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CHARACTERIZATIONS OF THE MULTIVARIATE WAVE PACKET
SYSTEMS

Guochang Wu and Dengfeng Li*

Abstract. Some characterizations of the multivariate wave packet systems in
terms of the Fourier transforms of the wave packet systems’ generating functions
are discussed in this paper. First, the characterizations of the orthogonal wave
packet systems are provided. Secondly, a sufficient condition of the completeness
of wave packet system in some special cases is established. Finally, the neces-
sary conditions and sufficient conditions for the wave packet systems to be wave
packet Parseval frames with the very general lattices are obtained. Thus, the cor-
responding known results in Gabor systems and wavelet systems are obtained as
some corollaries.

1. INTRODUCTION

Today, we are living in a data world. On the one hand, people have to develop
the good ways to process all kinds of data. On the other hand, they are faced with
analyzing the accuracy of such methods and providing a deeper understanding of the
underlying structures. In the late 18th century, the Fourier Transform became the first
tool to analyze the data and has achieved the greatest achievements. However, the
Fourier Transform has a serious disadvantage: the local perturbation of a function
leads to a change of all Fourier coefficients simultaneously. This deficiency led to the
birth of applied harmonic analysis, which is nowadays one of the major research areas
in applied mathematics and engineering. It exploits methods not only from harmonic
analysis, but also from areas such as approximation theory, numerical mathematics and
operator theory. Now, applied harmonic analysis plays an important role in engineering
such as signal processing, image processing, digital communications, medical imaging,
compressed sensing, and so on.
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Gabor systems were first introduced by Gabor [1] in 1946, with the Gaussian
window for the purpose of constructing efficient, time-frequency localized expansions
of finite-energy signals. They are generated by modulations and translations of a finite
family of functions. Casazza and Christensen [2] gave some important characterizations
about Gabor frames for subspaces of L2(R) in 2001. Then, Shi and Chen[3] established
some new necessary conditions for Gabor frames. These conditions are also sufficient
for tight frames. Recently, Li et al. [4] presented some new sufficient conditions for
Gabor frame via Fourier transform.

Gabor systems can only give the time-frequency content of a signal with a constant
frequency and time resolution. This is often not the most desired resolution, which
leads to a birth of wavelet analysis. Wavelet systems are obtained by shifting and
dilating a finite family of functions. They have attracted considerable interests from
the mathematical community and from members of many diverse disciplines since
Daubechies and his cooperators [5] combined the theory of the continuous wavelet
transform with the theory of frames to define wavelet frames for L2(R). In 1990,
Daubechies [6] obtained the first result on the necessary condition for wavelet frames,
and then in 1993, Chui and Shi [7] obtained an improved result.

In 1978, Cordoba and Fefferman [8] introduced wave packet systems by applying
certain collections of dilations, modulations and translations to the Gaussian function
in the study of some classes of singular integral operators. In paper [9], authors
devoted to describe any collections of functions which are obtained by applying the
same operations to a finite family of functions. In fact, Gabor systems and wavelet
systems are special cases of wave packet systems. Wave packet systems have recently
been successfully applied to problems in harmonic analysis and operator theory [10,
11] and attracted people’s attention.

The properties of wave packet systems have been investigated by many authors.
For example, in [12], authors studied both the continuous and discrete versions of
wave packet systems by using a unified approach and gave a classification of the wave
packet system to be a Parseval frame. They constructed a very general example of
wave packet frame. The paper [13] considered wave packet systems as special cases
of generalized shift-invariant systems and presented a sufficient condition for a wave
packet system to form a frame. Analogues of the notion of Beurling density to describe
completeness properties of wave packet systems via geometric properties of the sets
of their parameters is introduced in [14], and the necessary conditions for existence of
wave packet frames were obtained and the large families of new, non-standard examples
of wave packet frames with prescribed dimensions were provided.

Since both Gabor systems and wavelet systems are some particular examples of
wave packet systems, people ask naturally: how do we construct some examples of
wave packet systems such that they possess simultaneously both Gabor systems and
wavelet systems’ advantages and, however, overcome their shortcomings? In need of
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applications, how do we develop the algorithm as classical multiresolution analysis in
the setting of the wave packet systems? So far as we know, few results are known
about these problems.

The main goal of this paper is to characterize the multivariate wave packet systems
in terms of the Fourier transforms of the wave packet systems’ generating functions.
Some characterizations of all kinds of the orthogonal wave packet systems with different
operator order and with arbitrary expanding matrix dilations are established. Also, a
sufficient condition of the completeness of wave packet systems in some special cases is
derived. Then, the necessary conditions and sufficient conditions about the wave packet
systems to be wave packet Parseval frames with the very general lattices are presented.
Thus, the corresponding known results in Gabor systems and wavelet systems are
obtained as some corollaries. Of course, our method combines with some techniques
in wavelet analysis and time-frequency analysis. We mainly borrow some thoughts in
classifying the wavelet frame and Gabor systems in [15,16,17].

Let us now describe the organization of the paper. Section 2 is of a preliminary
character: it contains various notations and some facts about the frame and the wave
packet system. In Section 3, the characterizations of all kinds of the orthogonal wave
packet systems with different operator orders are established . Finally, the necessary
conditions and sufficient conditions about the wave packet systems to be the Parseval
frames with the very general lattices are obtained.

2. PRELIMINARIES

Some basic notations are listed in this section. Throughout this paper, we use the
following notations. R and Z denote the set of real numbers and the set of integers,
respectively. L2(Rn) is the space of all square-integrable functions in n dimensions, and
· and ‖·‖ denote the inner product and norm in L2(Rn), respectively, and l2(Zn) denotes
the space of all square-summable sequences. We denote by T n the n-dimensional torus.
By Lp(T n) we denote the space of all Zn-periodic functions f (i.e., f is 1-periodic in
each variable) such that

∫
T n |f(x)|pdx < +∞.

We use the Fourier transform in the form

(2.1) f̂(ω) =
∫

Rn

f(x)e−2πix·ωdx,

where · denotes the standard inner product in Rn, and it is often omitted when we can
understand this from the content. Sometimes, f̂ (ω) is defined by Ff .

Let En denote the set of all expanding matrices. An expanding matrix means that
all of its eigenvalues have magnitude greater than 1. For A ∈ En, we denote by A∗

the transpose of A. It is obvious that A∗ ∈ En. Let GLn(R) denote the set of all
n × n non-singular matrices with real entries. For B ∈ GLn(R) we denote by B−1

the inverse of B. For the sake of simplicity, we denote (A∗)−1 by A�.
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Let us recall the definition of frame.

Definition 2.1. LetH be a separable Hilbert space. A sequence {fi}i∈N of elements
of H is a frame for H if there exist constants 0 < C ≤ D <∞ such that for all f ∈ H ,

(2.2) C‖f‖2 ≤
∞∑
i=1

| < f, fi〉|2 ≤ D‖f‖2.

The numbers C,D are called lower and upper frame bounds, respectively (the largest
C and the smallest D for which (2.2) holds are the optimal frame bounds). Those
sequences which satisfy only the upper inequality in (2.2) are called Bessel sequences.
A frame is tight if C = D. If C = D = 1, it is called a Parseval frame.

In this paper, we will work with three unitary operators on L2(Rn). Let A ∈ En

and B,C ∈ GLn(R). The first one consists of the dilation operator DA : L2(Rn) →
L2(Rn) defined by (DA)f(x) = q

1
2 f(Ax) with q = |detA|. The second is the shift

operator TBk : L2(Rn) → L2(Rn), k ∈ Zn, defined by (TBkf)(x) = f(x−Bk). The
final one consists of the modulation operator ECm : L2(Rn) → L2(Rn), m ∈ Zn,
defined by (ECmf)(x) = e2iπCm·xf(x).

Let P ⊂ Z, Q ⊂ Rn and S = P ×Q. Then, we have S ⊂ Z × Rn. Again, let
{Ap : Ap ∈ P} ⊂ En and B ∈ GLn(R). For the function ψ ∈ L2(Rn), the wave
packet system Ψ is defined by

(2.3) Ψ =
{
ψp, ν, m(x) | DApEνTBmψ(x), m ∈ Zn, (p, ν) ∈ S

}
.

It is easy to see that if Ap = Aj(j ∈ Z) and S = Z×{0} in (2.3), then we obtain the
wavelet systems. Of course, the Gabor systems can be got when the set {Ap : Ap ∈ P}
in (2.3) only consists of the elementary matrix E . This simple observation suggests
that the wave packet systems provide greater flexibility than the wavelet systems or the
Gabor systems.

By changing the order of the operators, we can also define the following one-to-one
function systems from S × Zn into L2(Rn):

(2.4) Ψ1 =
{
ψp, ν, m(x) | DApTBmEνψ(x), m ∈ Zn, (p, ν) ∈ S

}
,

(2.5) Ψ2 =
{
ψp, ν, m(x) | EνDApTBmψ(x), m ∈ Zn, (p, ν) ∈ S

}
.

Then, we will give the definitions of the wave packet frame and the frame wave
packet function.

Definition 2.2. We say that the wave packet system Ψ defined by (2.3) is a wave
packet frame if it is a frame for L2(Rn). Then, the function ψ is called a frame wave
packet function.
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In order to prove results presented in next section, we need some lemmas. At first,
we will consider the following set of functions:

(2.6) Γ=
{
f ∈ L2(Rn) : f̂ ∈L∞(Rn) and f̂ has compact support in R

n \ {0}
}
.

Lemma 2.1. Γ is a dense subset of L2(Rn).

The following two lemmas come from the book [17].

Lemma 2.2. Suppose that {fk}+∞
k=1 is a family of elements in a Hilbert space H

such that there exist constants 0 < C ≤ D < +∞ satisfying (2.2) for all f belonging
to a dense subset D of H . Then, the same inequalities (2.2) are true for all f ∈ H;
that is, {fk}+∞

k=1 is a frame for H .

Lemma 2.3. The system {ψ(x− Cm)}m∈Zn is orthogonal if and only if

(2.7)
∑

m∈Zn

|ψ̂(ω + C�m)|2 = c‖ψ‖2, a.e. ω ∈ Rn,

where c = |detC|.
The following useful fact can be found in [12, Lemma 2.2].

Lemma 2.4. Let A ∈ GLn(R), y, z ∈ Rn and f ∈ L2(Rn). Then the following
holds:

(1) (Tyf )̂ = E−yf̂ , (Ezf )̂ = Tzf̂ , (DAf )̂ = DA� f̂ ;
(2) TyEzf = e−2πiz·yEzTyf, DAEyf = EA∗yDAf, DATyf = TA−1yDAf ;

(3) (TyEzf )̂ = e−2πiz·yTzE−yf̂ ;

(4) (DATyf )̂(ξ) = E−A�yDA� f̂(ξ) = |detA|− 1
2 f̂(A�ξ)e−2πiA−1y·ξ.

3. THE CHARACTERIZATION OF THE ORTHOGONAL WAVE PACKET SYSTEMS

In this section, we will characterize the orthogonality of all kinds of the wave packet
systems with different operator order in terms of the Fourier transforms of the wave
packet systems’ generating functions. Therefore, some existing results in Gabor system
and wavelet system are obtained as some corollaries.

For convenience, we only study the special cases of wave packet systems defined
by (2.3).

Theorem 3.1. Let A ∈ En and B ∈ GLn(R). Wave packet system
{Dj

AEνTBmψ(x)}j∈Z,m∈Zn,ν∈S is orthogonal if and only if both of the equation

(3.1)
∑

m∈Zn

|ψ̂(ω +B�m)|2 = b‖ψ‖2, a.e. ω ∈ Rn
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and the equation

(3.2)
∑

m∈Zn

ψ̂(A∗j(ω +B�m) − ν)ψ̂(ω + B�m) = 0, j ∈ N, a.e. ω ∈ Rn

hold, where b = |detB| and ν 	= 0.

Proof. (=⇒) We firstly assume that wave packet system
{Dj

AEνTBmψ(x)}j∈Z,m∈Zn,ν∈S is orthogonal. In particular, the system
{D0

AE0TBmψ(x)}m∈Zn is also orthogonal. By Lemma 2.3, the equation (3.1) holds.
Furthermore, when j1 < j2, by changing variables, we have

(3.3)

0= 〈Dj1
AEν1TBm1ψ(·), Dj2

AEν2TBm2ψ(·)〉

= |detA| j1+j2
2

∫
Rn

e2iπν1Aj1xψ(Aj1x−Bm1)e−2iπν2Aj2xψ(Aj2x−Bm2)dx

= |detA| j2−j1
2

∫
Rn

ψ(x)e2iπ(ν1−ν2Aj2−j1)(x+Bm1)

ψ(Aj2−j1x+B(Aj2−j1m1 −m2))dx

=e−2iπ(ν2Aj2−j1−ν1)Bm1〈ψ(·), E(Aj2−j1ν2−ν1)D
j2−j1
A TB(m2−Aj2−j1m1)ψ(·)〉.

Set C = e−2iπ(ν2Aj2−j1−ν1)Bm1 , ν = Aj2−j1ν2 − ν1, j = j2 − j1 and m = (m2 −
Aj2−j1m1), then for j1 < j2,

(3.4) 〈Dj1
AEν1TBm1ψ(·), Dj2

AEν2TBm2ψ(·)〉 = C〈ψ(·), EνD
j
ATBmψ(·)〉,

where j > 0 (j ∈ N ), ν ∈ S, ν 	= 0 and m ∈ Zn. Therefore, the orthogonality
between Dj1

AEν1TBm1ψ(x) and Dj2
AEν2TBm2ψ(x), for j1 < j2, ν1, ν1 ∈ S, m1, m2 ∈

Z, can be reduced to the orthogonality between ψ(x) and EνD
j
ATBmψ(x), where j > 0

and ν ∈ S, ν 	= 0, m ∈ Z. It follows from Lemma 2.4 and Plancherel theorem that

(3.5) 〈ψ(·), EνD
j
ATBmψ(·)〉 = |detA| j

2

∫
Rn
ψ̂(A∗jω − ν)ψ̂(ω)e2πiBmωdω.

It follows from Levi theorem that the interchange of the order of summation and
integration is valid in the following. Then, we have

(3.6)

∫
B�([0,1]n)

∑
s∈Zn

|ψ̂(A∗j(ω + B�s) − ν)ψ̂(ω +B�s)|dω

=
∫

Rn

|ψ̂(A∗jω − ν)ψ̂(ω)|dω

≤ (
∫

Rn
|ψ̂(A∗jω − ν)|2dω)

1
2 (
∫

Rn
|ψ̂(ω)|2dω)

1
2 <∞,
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where the inequality is obtained by using Cauchy-Schwarz’s inequality. Thus the two
series in (3.1) and (3.2) absolutely converge for a.e. ω ∈ Rn, consequently, we can
define a function Fj : R→ C by

(3.7) Fj(ω) =
∑
s∈Zn

ψ̂(A∗j(ω + B�s) − ν)ψ̂(ω +B�s), a.e. ω.

It is clear to see that Fj(ω) is B�T -periodic, and the above argument gives that Fj(ω) ∈
L1(B�[0, 1]n). In fact, we even have Fj(ω) ∈ L2(B�[0, 1]n) by

(3.8) |Fj(ω)|2 ≤
∑
s∈Zn

|ψ̂(A∗j(ω + B�s) − ν)|2
∑
s∈Zn

|ψ̂(ω + B�s)|2.

Then, it deduce from the definition of Fj(ω) that

(3.9)

∫
Rn

ψ̂(A∗jω − ν)ψ̂(ω)e2πiBmωdω

=
∑
s∈Zn

∫
B�([0,1]n)

ψ̂(A∗j(ω +B�s) − ν)ψ̂(ω + B�s)e2πiBmωdω

=
∫

B�([0,1]n)
Fj(ω)e2πiBmωdω.

Combining with (3.3)-(3.5) and (3.9), we find

(3.10) 0 =
∫

B�([0,1]n)
Fj(ω)e2πiBmωdω.

That is to say that, for any j ∈ N , the all Fourier coefficients of the functions Fj(ω)
are 0. This shows that Fj(ω) = 0, a.e. ω ∈ Rn. So the equation (3.2) holds.

(⇐=) Suppose that the equations (3.1) and (3.2) hold. Then it derive from (3.1)
and Lemma 2.3 that the system {D0

AE0TBmψ(x)}m∈Z is orthogonal. For fixed j ∈
Z, ν ∈ S, since

(3.11)
〈Dj

AEνTBm1ψ(·), Dj
AEνTBm2ψ(·)〉

= 〈D0
AE0TBm1ψ(·), D0

AE0TBm2ψ(·)〉 = δm1,m2,

the system {Dj
AEνTBmψ(x)}m∈Z is also orthogonal.

Notice that (3.2) holds, hence according to the proof of (3.4), (3.5) and (3.9), we
obtain that for j1 < j2, j := j2 − j1 and a.e. ω ∈ Rn,

(3.12)
〈Dj1

AEν1TBm1ψ(·), Dj2
AEν2TBm2ψ(·)〉

= C|detA| j
2

∫
B�([0,1]n)

Fj(ω)e2πiBmωdω = 0.
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If j1 > j2, then it follows from (3.12) that

(3.13)
〈Dj1

AEν1TBm1ψ(·), Dj2
AEν2TBm2ψ(·)〉

= 〈Dj2
AEν2TBm2ψ(·), Dj1

AEν1TBm1ψ(·)〉 = 0.

Combining with (3.11)-(3.13), we obtain that the wave packet system
{Dj

AEνTBmψ(x)}j∈Z,m∈Zn,ν∈S is orthogonal. Therefore, the proof of Theorem 3.1
is completed.

Remark 3.1. In particular, let A be the elementary matrix E and S=CZn in The-
orem 3.1. Then, we obtain Theorem 2.1 in [13], which characterizes the orthogonality
of Gabor systems in terms of the Fourier transforms of the functions, that is

Corollary 3.1. Let B,C ∈ GLn(R). Then, the Gabor system
{ECkTBmψ(x)}k,m∈Zn is orthogonal if and only if both of the equation

(3.14)
∑

m∈Zn

|ψ̂(ω +B�m)|2 = b‖ψ‖2, a.e. ω ∈ Rn

and the equation

(3.15)
∑

m∈Zn

ψ̂(ω + B�m− Ck)ψ̂(ω + B�m) = 0, a.e. ω ∈ Rn

hold for every k 	= 0.

Remark 3.2. It is immediate to see that if S = {0} in Theorem 3.1, then we
obtain a sufficient and necessary condition of the orthogonal wavelet system as the
following, which is the generalization of the equalities (1.1) and (1.2) in [6, Chapter
3, page 124].

Corollary 3.2. Let A be an arbitrary matrix, B ∈ GLn(R) and ψ ∈ L2(Rn).
Then the wavelet system {Dj

ATBmψ(x)}j∈Z,m∈Zn is orthogonal if and only if both of
the equation

(3.16)
∑

m∈Zn

|ψ̂(ω +B�m)|2 = b‖ψ‖2, a.e. ω ∈ Rn

and the equation

(3.17)
∑

m∈Zn

ψ̂(A∗j(ω +B�m))ψ̂(ω + B�m) = 0, j ∈ N, a.e. ω ∈ Rn

hold.
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Remark 3.3. Furthermore, we can classify the orthonormality of wave packet
systems.

Corollary 3.3. Let A ∈ En and B ∈ GLn(R). Wave packet system
{Dj

AEνTBmψ(x)}j∈Z,m∈Zn,ν∈S is orthonormal if and only if both of the equality

(3.18)
∑

m∈Zn

|ψ̂(ω + B�m)|2 = b, a.e. ω ∈ Rn

and the equality

(3.19)
∑

m∈Zn

ψ̂(A∗j(ω + B�m) − ν)ψ̂(ω +B�m) = 0, j ∈ N, a.e. ω ∈ Rn

hold, where b = |detB| and ν 	= 0.

Remark 3.4. In the following, we will classify the wave packet systems Ψ1 and
Ψ2.

For wave packet systems Ψ1, by Lemma 2.4, we get

(3.20) Dj
ATBmEνψ(x) = e−2πiBm·νDj

AEνTBmψ(x).

Then, it deduces from Theorem 3.1 and (3.20) that

Corollary 3.4. Let A ∈ En and B ∈ GLn(R). Wave packet system
{Dj

ATBmEνψ(x)}j∈Z,m∈Zn,ν∈S is orthogonal if and only if both of the equation

(3.21)
∑

m∈Zn

|ψ̂(ω +B�m)|2 = b‖ψ‖2, a.e. ω ∈ Rn

and the equation

(3.22)
∑

m∈Zn

ψ̂(A∗j(ω + B�m) − ν)ψ̂(ω +B�m) = 0, j ∈ N, a.e. ω ∈ Rn

hold, where b = |detB| and ν 	= 0.

For wave packet systems Ψ2, it follows from (2) in Lemma 2.4 that

(3.23) EνDApTBmψ(x) = DApEA�νTBmψ(x).

Thus from theorem 3.1 and (3.23), we have

Corollary 3.5. Let A ∈ En and B ∈ GLn(R). Wave packet system
{EνD

j
ATBmψ(x)}j∈Z,m∈Zn,ν∈S is orthogonal if and only if both of the equation

(3.24)
∑

m∈Zn

|ψ̂(ω +B�m)|2 = b‖ψ‖2, a.e. ω ∈ Rn



1398 Guochang Wu and Dengfeng Li

and the equation

(3.25)
∑

m∈Zn

ψ̂(A∗j(ω + B�m) − A�ν)ψ̂(ω + B�m) = 0, j ∈ N, a.e. ω ∈ Rn

hold, where b = |detB| and ν 	= 0.

In what follows, we will consider the completeness of wave packet systems in some
special cases. In the same way, we use some techniques of wavelet theory. In order
to make the problems more simpler, we pose the condition e−2πiBmCk = 1 in the
theorem.

Theorem 3.2. Let A ∈ En and B,C ∈ GLn(R). Suppose that the function
ψ ∈ L2(Rn) satisfies the equalities

(3.26)
∑
j∈Z

∑
k∈Zn

|ψ̂(A�jω − Ck)|2 = b a.e. ω ∈ Rn

and

(3.27)
+∞∑
r=0

∑
k∈Zn

ψ̂(A∗rω − Ck)ψ̂(A∗r(ω +B�α) −Ck) = 0, a.e. ω ∈ Rn,

where b = |detB| and α ∈ Zn/A∗Zn. Then the wave packet system
{Dj

AECkTBmψ(x)}j∈Z,k, m∈Zn is complete in L2(Rn) when e−2πiBmCk = 1.

Proof. Let Wj,k = span{Dj
AECkTBmψ(x) : m ∈ Zn}, and Qj,k denote the or-

thogonal projection onto the space Wj,k . Then, for every f ∈ L2(Rn), we have

(3.28) Qj,kf(x) =
∑

m∈Zn

〈f, Dj
AECkTBmψ〉Dj

AECkTBmψ(x).

In order to prove the completeness of wave packet system
{Dj

AECkTBmψ(x)}j∈Z,k, m∈Zn , it is sufficient to show that for any f ∈ L2(Rn),

(3.29)
∑
j∈Z

∑
k∈Zn

(Qj,kf )̂(ω) = f̂(ω).

By Lemmas 2.1 and 2.2, it suffices to prove that above equality holds for f ∈ Γ defined
by (2.6). For f ∈ Γ, we assert

(3.30) (Qj,kf )̂(ω) =
1
b

∑
s∈Zn

f̂ (ω + A∗jB�s)ψ̂(A�jω + B�s −Ck)ψ̂(A�jω −Ck).
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By Plancherel theorem and Lemma 2.4, we obtain

(3.31)

〈f,Dj
AECkTBmψ〉

= |detA|− j
2

∫
Rn

f̂(ω)ψ̂(A�jω − Ck)e2πiBm(A�j ω−Ck)dω

= |detA| j
2

∫
B�([0,1]n)

(∑
s∈Zn

f̂(A∗j(ω + B�s))ψ̂(ω +B�s−Ck)

)
e2πiBmωdω,

where the final equation use e−2πiBmCk = 1. That is to say, the sequences
{〈f, Dj

AECkTBmψ〉}m∈Zn is evidently the Fourier coefficients of theB�([0, 1]n)−periodic
function

(3.32) |detA| j
2

∑
s∈Zn

f̂(A∗j(ω + B�s))ψ̂(ω + B�s −Ck).

Thus, we have

(3.33)

∑
s∈Zn

f̂(ω +A∗jB�s)ψ̂(A�jω +B�s− Ck)

=
b

|detA| j
2

∑
m∈Zn

〈f̂ , (Dj
AECkTBmψ)̂〉e−2πiBmA�jω.

Multiplying both sides of (3.33) by ψ̂(A�jω − Ck) and again using e−2πiBmCk = 1,
we have

(3.34)

∑
s∈Zn

f̂ (ω + A∗jB�s)ψ̂(A�jω + B�s −Ck)ψ̂(A�jω −Ck)

= b
∑

m∈Zn

〈f̂ , (Dj
AECkTBmψ)̂〉(Dj

AECkTBmψ)̂(ω).

It deduces from (3.28) and (3.34) that the assertion holds.
To clarify the meaning of the series in the above equations, we point out that the

interchange of the order of summation and integration is valid, since we have assumed
that function f̂ is compactly supported, consequently, the sums over s,m are finite. By
(3.26) and (3.30), we can write the projections Qj,k:

(3.35)

∑
j∈Z

∑
k∈Zn

(Qj,kf )̂(ω)

=
1
b

∑
j∈Z

∑
k∈Zn

f̂(ω)|ψ̂(A�jω − Ck)|2

+
1
b

∑
j∈Z

∑
k∈Zn

∑
s �=0

f̂(ω +A∗jB�s)ψ̂(A�jω +B�s−Ck)ψ̂(A�jω − Ck)

= f̂(ω)+
1
b

∑
j∈Z

∑
s �=0

f̂(ω+A∗jB�s)

( ∑
k∈Zn

ψ̂(A�jω+B�s−Ck)ψ̂(A�jω−Ck)
)
.
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In the following, we will calculate the second term of the last equality in (3.35). It is
not difficult to see that there exists only one non-negative integer r such that s = A∗rα
if s = (s1, s2, · · · , sn) 	= (0, 0, · · · , 0), where α ∈ Zn/A∗Zn. Set ℵ =: Zn/A∗Zn,
then we have

(3.36)

∫
Rn

1
b
f̂(ω)

∑
s �=0

∑
j∈Z(

f̂(ω +A∗jB�s)
∑

k∈Zn

ψ̂(A�jω − Ck)ψ̂(A�jω +B�s− Ck)

)
dω

=
∫

Rn

1
b
f̂(ω)

+∞∑
r=0

∑
α∈ℵ

∑
j∈Z(

f̂(ω +A∗jB�A∗rα)
∑

k∈Zn

ψ̂(A�jω−Ck)ψ̂(A�jω+B�A∗rα−Ck)
)
dω

=
∫

Rn

1
b
f̂(ω)

∑
α∈ℵ

∑
p∈Z(

f̂(ω+A∗pB�α)
+∞∑
r=0

∑
k∈Zn

ψ̂(A∗rA�pω−Ck)ψ̂(A∗r(A�pω+B�α)−Ck)
)
dω

= 0.

So, it follows from (2.27) and (3.36) that (3.29) holds. The proof of Theorem 3.2 is
finished.

4. THE NECESSARY CONDITION AND SUFFICIENT CONDITION OF THE WAVE PACKET

PARSEVAL FRAME

In this section, we will give the necessary condition and sufficient condition for the
wave packet system to be a Parseval frame with the very general lattices. Then, we
obtain the corresponding known results in Gabor system and wavelet system as some
corollaries.

First, we establish a lemma as follows.

Lemma 4.1. Suppose that wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S

is defined by (2.3), then for any f ∈ Γ,

(4.1)

∑
(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2

=
∑

(p, ν)∈S

qp
b

∫
B�([0,1]n)

|
∑
s∈Zn

f̂ (A∗
p(ω +B�s+ ν))ψ̂(ω + B�s)|2dω,

where b = |detB| and qp = |detAp|.
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Proof. Let f ∈ Γ, then f̂ ∈ Cc(R) and f̂ have compact support. Put qp = |detAp|,
then by Lemma 2.3 and Plancherel theorem, we have

(4.2)

∑
(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2

=
∑

(p, ν)∈S

∑
m∈Zn

|〈f̂ , D
A�

p
TνE−Bmψ̂〉|2

=
∑
p∈P

qp
∑
ν∈Q

∑
m∈Zn

|
∫

Rn

f̂(A∗
p(ω + ν))ψ̂(ω)e2πiBmωdω|2.

We affirm:

(4.3)

∑
p∈P

qp
∑
ν∈Q

∑
m∈Zn

|
∫

Rn
f̂(A∗

p(ω + ν))ψ̂(ω)e2πiBmωdω|2

=
∑

(p, ν)∈S

qp
b

∫
B�([0,1]n)

|
∑
s∈Zn

f̂ (A∗
p(ω +B�s+ ν))ψ̂(ω + B�s)|2dω.

Now, we prove (4.3). Fix (p, ν) ∈ S. The interchange of the order of summation
and integration is valid, since we have assumed that function f̂ is compactly supported,
and, consequently the sum over m is finite.

Similar to (3.6)-(3.9), we can define the function Fp : R→ C by

(4.4) Fp(ω) =
∑
s∈Zn

f̂(A∗
p(ω +B�s+ ν))ψ̂(ω + B�s), a.e. ω

and prove that Fp(ω) ∈ L1(B�[0, 1]n). Also, we can obtain Fp(ω) ∈ L2(B�[0, 1]n).
Then, according to the definition of Fp(ω), we have

(4.5)

∫
Rn

f̂(A∗
p(ω + ν))ψ̂(ω)e2πiBmωdω

=
∫

B�([0,1]n)

(∑
s∈Zn

f̂(A∗
p(ω +B�s+ ν))ψ̂(ω + B�s)

)
e2πiBmωdω

=
∫

B�([0,1]n)
Fp(ω)e2πiBmωdω.

Parseval’s equality shows that

(4.6)
∑

m∈Zn

|
∫

B�([0,1]n)
Fp(ω)e2πiBmωdω|2 =

1
b

∫
B�([0,1]n)

|Fp(ω)|2dω.

Combining (4.5),(4.6) and the definition of Fp(ω), we get

(4.7)

∑
m∈Zn

|
∫

Rn

f̂(A∗
p(ω + ν))ψ̂(ω)e2πiBmωdω|2

=
1
b

∫
B�([0,1]n)

|
∑
s∈Zn

f̂(A∗
p(ω +B�s+ ν))ψ̂(ω + B�s)|2dω.
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So, (4.3) holds.
At last, comparing to (4.2) and (4.3), we find that (4.1) holds.

Based on Lemma 4.1, we will establish a sufficient condition for the wave packet
system to be a Parseval frame.

Theorem 4.1. The wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S defined
by (2.3) is a wave packet Parseval frame for L2(Rn) if the two following equalities

(4.8)
∑

(p, ν)∈S

|ψ̂(A�
pω − ν)|2 = b, a.e. ω ∈ Rn

and

(4.9)
∑
ν∈Q

ψ̂(A�
pω − ν)ψ̂(A�

pω + B�s− ν) = 0, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detB|.
Proof. In the same way, let f ∈ Γ. Notice that function f̂ in the series∑

(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2 is compactly supported, hence the sum over m is

finite, consequently, the interchange of the order of summation and integration is valid.
By Lemma 2.4, Lemma 4.1 and Plancherel theorem, we can write

(4.10)

∑
(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2

=
∑

(p, ν)∈S

qp
b

∫
B�([0,1]n)

|
∑
s∈Zn

f̂(A∗
p(ω + B�s + ν))ψ̂(ω +B�s)|2dω

=
∑

(p, ν)∈S

qp
b

∫
B�([0,1]n)

(
∑
s∈Zn

f̂(A∗
p(ω +B�s+ ν))ψ̂(ω +B�s))×

(
∑

m∈Zn

f̂(A∗
p(ω +B�m+ ν))ψ̂(ω +B�m))dω

=
∑

(p, ν)∈S

qp
b

∫
Rn

f̂(A∗
p(ω + ν)ψ̂(ω)(

∑
s∈Zn

f̂(A∗
p(ω + B�s+ν))ψ̂(ω+B�s)dω

=
∑

(p, ν)∈S

qp
b

∫
Rn

|f̂(A∗
pω)ψ̂(ω − ν)|2dω

+
∑

(p, ν)∈S

qp
b

∫
Rn
f̂(A∗

pω)ψ̂(ω−ν)(
∑
s�=0

f̂(A∗
p(ω+B�s)ψ̂(ω+B�s−ν))dω.

For future reference, we introduce the following notations:

(4.11) I(f) =
∑

(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2,
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(4.12) I1(f) =
∑

(p, ν)∈S

qp
b

∫
Rn

|f̂(A∗
p(ω))ψ̂(ω − ν)|2dω

and

(4.13)

I2(f)

=
∑

(p, ν)∈S

qp
b

∫
Rn

f̂(A∗
pω)ψ̂(ω−ν)(

∑
s�=0

f̂(A∗
p(ω+B�s)ψ̂(ω+B�s − ν))dω.

Obviously, from (4.11)-(4.13), we have the following decomposition

(4.14) I(f) = I1(f) + I2(f).

By f ∈ Γ and the inequality

(4.15) |ψ̂(ω − ν)|| ¯̂ψ(ω +B�s− ν))| ≤ 1
2
(|ψ̂(ω − ν)|2 + |ψ̂(ω + B�s − ν))|2),

we have

(4.16)
∑

(p, ν)∈S

∫
Rn
f̂ (A∗

p(ω))ψ̂(ω−ν)(
∑
s�=0

f̂(A∗
p(ω+B�s))ψ̂(ω+B�s−ν))dω<∞.

Thus, we can change the orders of integration and summation in the expression (4.13).
Using the equations (4.8) (4.9) and (4.10), we get

(4.17)

∑
(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2

=
∫

Rn

∑
p∈P

qp

b
|f̂(A∗

pω)|2(
∑
ν∈Q

|ψ̂(ω − ν)|2)dω

+
∫

Rn

∑
p∈P

∑
s �=0

qp

b
f̂(A∗

pω)f̂(A∗
p(ω+B�s))(

∑
ν∈Q

ψ̂(ω−ν)ψ̂(ω+B�s−ν))dω

=
∫

Rn

1
b
|f̂(ω)|2(

∑
p∈P

∑
ν∈Q

|ψ̂(A�
pω − ν)|2)dω

+
∫

Rn

∑
s �=0

1
b
f̂(ω)(

∑
p∈P

f̂(ω+A∗
pB

�s)
∑
ν∈Q

ψ̂(A�
pω−ν)ψ̂(A�

pω+B�s−ν))dω

=
∫

Rn

|f̂(ω)|2dω = ‖f‖2.

So, it follows from Lemmas 2.1 and 2.2 that the wave packet system
{DApEνTBmψ(x)}m∈Zn, (p, ν)∈S defined by (2.3) is a Parseval frame. The proof of
Theorem 4.1 is completed.

Remark 4.1. Let A be the elementary matrix E in Theorem 4.1. Then we obtain
a sufficient condition of the Gabor Parseval frame as follows.
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Corollary 4.1. Let B,C ∈ GLn(R). Then, the Gabor system
{ECkTBmψ(x)}k,m∈Zn is a Parseval frame for L2(Rn) if the two following equalities

∑
k∈Zn

|ψ̂(ω −Ck)|2 = b, a.e. ω ∈ Rn

and ∑
k∈Zn

ψ̂(ω −Ck)ψ̂(ω +B�s− Ck) = 0, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detC|.
Also, if P = {Aj : j ∈ Z,A ∈ GLn(R)} and Q = {0} in Theorem 4.1, then we

obtain the sufficient of the wavelet frame, that is

Corollary 4.2. Let A be an arbitrary matrix and ψ ∈ L2(Rn). Then the wavelet
system {Dj

ATBmψ(x)}j∈Z,m∈Zn is a Parseval wavelet frame if the two following
equalities ∑

j∈Z

|ψ̂(Ajω)|2 = b, a.e. ω ∈ Rn

and
ψ̂(A�ω)ψ̂(A�jω + B�s) = 0, j ∈ N, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detB|.
Applying some techniques in [6, 7], we can also provide a necessary condition for

the wave packet system to be a Parseval frame in L2(Rn).

Theorem 4.2. If the wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S de-
fined by (2.3) is a Parseval frame for L2(Rn), then the equalities (4.8) and

(4.18)
∑

(p,ν)∈S

ψ̂(A�
pω − ν)ψ̂(A�

pω + B�s − ν) = 0, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detB|.
Proof. Now we assume that

(4.19)
∑

(p, ν)∈S

∑
m∈Zn

|〈f, DApEνTBmψ〉|2 = ‖f‖2

for all f ∈ L2(Rn). In particular, (4.19) holds for all functions f ∈ Γ.
It is obvious that for f ∈ Γ, I(f) < ∞ if and only if I1(f) < ∞. Now taking

f = χC , where C is any compact subset in Rn, we see that I1(f) <∞ for all f ∈ Γ,
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if and only if τ(ω) :=
∑

(p, ν)∈S

|ψ̂(A�
pω − ν)|2 is locally integrable in Rn. Thus, by our

assumption, the function τ(ω) is locally integrable, consequently, almost every point
of the function τ is a Lebesgue point. Choose ω0 ∈ R to be a Lebesgue point of the
function τ(ω). Then we have

(4.20)
∑

(p, ν)∈S

|ψ̂(A�
pω0 − ν)|2 = lim

ε→0

∫
|ω−ω0|〈ε

1
|B(ε)|

∑
(p, ν)∈S

|ψ̂(A�
pω − ν)|2dω,

where B(ε) denotes the ball of radius ε > 0 about the origin. For small enough ε, we
define fε by

(4.21) f̂ε(ω) =
1√|B(ε)|χB(ε)(ω − ω0).

Clearly,

(4.22) ‖fε‖2 = ‖f̂ε‖2 = 1.

By the decomposition (4.14), we have

(4.23) I(fε) = I1(fε) + I2(fε).

Thus, by using (4.20)-(4.23) and the definition of I1, we find

(4.24) 1 =
1

|B(ε)|
∫

B(ε)
τ(ω − ω0)dω + I2(fε).

If we can show that lim
ε→0

I2(fε) = 0, then since ω0 is a Lebesgue point of τ , we
have

(4.25) 1 = lim
ε→0

(
1

|B(ε)|
∫

B(ε)

τ(ω − ω0)dω + I2(fε)) = τ(ω0) + lim
ε→0

I2(fε) = τ(ω0).

That is to say, τ(ω) = 1, a.e. ω ∈ Rn, which completes the proof of (4.8).
Now, we devote to calculating lim

ε→0
I2(fε).

(4.26)

|I2(fε)|

≤
∑

(p, ν)∈S

qp

b

∫
Rn

|f̂ε(A∗
p(ω))||ψ̂(ω − ν)|

∑
s �=0

|f̂ε(A
∗
p(ω +B�s)||ψ̂(ω + B�s − ν))|dω

=

∫
Rn

∑
p∈P

∑
s �=0

1

b
|f̂ε(ω)||f̂ε(ω +A∗

pB
�s)|(

∑
ν∈Q

|ψ̂(A�
pω − ν)||ψ̂(A�

pω + B�s − ν))|dω

≤
∫

Rn

∑
p∈P

∑
s �=0

1

b
|f̂ε(ω)f̂ε(ω+A∗

pB
�s)|(

∑
ν∈Q

(|ψ̂(A�
pω−ν)|2 + |ψ̂(A�

pω+B�s−ν))|2)dω

=

∫
Rn

∑
p∈P

∑
s �=0

∑
ν∈Q

1

b
|f̂ε(ω)||f̂ε(ω + A∗

pB
�s)||ψ̂(A�

pω − ν)|2dω

+

∫
Rn

∑
p∈P

∑
s �=0

∑
ν∈Q

1

b
|f̂ε(ω)||f̂ε(ω +A∗

pB
�s)||ψ̂(A�

pω +B�s− ν))|2dω.



1406 Guochang Wu and Dengfeng Li

Since ε is small enough, for every s 	= 0, we have

(4.27) |f̂ε(ω)||f̂ε(ω + A∗
pB

�s)| = 0.

Thus, for small enough ε, I2(fε) = 0.
In the following, we turn to prove (4.18). According to (4.14) and (4.19), for all

f ∈ Γ, we easily deduce I2(f) = 0, i.e.

(4.28)
∫

Rn

∑
p∈P

∑
s�=0

∑
ν∈Q

1
b
f̂(ω)f̂(ω+A∗

pB
�s)(ψ̂(A�

pω−ν)ψ̂(A�
pω + B�s−ν))dω = 0.

By the polarization identity, for any f, g ∈ Γ, we get

(4.29)
∫

Rn

∑
p∈P

∑
s�=0

∑
ν∈Q

1
b
f̂(ω)ĝ(ω+A∗

pB
�s)(ψ̂(A�

pω−ν)ψ̂(A�
pω+B�s−ν))dω = 0.

Similar to discussion of above function τ(ω), the function

(4.30) μ(ω) :=
∑
ν∈Q

ψ̂(A�
pω − ν)ψ̂(A�

pω + B�s − ν)

is locally integrable. Hence, almost every point of the function ν(ω) is a lebesgue point
in Rn. Fix s0 	= 0. Let ω0 (ω0 	= 0 and ω0 + s0 	= 0) be a Lebesgue point of μ(ω),
and fε be defined by (4.21) and h be defined as the following

(4.31) ĥε(ω) =
1√|B(ε)|χB(ε)(ω − ω0 −A∗

pB
�s0).

Then, we have

(4.32) f̂ε(ω − ω0)ĥε(ω − ω0 + A∗
pB

�s0) =
1√|B(ε)|χB(ε)(ω − ω0).

Let f = fε and g = hε in (4.29), then we get

(4.33)

0=
∫

Rn

∑
p∈P

∑
s �=0

∑
ν∈Q

1
b
f̂ε(ω)ĝε(ω+A∗

pB
�s)(ψ̂(A�

pω−ν)ψ̂(A�
pω+B�s−ν))dω

=
1

b
√|B(ε)|

∫
B(ε)

∑
p∈P

∑
ν∈Q

ψ̂(A�
pω − ν − ω0)ψ̂(A�

pω + B�s0 − ν − ω0)dω

+
∫

Rn

∑
p∈P

∑
s �=0,s0

∑
ν∈Q

1
b
f̂ε(ω)ĝε(ω+A∗

pB
�s)(ψ̂(A�

pω−ν)ψ̂(A�
pω +B�s−ν))dω.

It is obvious that for small enough ε,

(4.34)
∫

Rn

∑
p∈P

∑
s �=0,s0

∑
ν∈Q

1
b
f̂ε(ω)ĝε(ω+A∗

pB
�s)(ψ̂(A�

pω−ν)ψ̂(A�
pω+B�s−ν))dω=0.
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Therefore, by the fact that ω0 is a Lebesgue point of μ(ω),

(4.35)

0 = lim
ε→0

1
b
√|B(ε)|

∫
B(ε)

∑
p∈P

∑
ν∈Q

ψ̂(A�
pω − ν − ω0)ψ̂(A�

pω +B�s0 − ν − ω0)dω

=
1
b

∑
p∈P

∑
ν∈Q

ψ̂(A�
pω − ν)ψ̂(A�

pω +B�s0 − ν)dω,

for all s0 and a.e. ω ∈ Rn. So, we get (4.18). The proof of Theorem 4.2 is ended.

Remark 4.2. If A is the elementary matrix E in Theorem 4.2, then, we obtain
the necessary condition of the Gabor frames as follows.

Corollary 4.3. Let B,C ∈ GLn(R). If the Gabor system {ECkTBmψ(x)}k,m∈Zn

is a Gabor Parseval frame for L2(Rn), then the two following equalities∑
k∈Zn

|ψ̂(ω −Ck)|2 = b, a.e. ω ∈ Rn

and ∑
k∈Zn

ψ̂(ω −Ck) ¯̂
ψ(ω +B�s− Ck) = 0, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detB|.
Also, if P = {Aj : j ∈ Z,A ∈ GLn(R)} and Q = {0} in Theorem 4.2, then we

obtain the following necessary condition of the wavelet frames.

Corollary 4.4. Let A be an arbitrary matrix, B ∈ GLn(R) and ψ ∈ L2(Rn).
If the wavelet system {Dj

ATBmψ(x)}j∈Z,m∈Zn is a Parseval wavelet frame, then the
two following equalities ∑

j∈Z

|ψ̂(Ajω)|2 = b, a.e. ω ∈ Rn

and ∑
j∈Z

ψ̂(A�ω)ψ̂(A�jω +B�s) = 0, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detB|.
Remark 4.3. Comparing with corollary 4.1 and corollary 4.3, we obtain the fol-

lowing characterization of the Gabor Parseval frame, which is the case of single gen-
erator of theorem 3.1 in [13].

Corollary 4.5. Let B,C∈GLn(R). Then, the Gabor system {ECkTBmψ(x)}k,m∈Zn

is a Gabor Parseval frame for L2(Rn) if and only if the two following equalities∑
k∈Zn

|ψ̂(ω −Ck)|2 = b, a.e. ω ∈ Rn
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and ∑
k∈Zn

ψ̂(ω −Ck) ¯̂
ψ(ω +B�s− Ck) = 0, a.e. ω ∈ Rn

hold for every s ∈ Zn and s 	= 0, where b = |detC|.
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