̃cL,K, L are all dilations of each other, i.e.,

K = λ1(K+̃cL), L = λ2(K+̃cL),

then K = λL, as desired.

For K ∈ S(Cn), we define the centered body Δ̃K by

Δ̃K =
1
2
·K+̃c

1
2
· (−K).

The origin is called an r−equichordal point of K ∈ Sn, orK is called r−equichordal,
if ρr

K(u) + ρr
K(−u) is independent of u ∈ Sn−1. For K ∈ S(Cn), ρ(−K, u) =

ρ(K,−u), for all u ∈ S2n−1; hence from (2.2), it follows that K is 2−equichordal if
and only if Δ̃K is a centered ball.

For Δ̃K, we establish the following two propositions. We firstly show that the
volume of Δ̃K is not bigger than that of K .

Proposition 3.3. Let K be a complex star body in Cn (n ≥ 2). Then

V (Δ̃K) ≤ V (K),

with equality if and only if K is centered.

Proof. Using Theorem 3.2 and the homogeneity of volume, we have that
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V (Δ̃K)
1
n ≤ V (2−1 ·K)

1
n + V

(
2−1 · (−K)

) 1
n

= 2
(
V

(
(2−1)

1
2K

)) 1
n

= 2
(

(2−1)
2n
2 V (K)

) 1
n

= 2(2−1)
2n
2

1
nV (K)

1
n = V (K)

1
n .

Theorem 3.2 implies that equality holds if and only if K = λ(−K) = −λK for
λ > 0.

From (2.1), we have ρK(u) = ρ−λK(u) = λρ−K(u), and ρK(−u) = ρ−λK(−u) =
λρK(u). However, ρ−K(u) = ρK(−u), hence, λ = 1. Therefore, we have that K is
centered, as desired.

The following proposition shows that Ṽ2(C, Δ̃K) is always equal to Ṽ2(C,K) for
C ∈ Sc(Cn).

Proposition 3.4. Let K be a complex star body in Cn (n ≥ 2). Then for
C ∈ Sc(Cn)

Ṽ2(C, Δ̃K) = Ṽ2(C,K).

Proof. From Proposition 3.1 and (2.7), it follows that

Ṽ2(C, Δ̃K) =
1
2
Ṽ2(C,K) +

1
2
Ṽ2(C,−K)

=
1
2
Ṽ2(C,K) +

1
2
| − I |Ṽ2(−C,K)

=
1
2
Ṽ2(C,K) +

1
2
Ṽ2(C,K)

= Ṽ2(C,K).

We now study the complex radial-Blaschke combination.
Similar to Proposition 3.1 and Theorem 3.2, it is easy to obtain the related linear

property and dual Knesser-Süss inequality for complex radial-Blaschke combination.

Proposition 3.5. If K,L and M are complex star bodies in C
n (n ≥ 2), and

α, β ≥ 0, then

Ṽ2(α ·K+̌cβ · L,M) = αṼ2(K,M) + βṼ2(L,M).

Theorem 3.6. (Dual Knesser-Süss inequality). If K,L are complex star bodies in
Cn (n ≥ 2), then

V (K+̌cL)
n−1

n ≤ V (K)
n−1

n + V (L)
n−1

n ,
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where equality holds if and only if K is a dilation of L.
For K ∈ S(Cn), we define the centered body ∇̌K by

∇̌K =
1
2
·K+̌c

1
2
· (−K).

For K ∈ S(Cn), it follows from (2.3) that K is (2n− 2)−equichordal if and only
if ∇̌K is a centered ball.

For the centered body ∇̌K, we have the corresponding results of Proposition 3.3
and Proposition 3.4.

Proposition 3.7. Let K be a complex star body in Cn (n ≥ 2). Then

V (∇̌K) ≤ V (K),

with equality if and only if K is centered.

Proposition 3.8. Let K be a complex star body in C
n (n ≥ 2). Then for C ∈

Sc(Cn)
Ṽ2(∇̌K,C) = Ṽ2(K,C).

The surface area S(K) of a convex body K defined by Minkowski (see [12]) is
given by

S(K) = lim
ε→0+

V (K + εBn) − V (K)
ε

.(3.1)

The isoperimetric inequality for convex bodies in Rn is the nontrivial statement that if
K is a convex body in R

n, then
(
V (K)
V (Bn)

)1/n

≤
(
S(K)
S(Bn)

)1/(n−1)

,(3.2)

with equality if and only if K is a ball.
For K ∈ S(Cn), we define the complex dual surface area S̃c(K) of K by

S̃c(K) = lim
ε→0+

V (K+̃cε · B2n) − V (K)
ε

.(3.3)

Using (2.2) and then the polar coordinate formula for volume, it follows immediately
that S̃c(K) = nṼ2(K,B2n). Up to a constant, complex dual surface area is just a
special dual mixed volume. We show the complex dual of isoperimetric inequality.

Theorem 3.9. If K is a star body in C
n, then

(
S̃c(K)
S̃c(B2n)

)1/(n−1)

≤
(
V (K)
V (B2n)

)1/n

,(3.4)
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with equality if and only if K is a centered ball.
Proof. Substituting ε = t/(1 − t) in (3.3) and using (2.4) and the homogeneity

of volume, we obtain

nV2(K,B2n) = lim
t→0+

V
(
K+̃c

t
1−t ·B2n

) − V (K)
t

1−t

= lim
t→0+

(1− t)nV (K+̃c
t

1−t · B2n) − (1− t)nV (K)
t(1 − t)n−1

= lim
t→0+

V ((1 − t) ·K+̃ct · B2n) − (1− t)nV (K)
t(1 − t)n−1

= lim
t→0+

V ((1 − t) ·K+̃ct · B2n) − V (K)
t

+ lim
t→0+

(1− (1−t)n)V (K)
t

= lim
t→0+

V ((1−t) ·K+̃ct · B2n)−V (K)
t

+ nV (K).

Using this expression for V2(K,B2n) and letting f(t) = V ((1− t) ·K+̃ct ·B2n)
1
n

for 0 ≤ t ≤ 1, we see that

f
′
(0) =

V2(K,B2n) − V (K)
V (K)(n−1)/n

.

Note that from Theorem 3.2 and the homogeneity of volume, it follows that for 0 ≤
t ≤ 1

V
(
(1− t) ·K+̃ct · L

) 1
n ≤ (1− t)V (K)

1
n + tV (L)

1
n ,

with equality if and only if K is a dilation of L.
It shows that f(t) is convex function, and thus f ′

(0) ≤ f(1) − f(0). This is
equivalent to

nV2(K,B2n) ≤ nV (K)
n−1

n V (B2n)
1
n .

Inequality (3.4) results from recalling that S̃c(K) = nV2(K,B2n) and S̃c(B2n) =
nV (B2n) and rearranging.

Suppose equality holds in (3.4). Then f
′
(0) = f(1) − f(0). Since f is convex

function, we have
f(t) − f(0)

t
= f(1)− f(0)

for 0 < t ≤ 1, and this is just equality in Theorem 3.2. Equality condition for (3.4)
follows immediately.

4. COMPLEX RADIAL BLASCHKE LINEAR COMBINATION FOR

COMPLEX INTERSECTION BODIES

The complex intersection operator will be studied in this section.
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Let K,L ∈ S(Cn) and α, β ≥ 0. From Definition 1.1, we see that for ξ ∈ S2n−1

ρ(Ic(α ·K+̌cβ · L), ξ)2

=
1

2π(n− 1)

∫
S2n−1∩Hξ

ρ(α ·K+̌cβ · L, u)2n−2du

=
α

2π(n− 1)

∫
S2n−1∩Hξ

ρ(K, u)2n−2du+
β

2π(n− 1)

∫
S2n−1∩Hξ

ρ(L, u)2n−2du

= αρ(IcK, u)2 + βρ(IcL, u)2 = ρ(α · IcK+̃cβ · IcL, ξ)2.

Thus, Ic(α ·K+̌cβ · L) = α · IcK+̃cβ · IcL. And Ic(−K) = IcK is an immediate
consequence of Definition 1.1. Therefore, we have the following proposition.

Proposition 4.1. If K,L ∈ S(Cn) and α, β ≥ 0, then

Ic(α ·K+̌cβ · L) = α · IcK+̃cβ · IcL, Ic(−K) = IcK.(4.1)

Using this property and (2.4), it follows that

Ic∇̌K =
1
2
· IcK+̃c

1
2
· Ic(−K) = IcK.

Thus, we have:

Proposition 4.2. If K ∈ S(Cn), then

Ic∇̌K = IcK.(4.2)

The previous propositions allow us to find necessary and sufficient conditions for
that two complex star bodies have the same complex intersection bodies.

Theorem 4.3. If K,L ∈ S(Cn), then

IcK = IcL(4.3)

if and only if

Ṽ2(K,M) = Ṽ2(L,M),(4.4)

for all M ∈ Sc(Cn).

Proof. From Proposition 3.8 and Proposition 4.2, we may assume that K,L ∈
Sc(Cn).

Suppose that for all M ∈ Sc(Cn), (4.4) hold. Let f ∈ C+
c (S2n−1), we define M

by
ρ2

M = Rcf.
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From (2.6), we have

Ṽ2(K,M) =
1
2n

∫
S2n−1

ρ2n−2
K (u)ρ2

M(u)dS(u)

=
1
2n

∫
S2n−1

ρ2n−2
K (u)Rcf(u)dS(u).

and

Ṽ2(L,M) =
1
2n

∫
S2n−1

ρ2n−2
L (u)ρ2

M(u)dS(u)

=
1
2n

∫
S2n−1

ρ2n−2
L (u)Rcf(u)dS(u).

Using (4.4), (2.9), and (2.10), we have∫
S2n−1

ρ2
IcK(u)f(u)dS(u) =

∫
S2n−1

ρ2
IcL(u)f(u)dS(u).

Therefore, for all f ∈ C+
c (S2n−1),∫

S2n−1

(
ρ2

IcK(u)− ρ2
IcL(u)

)
f(u)dS(u) = 0.

But this must hold for all f ∈ Cc(S2n−1), since we can write an arbitrary function
in Cc(S2n−1) as the difference of two functions in C+

c (S2n−1). Substituting f =
ρ2

IcL
(u)− ρ2

IcL(u), we have |ρ2
IcL(u)− ρ2

IcL(u)|2 = 0, and hence, IcK = IcL.
Now suppose (4.3) holds and M ∈ Sc(Cn). Suppose M satisfies that ρM ∈

Rc

(
Cc(S2n−1)

)
and hence there exists an f ∈ Cc(S2n−1), such that

ρ2
M = Rcf.

From (2.6), we have

Ṽ2(K,M) =
1
2n

∫
S2n−1

ρ2n−2
K (u)ρ2

M(u)dS(u)

=
1
2n

∫
S2n−1

ρ2n−2
K (u)Rcf(u)dS(u).

and

Ṽ2(L,M) =
1
2n

∫
S2n−1

ρ2n−2
L (u)ρ2

M(u)dS(u)

=
1
2n

∫
S2n−1

ρ2n−2
L (u)Rcf(u)dS(u).

From (4.3), (2.9), and (2.10), we have Ṽ2(K,M) = Ṽ2(L,M). Since Rc

(
Cc(S2n−1)

)
is dense in Cc(S2n−1), and dual mixed volumes are continuous, it follows that (4.4)
must hold for all M ∈ Sc(Cn).
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Now we use Theorem 4.3 to prove that the complex intersection operator is injective.

Theorem 4.4. The mapping Ic : Sc(Cn) −→ S(Cn) is injective.

Proof. Suppose that IcK = IcL. From Theorem 4.3, we know that Ṽ2(K,M) =
Ṽ2(L,M) holds for all M ∈ S2n

c . SubstitutingM = K , and using the dual Minkowski
inequality (2.8), we have

V (K) = Ṽ2(K,K) = Ṽ2(L,K) ≤ V (L)
n−1

n V (K)
1
n .

Hence V (K) ≤ V (L) with equality if and only if K and L are dilations of each other.
Similarly substituting M = L, we get V (L) ≤ V (K). Hence, V (L) = V (K) and
from equality condition we can conclude that K and L are dilations. However, since
they have the same volume they must be equal, i.e., K = L, as desired.

We remark that the complex Radon transform is injective. In fact, we can obtain it
from Theorem 4.4. Suppose f, g ∈ Cc(S2n−1) and Rcf = Rcg. We take any λ ∈ R

such that f + λ and g + λ are both positive functions, and we define K,L ∈ S2n by

ρ2n−2
K = f + λ and ρ2n−2

L = g + λ.

Since Rcf = Rcg, it follows that Rcρ
2n−2
K = Rcρ

2n−2
L , thus from (2.10) we have

IcK = IcL. From Theorem 4.4, we have K = L. Hence f = g.

For K ∈ S(Cn), we shall use Ic〈K〉 to denote the set of all star bodies which have
the same complex intersection body as K, i.e.,

Ic〈K〉 = {L ∈ S2n : IcL = IcK}.
We shall call Ic〈K〉 the complex intersection class of K. From (4.2), ∇̌K ∈ Ic〈K〉.

Since the complex intersection operation is injective, we have that Ic∇̌K is the
unique centered star body in Ic〈K〉.

Theorem 4.5. If K ∈ S(Cn), then Ic〈K〉 contains a unique centered star body,
and this centered body is characterized by having smaller volume than any other star
body in Ic〈K〉.

Proof. Suppose K ∈ S(Cn), then the centered star body ∇̌K is in Ic〈K〉. If
L ∈ Ic〈K〉, then IcK = IcL. Hence, from Proposition 4.2 and Theorem 4.4, we have
∇̌L = ∇̌K. But from Theorem 3.6, we obtain

V (∇̌K) = V (∇̌L) ≤ V (L),

with equality if and only if L is centered. Therefore, we obtain the result.

In order to prove Theorem 1.3, we need the following identity.
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Lemma 4.6. If K,L ∈ S(Cn), then

Ṽ2(K, IcL) = Ṽ2(L, IcK).

Proof. From Proposition 3.8 and Proposition 4.2, it follows that

Ṽ2(K, IcL) = Ṽ2(∇̌K, Ic∇̌L) and Ṽ2(L, IcK) = Ṽ2(∇̌L, Ic∇̌K).

Therefore, we need only to prove the lemma for centered bodies. Suppose that K,L ∈
Sc(Cn). From (2.6),(2.10), it follows that

Ṽ2(K, IcL) =
1
2n

∫
S2n−1

ρ2n−2
K (u)ρ2

IcL(u)dS(u)

=
c0
2n

∫
S2n−1

ρ2n−2
K (u)Rc

(
ρ2n−2

L (u)
)
dS(u),

Ṽ2(L, IcK) =
1
2n

∫
S2n−1

ρ2n−2
L (u)ρ2

IcK(u)dS(u)

=
c0
2n

∫
S2n−1

ρ2n−2
L (u)Rc

(
ρ2n−2

K (u)
)
dS(u).

Thus, the fact that complex Randon transform is self-adjoint implies the result.

A body K ∈ S(Cn) will be said to have constant slice if Vol2n−2(K ∩ Hξ) is
independent of ξ ∈ S2n−1. It is easy to obtain that K has constant slice if and only if
IcK is a centered ball.

For K ∈ S(Cn), ∇̌K ∈ Sc(Cn) and since Ic∇̌K = IcK , and IcB2n is a centered
ball, it follows from Theorem 4.4 that K has constant slice if and only if ∇̌K is a
centered ball. But ∇̌K is a centered ball if and only if K is (2n − 2)−equichordal.
Hence, we have:

Proposition 4.7. If K ∈ S(Cn), then K has constant slice if and only if K is
(2n− 2)−equichordal.

5. GEOMETRIC INEQUALITIES

Proof of Theorem 1.3. Let Q ∈ S(Cn). Using Lemma 4.6, Proposition 3.5, and
dual Minkowski inequality (2.8), we have

Ṽ2

(
Q, Ic(K+̌cL)

)
= Ṽ2

(
K+̌cL, Ic(Q)

)
= Ṽ2

(
K, Ic(Q)

)
+ Ṽ2

(
L, Ic(Q)

)
= Ṽ2

(
Q, Ic(K)

)
+ Ṽ2

(
Q, Ic(L)

)

≤ V
n−1

n (Q)
(
V

1
n (IcK) + V

1
n (IcL)

)
.
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Taking Q = Ic(K+̌cL) and using (2.6), we have the desired inequality.
Now suppose that equality holds in Theorem 1.3. Since equality in (2.8) holds

if and only if two bodies are dilations of each other, the three convex bodies Q =
Ic(K+̌cL), Ic(K), Ic(L) are dilations, i.e.,

Ic(K) = λ1(Ic(K+̌cL)), Ic(L) = λ2(Ic(K+̌cL)),

so using Proposition 4.1, we have

Ic(K) = λIc(L) = Ic(λ
1

n−1L).

Therefore, from the injective property of the mapping Ic, we have that K is a dilation
of L.

From Theorem 1.3 and Proposition 4.1, it follows that:

Corollary 5.1. Let K,L be complex star bodies in C
n (n ≥ 2). Then

V
(
IcK+̃cIcL)

1
n ≤ V

(
IcK

) 1
n + V

(
IcL

) 1
n ,

with equality if and only if K is a dilation of L.
Note that we can also obtain this corollary from Theorem 3.2.

Similar to the proof of Theorem 3.9, we can obtain a complex dual isoperimetric
inequality from Corollary 5.1. In fact, we need only notice the fact that IcB2n =
(w2n−2

π )
1
2B2n, and S̃c(λK) = λ2n−2S̃c(K)

(
from S̃c(K) = nṼ2(K,B2n)

)
.

Corollary 5.2. Let K is a complex star bodies in C
n (n ≥ 2). Then(

S̃c(IcK)
S̃c(B2n)

)1/(n−1)

≤
(
V (IcK)
V (B2n)

)1/n

,

with equality if and only if K is a centered ball.
In order to prove Theorem 1.4, we need the following Hölder integral inequality.

Lemma 5.3. (Hölder’s integral inequality, see [9, 16]). Let f0, f1, · · · , fk be Borel
measurable functions on X . Suppose that p1, p2, · · · , pk are nonzero real numbers with
k∑

i=1

1
pi

= 1. Then

∫
X
f0(u)f1(u) · · ·fk(u)du ≤

k∏
i=1

( ∫
X
f0(u)fi(u)pidu

) 1
pi ,

with equality if and only if either (a) there are constants b1, b2, · · · , bk not all zero,
such that b1|f1(u)|p1 = b2|f2(u)|p2 = · · · = bk|fk(u)|pk , or (b) one of the functions is
null.
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Proof of Theorem 1.4. From Definition 1.2 and Hölder’s integral inequality, it
follows that

ρ2
Ic(K1,K2,··· ,K2n−2)

(ξ) =
1

2π(n−1)

∫
S2n−1∩Hξ

ρK1(u)ρK2(u) · · ·ρK2n−2(u)du

≤
k∏

j=1

(
1

2π(n−1)

∫
S2n−1∩Hξ

ρk
Kj

(u)ρKk+1
(u) · · ·ρK2n−2(u)du

) 1
k

=
k∏

j=1

ρ
2
k

Ic(Kj ,··· ,Kj ,Kk+1··· ,K2n−2)(ξ).

Integrating both sides of the above inequality on S2n−1, and then using Hölder’s integral
inequality again, we get

W̃i

(
Ic(K1, K2, · · · , K2n−2)

)
=

1
n

∫
S2n−1

ρ2n−i
Ic(K1,K2,··· ,K2n−2)

(ξ)dξ

≤ 1
n

∫
S2n−1

k∏
j=1

ρ
2n−i

k

Ic(Kj ,··· ,Kj ,Kk+1··· ,K2n−2)
(ξ)dξ

≤
k∏

j=1

(
1
n

∫
S2n−1

ρ2n−i
Ic(Kj ,··· ,Kj ,Kk+1··· ,K2n−2)(ξ)dξ

) 1
k

=
k∏

j=1

W̃i

(
Ic(Kj, · · · , Kj, Kk+1, · · · , K2n−2)

) 1
k .

From equality condition in Hölder integral inequality, we obtain that equality in our
result holds if and only if K1, K2, · · · , Kk are all dilations of each other.

When i = 0 in Theorem 1.4, it follows that:

Corollary 5.4. Let K1, K2, · · · , K2n−2 ∈ S(Cn). If 2 ≤ k ≤ 2n− 2, then

V
(
Ic(K1, K2, · · · , K2n−2)

)k ≤
k∏

j=1

V
(
Ic(Kj, · · · , Kj, Kk+1, · · · , K2n−2)

)
,

with equality if and only if K1, K2, · · · , Kk are all dilations of each other.
If k = 2n− 2, K1 = K2 = · · · = K2n−j−2 = K,K2n−j−1 = · · · = K2n−2 = B2n

in Theorem 1.5, and note that IcB2n = (ω2n−2

π )
1
2B2n, then the following holds.

Corollary 5.5. Let K ∈ S(Cn), 0 ≤ i < 2n and 0 < j < 2n− 2. Then

W̃i(Ic,jK)2n−2 ≤
(

1
π
ω2n−2

)j(n− i
2
)

ω
j
2nW̃i(IcK)2n−2−j ,
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with equality if and only if K is a centered ball.
This result is the complex dual version of the following important result for mixed

projection body, which established in [25].
Let K ∈ Kn, 0 ≤ i < n and 0 < j < n− 1. Then

Wi(ΠjK)n−1 ≤ ω
j(n−i)
n−1 ωj

nWi(ΠK)n−1−j ,

with equality if and only if K is a ball.
Theorem 1.4 is the dual of Abardia and Bernig’s result about Aleksandrov-Fenchel

inequality for complex mixed projection body. In the following, we obtain dual
Minkowski inequality for complex mixed intersection body, which is also the dual
version of Abardia and Bernig’s result about Minkowski inequality for complex mixed
projection body. In fact, it is only a corollary of Theorem 1.4.

Putting that K1 = K2 = · · · = K2n−3 = K,K2n−2 = L, and k = 2n − 2 in
Theorem 1.4, Theorem 1.5 holds.

As an application of Theorem 1.4, we establish the following uniqueness theorem.
The symbol Ic(K[2n− 3− j],M,N [j]) denotes that K appears 2n− 3− j times and
N appears j times.

Theorem 5.6. Let K,L ∈ S(Cn). If 0 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2n − 4, then for
M,N ∈ S(Cn)

(5.1) W̃i

(
Ic(K[2n− 3− j],M,N [j])

)
= W̃i

(
Ic(L[2n− 3 − j],M,N [j])

)
,

or

(5.2) W̃i

(
Ic(M [2n− 3 − j], K,N [j])

)
= W̃i

(
Ic(M [2n− 3 − j], L, N [j])

)
,

implies K = L.

Proof. Suppose (5.1) holds. Taking L for M , it follows from (5.1) that

(5.3) W̃i

(
Ic(K[2n− 3 − j], L, N [j])

)
= W̃i

(
Ic(L[2n− 2 − j], N [j])

)
.

From Aleksandrov-Fenchel type inequality and (5.3), we have

(5.4)
W̃i

(
Ic(L[2n− 2 − j], N [j])

)2n−2−j

= W̃i

(
Ic(K[2n− 3 − j], L, N [j])

)2n−2−j

≤ W̃i

(
Ic(K[2n− 2 − j], N [j])2n−3−jW̃i

(
Ic(L[2n− 2 − j], N [j]),

thus W̃i

(
Ic(L[2n− 2 − j], N [j]) ≤ W̃i

(
Ic(K[2n− 2 − j], N [j]) with equality if and

only if K is a dilation of L.
Taking K for M , we similarly get

W̃i

(
Ic(L[2n− 2 − j], N [j])≥ W̃i

(
Ic(K[2n− 2 − j], N [j]),(5.5)
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with equality if and only if K is a dilation of L.
Hence, from (5.4), (5.5), it follows that

W̃i

(
Ic(L[2n− 2− j], N [j]) = W̃i

(
Ic(K[2n− 2 − j], N [j]),

where K = λL.
From Definition 1.2 and (2.6), it follows that

W̃i

(
Ic(L[2n− 2 − j], N [j]) = W̃i

(
Ic(K[2n− 2 − j], N [j])

= λ
(2n−i)(2n−2−j)

2 W̃i

(
Ic(L[2n− 2 − j], N [j]).

Hence, λ = 1.
The fact that (5.2) implies K = L can be established in the same manner.

When i = 0, j = 0 in uniqueness theorem, it follows that:

Corollary 5.7. If K,L ∈ S(Cn), then for M ∈ S(Cn)

V
(
Ic,1(K,M)

)
= V

(
Ic,1(L,M)

)
,

or
V

(
Ic,1(M,K)

)
= V

(
Ic,1(M,L)

)
,

implies K = L.
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