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UPPER BOUNDS FOR THE FIRST EIGENVALUE OF THE LAPLACE
OPERATOR ON COMPLETE RIEMANNIAN MANIFOLDS

Yi-jung Hsu and Chien-lun Lai

Abstract. Let M be a complete Riemannian manifold with infinite volume and Ω
be a compact subdomain in M. In this paper we obtain two upper bound estimates
for the first eigenvalue of the Laplacian on the punctured manifold M \Ω subject
to volume growth and lower bound of Ricci curvature, respectively. The proof
hinges on asymptotic behavior of solutions of second order differential equations,
the max-min principle and Bishop volume comparison theorem.

1. INTRODUCTION

Let M be an n-dimensional complete Riemannian manifold and Δ be the Laplace
operator on M. The first Dirichlet eigenvalue λ1(D) for a compact normal subdomain
D in M is the smallest λ that satisfies

Δu + λu = 0

for some nontrivial function u on M with u|∂D = 0. The first Dirichlet eigenvalue is
characterized by minimizing the Rayleigh quotient

λ1(D) = inf

∫
D |∇u|2∫

D u2
,

where the infimum is taken over all nontrivial u ∈ H1
0 (D). For a compact subset Ω of

M , the first eigenvalue of M \ Ω is defined by

λ1(M \ Ω) = inf{λ1(D) : D ⊂ M \ Ω is a compact doamin}.

It is clear that λ1(M) ≤ λ1(M \ Ω) for all compact subset Ω. In general, λ1(M) �=
λ1(M \ Ω) (see [3]).
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It is well known that λ1(Rn) = λ1(Rn \ Ω) = 0. Cheng and Yau showed that
λ1(M) = 0 if M has polynomial volume growth (see [2]). Do Carmo and Zhou showed
that λ1(M \ Ω) = 0 if M has polynomial volume growth, and λ1(M \ Ω) ≤ a2

4 if M

has exponential volume growth, Vol(B(r)) ≤ C exp (a r) for some positive constants
C and a (see [3]). The purpose of the present paper is to study upper bounds for
λ1(M \ Ω) under certain circumstances.

We shall now summarize our main results. In Section 2, we apply the technique of
[3] to prove that if the second order differential equation (vx′)′ +λvx = 0 is nonoscil-
latory, where v is a positive continuous function on [t0,∞), and λ is a nonnegative
constant, then √

λ ≤ 1
2

lim inf
t→∞

logV (t)
t

,

where V (t) =
∫ t
t0

v(s) ds. When v(t) = exp(a t), for some nonnegative a, the estimate
is sharp.

In Section 3, we use the preceding result to estimate an upper bound of λ1(M \Ω)
subject to volume growth. We prove that

λ1(M \ Ω) ≤ 1
4
(lim inf

r→∞
log V (r)

r
)2,

where V (r) is the volume of the geodesic ball B(r) with radius r. In case M has
polynomial or exponential volume growth, this was a result of Do Carmo and Zhou
[3].

In the last section, we start with a discussion of an asymptotic behavior for solutions
of the second order differential equation of the form y′′ − (n − 1) k2 y = 0, where k
is a positive continuous function. This discussion is then applied to estimate an upper
bound of λ1(M \ Ω) subject to lower bound of Ricci curvature. We prove that if
the Ricci curvature is bounded below by − (n − 1) k(r)2, where k is a nonnegative
continuous function, then

λ1(M \ Ω) ≤ (n − 1)2

4
[lim sup

r→∞
k(r)]2.

According to Brooks [1], if Mc is an n-dimensional simply connected complete Rie-
mannian manifold with constant negative sectional curvature − c2, then λ1(Mc) =
(n−1)2

4 c2. Our estimate implies that λ1(Mc \ Ω) = (n−1)2

4 c2.

2. OSCILLATION THEOREM

In this section we confine our attention to an oscillation criteria in integral form of
the second order ordinary differential equation

(v(t)x′(t))′ + λv(t)x(t) = 0, t ≥ t0,(2.1)
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where v(t) is a positive continuous function on [t0,∞), and λ is a nonnegative constant.
The equation (2.1) is oscillatory if all solutions of (2.1) have arbitrary large zeros on
[t0,∞); otherwise, the equation (2.1) is nonoscillatory. We improve a result of M. P.
Do Carmo and D. Zhou [3] as follows:

Theorem 2.1. Let v be a positive continuous function on [t0,∞),
∫ ∞

t0

v(t) dt = ∞,

and λ be a nonnegative constant. If the differential equation (v(t)x′(t))′+λv(t)x(t) =

0, t ≥ t0, is nonoscillatory, then
√

λ ≤ 1
2

lim inf
t→∞

logV (t)
t

, where V (t) =
∫ t
t0

v(s) ds.

Proof. There is no loss of generality in assuming that lim inf
t→∞

log V (t)
t

= a, for

some a ≥ 0. Assume for the sake of contradiction that
√

λ >
a

2
. By the nonoscillatory

assumption on the differential equation

((v(t)x′(t))′ + λv(t)x(t) = 0, t ≥ t0,

there exists a solution x(t) of (2.1) and a positive constant T > t0 such that x(t) > 0
for any t ≥ T .

Let y(t) = −v(t)x′(t)
x(t)

, for t ≥ T, then y satisfies the Riccati equation

y′(t) =
y2(t)
v(t)

+ λv(t).(2.2)

Since
∫ ∞
t0

v(t) dt = ∞ and y′(t) = y2(t)
v(t) + λv(t) ≥ λv(t), y(t) ≥ λ(V (t) − V (T )) +

y(T ), we may assume y(t) > 0, for t ≥ T. By (2.2), we have y′(t) ≥ 2
√

λ y(t), and
hence

y(t) ≥ y(T ) exp
(
2
√

λ(t − T )
)

.(2.3)

Furthermore, equation (2.2) gives

y′(t)
y2(t)

=
1

v(t)
+

λ

y2(t)
≥ 1

v(t)
,

and using Hölder’s inequality,

− 1
y(t)

+
1

y(t − 1)
≥

∫ t

t−1

1
v(τ)

dτ ≥ 1∫ t
t−1 v(τ) dτ

≥ 1∫ t
T v(τ) dτ

=
1

V (t)
.

It follows from (2.3) that
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0 <
1

y(t)

≤ 1
y(T ) exp2

√
λ(t − T − 1)

− 1
V (t)

=
exp 2

√
λ(T + 1)

y(T )V (t)

⎡
⎣ V (t)

exp
(
2
√

λt
) − y(T )

exp
(
2
√

λ(T + 1)
)

⎤
⎦ ,

hence

V (t)

exp
(
2
√

λt
) − y(T )

exp
(
2
√

λ(T + 1)
) > 0.(2.4)

Since lim inf
t→∞

log V (t)
t

= a, there exists a sequence tn, tn → ∞, such that

lim
n→∞

logV (tn)
tn

= a, thus V (tn) = exp ((a + o(1))tn) . Then

V (tn)

exp
(
2
√

λtn

) = exp
(
(a − 2

√
λ + o(1))tn

)
→ 0

as n → ∞. This contradicts to (2.4).

The estimate is sharp, as the following example shows. Let v(t) = exp(a t), for

some nonnegative constant a. Then lim inf
t→∞

log V (t)
t

= a. In this case, the general
solution of (2.1) is given explicitly by

x(t) = exp (−a

2
t)(c1 cosh(

√
a2 − 4λ

2
t) + c2 sinh(−

√
a2 − 4λ

2
t)),

x(t) = exp (−a

2
t)(c1 + c2t) and

x(t) = exp (−a

2
t)(c1 cos(

√
4λ − a2

2
t) + c2 sin(

√
4λ − a2

2
t)),

for λ < a2

4 , λ = a2

4 and λ > a2

4 , respectively. The equation (2.1) is nonoscillatory if√
λ ≤ a

2 , and oscillatory if
√

λ > a
2 , respectively.

3. VOLUME GROWTH AND UPPER BOUND ESTIMATES

Using the oscillation criteria of the preceding section, it is natural to obtain the
following upper bound of the first eigenvalue of punctured manifolds. Let M be
a Riemannian manifold. For a fixed point p ∈ M, let V (r) be the volume of the
geodesic ball B(r) in M with radius r centered at p.
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Theorem 3.1. Let M be an n-dimensional complete Riemannian manifold with infi-

nite volume, and Ω be a compact subset in M. Then λ1(M\Ω) ≤ 1
4
(lim inf

r→∞
log V (r)

r
)2.

Proof. Being a compact subset, there is a r0 such that Ω ⊂ B(r0). Let v(r) be
the area of the geodesic sphere ∂B(r). Then the volume of the geodesic ball B(r) is

given by V (r) =
∫ r
0 v(r) dr. Since M has infinite volume,

∫ ∞

r0

v(r) dr = ∞.

Without loss of generality we can assume that lim inf
r→∞

log V (r)
r

= a, for some

a ≥ 0. Applying theorem 2.1, for any λ,
√

λ > a
2 , all solutions of (2.1) have arbitrary

large zeros on [r0,∞). Thus there exists a nontrivial solution x of (2.1), r1 and r2 such
that r2 > r1 ≥ r0 and x(r1) = x(r2) = 0. As a trial function, let φ = x ◦ r. Then

0 ≤ λ1(M \ Ω)
≤ λ1(B(r2) \ B(r1))

≤

∫
B(r2)\B(r1)

|∇φ|2 dV∫
B(r2)\B(r1)

φ2 dV

=

∫ r2

r1

(x′(r))2v(r) dr∫ r2

r1

x(r)2v(r) dr

= −

∫ r2

r1

(v(r)x′(r))′x(r) dr∫ r2

r1

(x(r))2v(r) dr

= λ.

Since λ is an arbitrary positive constant,
√

λ > a
2 , it follows that λ1(M \ Ω) ≤ 1

4
a2.

4. RICCI CURVATURE AND UPPER BOUND ESTIMATES

The volume growth of geodesic balls are closely related to lower bounds on Ricci
curvature, such as the classical Bonnet and Myers’ theorem, Myers’ theorem and
Bishop’s theorem. In this section, we proceed with the estimate for the first eigen-
value of the Laplacian on the punctured manifold M \Ω in terms of a lower bound of
Ricci curvature. We start with a simple observation of the asymptotic behavior of the
differential equation

y′′(t) − k2(t)y(t) = 0,(4.1)
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with the given initial condition y(0) = 0 and y′(0) = 1, where k is a positive continuous
function on [0,∞), and k(t) tends to a nonnegative limit K as t tends to infinity. The
solution y is positive for all t > 0. Indeed, suppose otherwise, if y(t1) = 0 for some
t1 > 0, then y has a positive local maximum at ξ ∈ (0, t1), which contradicts the
fact that y′′(ξ) = k2(ξ)y(ξ) > 0. Furthermore, since y′′(t) = k2(t)y(t) > 0, y′(t) is
increasing, y′(t) ≥ y′(0) = 1, and therefore y(t) tends to infinity as t tends to infinity.
Because of y(t) is increasing to infinity, by l’Hospital’s rule, we have

lim
t→∞

(y ′(t))2

y2(t)
= lim

t→∞
2y ′(t)y′′(t)
2y(t)y ′(t)

= lim
t→∞ k2(t) = K2.

It consequently follows that

lim
t→∞

y ′(t)
y(t)

= K.(4.2)

That is,

y(t) = C exp(Kt +
∫ t

t0

ε(s) ds),

where ε(t) tends to zero as t tends to infinity. Using (4.6) and l’Hospital’s rule, we
see that

lim
t→∞

log
∫ t

t0

yn−1(s) ds

t
= lim

t→∞
yn−1(t)∫ t

t0

yn−1(s) ds

= lim
t→∞

(n − 1)yn−2(t)y ′(t)
yn−1(t)

= lim
t→∞(n − 1)

y ′(t)
y(t)

= (n − 1)K,

hence

lim
t→∞

log
∫ t
t0

yn−1(s) ds

t
= (n − 1)K.(4.3)

When k is restricted to the C1 class, there is a another approach to obtaining an
upper bound of y. The starting point is to observe that (4.5) may be considered as a
system of equations z′ = Bz, where

z(t) =

⎡
⎢⎣

1
2
y(t) +

1
2k(t)

y′(t)
1
2
y(t) − 1

2k(t)
y′(t)

⎤
⎥⎦ ,
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and B is the symmetric matrix

B(t) =

⎡
⎢⎢⎢⎣

− k′(t)
2k(t)

+ k(t)
k′(t)
2k(t)

k′(t)
2k(t)

− k′(t)
2k(t)

− k(t)

⎤
⎥⎥⎥⎦ .

Using a result of [4], the Euclidean norm ‖z‖ of z is controlled by the integral of the
greatest eigenvalue of B(t). More precisely,√

y2(t)
2

+
(y′(t))2

2k2(t)
≤ C exp

∫ t

t0

−k′(s) +
√

(k′(s))2 + 4k4(s)
2k(s)

ds,

and hence

y(t) ≤ C exp
∫ t

t0

−k′(s) +
√

(k′(s))2 + 4k4(s)
2k(s)

ds.(4.4)

The main theorem we want to prove in this section is the following

Theorem 4.1. Let M be an n-dimensional complete Riemannian manifold with
infinite volume, and Ω be a compact subset in M. If Ricci curvature is bounded from
below by Ric ≥ − (n − 1)k2(r), where k is a nonnegative continuous function, then

λ1(M \ Ω) ≤ (n − 1)2

4

(
lim sup

r→∞
k(r)

)2

.

Proof. We may assume that lim supr→∞ k(r) = K for some nonnegative constant
K. For simplicity, we replace k(r) by the truncated function k̃(r) = max{k(r), K}+ε,
where ε is a positive constant. Then k̃ is a positive continuous function on [0,∞),
k̃(t) tends to a positive limit K + ε as t tends to infinity, and Ric ≥ − (n − 1)k̃2(r)
still holds true.

For a fixed point p of M, let J(r, θ) dθ be the area element of the boundary ∂B(r).
Then the volume of the geodesic ball B(r) with radius r is given by

V (r) =
∫

Sn−1

∫ min{r,foc(θ)}

0
J(s, θ) ds dθ,

where foc(θ) is the distance from p to the focal point of p along the minimal geodesic
in θ−direction. Let y(r) be the solution of the initial value problem (4.5) with k

replaced by k̃. According to Bishop volume comparison theorem [5], J(r, θ) ≤ yn−1(r)
whenever (r, θ) is within cut-locus of p. Therefore, V (r) ≤ ∫

Sn−1

∫ r
0 yn−1(s) ds dθ =

ωn−1

∫ r
0 yn−1(s) ds, where ωn−1 is the area of the standard sphere Sn−1. Using theorem

3.1 and (4.7), we have
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0 ≤ λ1(M \ Ω) ≤ 1
4

(
lim inf
r→∞

logV (r)
r

)2

=
1
4

[
lim inf
r→∞

log
∫
Sn−1

∫ min{r,foc(θ)}
0 J(s, θ) ds dθ

r

]2

≤ 1
4

[
lim inf
r→∞

log
∫
Sn−1

∫ r
0 yn−1(s) ds dθ

r

]2

=
1
4

[
lim

r→∞
log(ωn−1

∫ r
0 yn−1(s) ds)
r

]2

=
1
4

[
lim

r→∞
log

∫ r
0 yn−1(s) ds

r

]2

=
1
4

[
lim

r→∞
log

∫ r
r0

yn−1(s) ds

r

]2

=
1
4
(n − 1)2(K + ε)2,

for arbitrary ε. Letting ε tend to zero, we complete the proof of theorem.

As a subsequence of (4.8), an argument like the above, we obtain the same upper
bound estimate of λ1(M \ Ω) of theorem 4.1 if k is a C1 monotonic function.

If Mc is an n dimensional simply connected complete Riemannian manifold with
constant negative sectional curvature − c2, then λ1(Mc) = (n−1)2

4 c2 (see [1]). Since
λ1(Mc) ≤ λ1(Mc \ Ω), we can apply theorem 4.1 to conclude that λ1(Mc \ Ω) =
(n−1)2

4 c2.
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