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TOPOLOGICAL ENTROPY OF PROPER MAP

Dongkui Ma* and Bin Cai

Abstract. By using the Carathéodory-Pesin structure (C-P structure), the topo-
logical entropy on the whole space introduced for a proper map, is generalized
to the cases of arbitrary subset, i.e., we introduce three notions of topological
entropy. Some of the properties of these notions are provided. As some applica-
tions, for the proper map of locally compact separable metric space, we prove the
following variational principles: (1) The upper capacity topological entropy on
any subset and the minimum of the Bowen-Dinaburg entropies always coincide;
(2) For any invariant probability measure, the measure-theoretic entropy and the
infimum of the topological entropies on all sets which are of full measures always
coincide; (3) The relationship between the topological entropies of level sets of the
ergodic average of some continuous functions and the measure-theoretic entropies
are given. These are the extensions of results of Patrão and Pesin, etc.

1. INTRODUCTION

Let f be a continuous map acting on a compact topological space X , we call
(X, f) a compact system. The concept of topological entropy plays a central role in
topological dynamics. The notion of topological entropy was introduced by Adler,
Konheim and McAndrew [1] as an invariant of topological conjugacy. We call it the
AKM entropy. Later, Bowen[4] and Dinaburg [10] presented equivalent approach to
the notion of topological entropy in the case when the domain of considered map is a
metrizable space. We call it the BD entropy. Since the topological entropy appeared to
be a very useful invariant in dynamical systems and ergodic theory, there were several
attempts to find its suitable generalizations. By using the approach of the definition of
the Hausdorff dimension, Bowen [5] introduced the topological entropy on any subset.
We call it the Bowen dimensional entropy. Let X be a compact metric space, Pesin and
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Pitskel [14] introduced the topological entropy (topological pressure) on any subset of
X . We call it the PP entropy and it coincides with the Bowen dimensional entropy. Let
X be a topological space and f : X → X be a proper map. Patrão[13] introduced a
topological entropy, it is the extension of AKM entropy. We call it the Patrão entropy.
The other extensions of topological entropy, one can see, for example, [8, 9, 11, 12,
18].

The classical Carathéodory construction in the general measure theory was origi-
nated by Carathéodory in [6]. Pesin [15] introduced a construction which is a gener-
alization of the classical Carathéodory construction. It produces various characteristics
of dimension type. For example, Hausdorff dimension, topological entropy, etc. We
call it the Carathéodory-Pesin structure(or briefly, C-P structure). It is a very powerful
tool to study dimension theory and dynamical systems.

In this paper, by using the C-P structure, the notion of topological entropy on the
whole space introduced for a proper map, is generalized to the case of arbitrary sub-
set. We introduce three notions of topological entropy. The lower and upper capacity
topological entropies are the extensions of the Patrão entropy and AKM entropy. The
topological entropy is the extension of PP entropy and Bowen dimensional entropy.
Some of the properties of these notions are provided. As some applications, for the
proper map of locally compact separable metric space, we prove the following vari-
ational principles: (1) The upper capacity topological entropy on any subset and the
minimum of the Bowen-Dinaburg entropies always coincide; (2) For any invariant
probability measure, the measure-theoretic entropy and the infimum of the topological
entropies on all sets which are of full measures always coincide; (3) The relationship
between the topological entropies of level sets of the ergodic average of some continu-
ous functions and the measure-theoretic entropies are given. These are the extensions
of results of Patrão and Pesin, etc.

This paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we introduce the notions of the topological entropy, the lower and upper
capacity topological entropies and some basic properties of them. In Section 4, we
give some further properties. In Section 5, we give some variational principles.

2. PRELIMINARIES

We describe the Carathéodory-Pesin structure(for the full description see refs. [15]).
Let X and S be arbitrary sets and F = {Us : s ∈ S} a collection of subsets in X .
We assume that there exist two functions η, ψ : S → R+ satisfying the following
conditions:

(1) there exists s0 ∈ S such that Us0 = φ; if Us = φ then η(s) = 0 and ψ(s) = 0;
if Us �= φ then η(s) > 0 and ψ(s) > 0;

(2) for any δ > 0 one can find ε > 0 such that η(s) ≤ δ for any s ∈ S with
ψ(s) ≤ ε;



Topological Entropy of Proper Map 1221

(3) for any ε > 0 there exists a finite or countable subcollection G ⊂ S which covers
X (i.e., ∪s∈GUs ⊃ X) and ψ(G) := sup{ψ(s) : s ∈ G} ≤ ε.

Let ξ : S → R
+ be a function. We say that the set S , collection of subsets

F , and the functions ξ, η, ψ, satisfying Conditions (1), (2), and (3), introduce the
Carathéodory-Pesin structure or C-P structure τ on X and write τ = (S,F , ξ, η, ψ).

Given a set Z ⊂ X and numbers α ∈ R, ε > 0, we define

M(Z, α, ε) := inf
G
{
∑
s∈G

ξ(s)η(s)α},

where the infimum is taken over all finite or countable subcollections G ⊂ S covering
Z with ψ(s) ≤ ε for any s ∈ G. The quantity M(Z, α, ε) is a monotone function with
respect to ε, therefore, the following limit exists:

m(Z, α) = lim
ε→0

M(Z, α, ε).

It was shown in [15] that there exists a critical value αc ∈ [−∞,+∞] such that

m(Z, α) = 0, α > αc,

m(Z, α) = ∞, α < αc.

The number αc is said to be the Carathéodory-Pesin dimension of the set Z.
We shall now assume that the following condition holds:
(3′) there exists ε > 0 such that for any 0 < ε ≤ ε there exists a finite or countable

subcollection G ⊂ S covering X such that ψ(s) = ε for any s ∈ G.
Given a set Z ⊂ X and numbers α ∈ R, ε > 0, we define

R(Z, α, ε) := inf
G
{
∑
s∈G

ξ(s)η(s)α},

where the infimum is taken over all finite or countable subcollections G ⊂ S covering
Z such that ψ(s) = ε for any s ∈ G. We set

r(Z, α) = limε→0R(Z, α, ε), r(Z, α) = limε→0R(Z, α, ε).

It was shown in [15] that there exist αC , αC ∈ R such that

r(Z, α) = 0, α > αC , r(Z, α) = ∞, α < αC ;

r(Z, α) = 0, α > αC , r(Z, α) = ∞, α < αC .

The numbers αC and αC are said to be the lower and upper Carathéodory-Pesin ca-
pacities of the set Z respectively.
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For any ε > 0 and any set Z ⊂ X, let us put

Λ(Z, ε) = inf
G
{
∑
s∈G

ξ(s)},

where the infimum is taken over all finite or countable subcollections G ⊂ S covering
Z for which ψ(s) = ε for all s ∈ G.

Let us assume that the following condition holds:

(4) η(s1) = η(s2) for any s1, s2 ∈ S for which ψ(s1) = ψ(s2).
It was shown in [15] that if the function η satisfies Condition (4) then for any

Z ⊂ X,

αC = limε→0

logΛ(Z, ε)
log(1/η(ε))

, αC = limε→0
log Λ(Z, ε)
log(1/η(ε))

.

Example 2.1. Let X be a compact metric space with metric d, f : X → X
a continuous map and U a finite open cover of X . Denote by Sm(U) the set of
all strings U = {Ui0, Ui1, · · · , Uim−1 : Uij ∈ U} of length m = m(U). We put
S(U) =

⋃
m≥0

Sm(U).

To a given string U = {Ui0, Ui1, · · · , Uim−1} ∈ S(U) we associate the set

X(U) = {x ∈ X : f j(x) ∈ Uij , j = 0, 1, · · · , m(U)− 1}.

It is easy to see that X(U) =
m(U )−1⋂

j=0
f−jUij . Define the collection of subsets

F = F (U) = {X(U) : U ∈ S(U)}
and three functions ξ, η, ψ : S(U) → R

+ as follows ξ(U) = 1, η(U) = exp(−m(U)),
ψ(U) = m(U)−1. It is easy to verify that the set S,F and the functions ξ, η, and
ψ satisfy the Conditions (1), (2), and (3) in above and hence they determine a C-P
structure τ = τ(U) = (S,F , ξ, η, ψ) on X . We say that a collection of strings G
covers a set Z ⊂ X if

⋃
U∈G

X(U) ⊃ Z. For any set Z ⊂ X and α ∈ R, define

M(Z, α,U , N) = inf
G
{
∑
U∈G

ξ(U)η(U)α} = inf
G
{
∑
U∈G

exp(−αm(U))}

and the infimum is taken over all finite or countable collections of strings G ⊂ S(U)
such that m(U) ≥ N for all U ∈ G and G covers Z. Defining

m(Z, α,U) = lim
N→+∞

M(Z, α,U , N ).

For every real numbers α introduce

r(Z, α,U) = lim
N→+∞

R(Z, α,U , N ),
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r(Z, α,U) = lim
N→+∞

R(Z, α,U , N ),

where R(Z, α,U , N) = inf
G
{ ∑
U∈G

exp(−αN )} and the infimum is taken over all col-

lections of strings G ⊂ S(U) such that m(U) = N for all U ∈ G and G covers Z. By
the definition of C-P structure, define

hPP
Z (f,U) := inf{α : m(Z, α,U) = 0} = sup{α : m(Z, α,U) = +∞},

ChPP
Z (f,U) := inf{α : r(Z, α,U) = 0} = sup{α : r(Z, α,U) = +∞},

Ch
PP
Z (f,U) := inf{α : r(Z, α,U) = 0} = sup{α : r(Z, α,U) = +∞}.

Moreover, define
hPP

Z (f) := sup
|U|→0

hPP
Z (f,U),

ChPP
Z (f) := sup

|U|→0
ChPP

Z (f,U),

Ch
PP
Z (f) := sup

|U|→0
Ch

PP
Z (f,U),

where |U| denotes the maximum of the diameters of A ∈ U in the sense of d. We call
the quantities hPP

Z (f), ChPP
Z (f) and ChPP

Z (f), respectively the PP entropy and lower
and upper capacity PP entropy of f on the set Z(see [14,15]). The other papers that
used the C-P structure, one can see, for example, [2, 12].

Let X be a topological space and f : X → X be a proper map[13], i.e., f is a
continuous map such that the pre-image by f of any compact set is compact. An open
set is called an admissible open set if the closure or the complement of it is compact.
An admissible cover of X[13] is an open and finite cover U of X such that, for each
A ∈ U , A is an admissible open set. Given an admissible cover U of X , for any n ∈ N

, we have that the set given by

Un := {A0 ∩ f−1A1 ∩ · · · ∩ f−nAn : Ai ∈ U}
is also an admissible cover of X , since f is a proper map. Given an admissible cover
U of X , we denote by N (Un) the smallest cardinality of all subcovers of Un. The
Patrão entropy of the map f is defined as

hP (f) := sup
U
h(T,U) = sup

U
{ lim

n→∞
1
n

logN (Un)},

where the supremum is taken over all admissible covers of X . We note that, when X
is compact, the Patrão entropy coincides with the AKM entropy.

If X is a locally compact separable metric space, we can associate with X its
one-point compactification, which we denote by X̃. We have that X̃ is defined as the
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disjoint union of X with {∞}, where ∞ is some point not in X called the point at
infinity. The topology in X̃ consist of the former open sets in X and the sets A∪{∞},
where the complement of A in X is compact. Let f : X → X be a proper map,
defining f̃ : X̃ → X̃ by

f̃ (x̃) =
{
f(x̃), x̃ �= ∞
∞, x̃ = ∞,

we have that f̃ is also a proper map, called the extension of f to X̃. We note that the
separability of X is equivalent to the metrizability of X̃.

Let (X, d) be a metric space and denote by B(x, δ) the open ball centered at x
with radius δ > 0. The metric d is called admissible[13] if the following conditions
are satisfied:

(1) If Uδ = {B(x1, δ), · · · , B(xk, δ)} is a cover of X , for every δ ∈ (a, b), where
0 < a < b, then there exists δε ∈ (a, b) such that Uδε is admissible.

(2) Every admissible cover of X has a Lebesgue number.

It is easy to see that, if (X, d) is compact, then d is automatically admissible.
Let (X, d) be a metric space and f : X → X a continuous map, we say that f

with the specification property if for any ε > 0 there exists an integer m = m(ε) such
that for arbitrary finite intervals Ij = [aj, bj] ⊂ N, j = 1, · · · , k, such that

dist(Ii, Ij) ≥ m(ε), i �= j,

and any x1, · · · , xk in X there exists a point x ∈ X such that

d(fp+aj(x), fp(xj)) < ε

for all p = 0, · · · , bj − aj and every j = 1, · · · , k.
The following general concept of multifractal spectra is introduced in [3].
Let X be a set and g : X → [−∞,+∞] a function. The level sets of g

Kg
α = {x ∈ X : g(x) = α},−∞ ≤ α ≤ +∞

are disjoint and produce a multifractal decomposition of X , that is

X =
⋃

−∞≤α≤+∞
Kg

α.

Let now G be a set function, i.e., a real function that is defined on subsets of X .
Assume that G(Z1) ≤ G(Z2) if Z1 ⊆ Z2. We define the function F : [−∞,+∞] → R

by F (α) = G(Kg
α). We call F the multifractal spectrum specified by the pair of

functions (g, G), or the (g, G)−multifractal spectrum.
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It often happens that the function g is defined only on a subset Y ⊂ X . In this
case the decomposition (1) should be replaced by

X =
⋃

−∞≤α≤+∞
Kg

α

⋃
(X \ Y ).

We still call this decomposition of X a multifractal decomposition.
The following results appeared in [16] and [7] respectively.

Theorem A. ([16]). LetX be a compact metric space, f : X → X be a continuous
map with the specification property and ϕ ∈ C(X,R). Let g(x) = limn→∞ 1

n

∑n−1
i=o

ϕ(f i(x)). For some α ∈ R, suppose Kg
α �= ∅, then

hPP
Kg

α
(f) = sup{hμ(f) : μ ∈M(X, f),

∫
ϕdμ = α},

where M(X, f) denotes the set of all f−invariant probability measures on X , hμ(f)
denotes the measure-theoretic entropy of f with respect to μ ∈M(X, f).

Theorem B. ([7]). Let X be a compact metric space, f : X → X be a continuous
map with the specification property and ϕ ∈ C(X,R) satisfying infμ∈M (X,f)

∫
ϕdμ <

supμ∈M (X,f)

∫
ϕdμ. Let

Qϕ := {x ∈ X : lim
n→∞

1
n

n−1∑
i=o

ϕ(f i(x)) dose not exist.}

Then
hPP

Qϕ
(f) = hAKM (f),

where hAKM (f) denotes the AKM entropy of f.

3. TOPOLOGICAL ENTROPY AND LOWER AND UPPER CAPACITY TOPOLOGICAL ENTROPY

INTRODUCED IN THIS PAPER AND ITS SOME BASIC PROPERTIES

In this section, by using the C-P structure, the topological entropy and lower and
upper capacity topological entropies are introduced for a proper map.

Let X be a topological space, f : X → X a proper map and U an admissible cover
of X . Denote by Sm(U) the set of all strings U = {Ui0, Ui1, · · · , Uim−1 : Uij ∈ U}
of length m = m(U). We put S(U) =

⋃
m≥0

Sm(U).

To a given string U = {Ui0, Ui1, · · · , Uim−1} ∈ S(U) we associate the set

X(U) = {x ∈ X : f j(x) ∈ Uij , j = 0, 1, · · · , m(U)− 1}.
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It is easy to see that X(U) =
m(U )−1⋂

j=0
f−jUij , then X(U) is an admissible open set.

Define the collection of subsets

F = F (U) = {X(U) : U ∈ S(U)}

and three functions ξ, η, ψ : S(U) → R
+ as follows ξ(U) = 1, η(U) = exp(−m(U)),

ψ(U) = m(U)−1. It is easy to verify that the set S,F and the functions ξ, η, and ψ
satisfy the Conditions (1), (2), and (3) in Section 2 and hence they determine a C-P
structure τ = τ(U) = (S,F , ξ, η, ψ) on X . We say that a collection of strings G covers
a set Z ⊂ X if

⋃
U∈G

X(U) ⊃ Z. For any set Z ⊂ X and α ∈ R, define

M(Z, α,U , N) = inf
G
{
∑
U∈G

ξ(U)η(U)α} = inf
G
{
∑
U∈G

exp(−αm(U))}

and the infimum is taken over all finite or countable collections of strings G ⊂ S(U)
such that m(U) ≥ N for all U ∈ G and G covers Z. Defining

m(Z, α,U) = lim
N→+∞

M(Z, α,U , N ).

For every real numbers α introduce

r(Z, α,U) = lim
N→+∞

R(Z, α,U , N ),

r(Z, α,U) = lim
N→+∞

R(Z, α,U , N ),

where R(Z, α,U , N) = inf
G
{ ∑
U∈G

exp(−αN )} and the infimum is taken over all col-

lections of strings G ⊂ S(U) such that m(U) = N for all U ∈ G and G covers Z. By
the definition of C-P structure, define

hZ(f,U) := inf{α : m(Z, α,U) = 0} = sup{α : m(Z, α,U) = +∞},
ChZ(f,U) := inf{α : r(Z, α,U) = 0} = sup{α : r(Z, α,U) = +∞},
ChZ(f,U) := inf{α : r(Z, α,U) = 0} = sup{α : r(Z, α,U) = +∞}.

Moreover, define
hZ(f) := sup

U
hZ(f,U),

ChZ(f) := sup
U
ChZ(f,U),

ChZ(f) := sup
U
ChZ(f,U),



Topological Entropy of Proper Map 1227

where the supremum is taken over all admissible covers of X . We call the quantities
hZ(f), ChZ(f) and ChZ(f), respectively the topological entropy and lower and upper
capacity topological entropy of f on the set Z.

Remark 3.1.

(1) If X be a compact topological space, then it is easy to see that the topological
entropy and the Bowen dimensional entropy[5] coincide. If X be a compact
metric space, then the topological entropy coincides with the PP entropy(or see
the following Theorem 4.2).

(2) It is easy to see that

hZ(f) ≤ ChZ(f) ≤ ChZ(f), ∀Z ⊂ X.

By the basic properties of the Carathéodory-Pesin dimension[15] and definitions,
we get the following three basic properties.

Proposition 3.1. Let X be a topological space and f : X → X be a proper
map, then

(1) h∅(f) = 0.
(2) hZ1(f) ≤ hZ2(f) if Z1 ⊂ Z2 ⊂ X.

(3) hZ(f) = sup
i≥1

hZi(f), where Z =
⋃
i≥1

Zi, Zi ⊂ X, i = 1, 2, · · · .
(4) If f is a homeomorphism then hZ(f) = hf(Z)(f).

Proposition 3.2. Let X be a topological space and f : X → X be a proper
map, then

(1) Ch∅(f) = Ch∅(f) = 0.
(2) ChZ1

(f) ≤ ChZ2
(f), ChZ1(f) ≤ ChZ2(f) if Z1 ⊂ Z2 ⊂ X .

(3) ChZ(f) ≥ sup
i≥1

ChZi
(f) and ChZ(f) ≥ sup

i≥1
ChZI

(f), where Z =
⋃
i≥1

Zi, Zi ⊂
X, i = 1, 2, · · · .

Proposition 3.3. Let X be a topological space, f : X → X be a proper map
and U be an admissible cover of X , then

ChZ(f,U) = lim
N→+∞

1
N

log Λ(Z,U , N ), ChZ(f,U) = lim
N→+∞

1
N

logΛ(Z,U , N ),

where Λ(Z,U , N ) denotes the minimum cardinalities of all finite or countable col-
lections of strings G ⊂ S(U) such that m(U) = N for all U ∈ G and G covers
Z.
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We can also prove the following properties.

Proposition 3.4. Let Xi be a topological space and fi : Xi → Xi be a proper
map (i = 1, 2). If f2 is a factor of f1, i.e., there exists a continuous surjection
π : X1 → X2 such that π ◦ f1 = f2 ◦ π, then

hZ(f1) ≥ hπZ(f2),

ChZ(f1) ≥ ChπZ(f2),

ChZ(f1) ≥ ChπZ(f2), ∀Z ⊂ X.

In particular, if f1 and f2 topological conjugate, i.e., the map π is a homeomorphism
then

hZ(f1) = hπZ(f2),

ChZ(f1) = ChπZ(f2),

ChZ(f1) = ChπZ(f2), ∀Z ⊂ X.

Proof. Let U2 be an admissible cover of X2. Then

M(πZ, α,U2, N ) = inf
G

∑
U∈G

exp(−αm(U)),

where the infimum is taken over all finite or countable collections of strings G ⊂ S(U2)
such that m(U) ≥ N for all U ∈ G and G covers πZ. Put

U1 = {π−1Ui : Ui ∈ U2}.

Then U1 be an admissible cover of X1. For each string U = {Ui0 , Ui1, · · · , Uim−1} ∈
S(U2), let π−1U = {π−1Ui0, π

−1Ui1, · · · , π−1Uim−1}, then π−1U ∈ S(U1), Con-
versely, for each string V ∈ S(U1), there is a unique string U ∈ S(U2) such that
V = π−1U. Furthermore, m(U) = m(π−1U) = m(V) and

X(V) = X(π−1U) = π−1X(U).

So M(πZ, α,U2, N ) = M(Z, α,U1, N ). Letting N → ∞, we have

m(πZ, α,U2) = m(Z, α,U1).

Moreover,
hπZ(f2,U2) = hZ(f1,U1) ≤ hZ(f1).

Therefore,
hπZ(f2) ≤ hZ(f1).
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If π is a homeomorphism, then π−1f2 = f1π
−1 so, by the above, we have that hZ(f1) ≤

hπZ(f2). Hence,
hZ(f1) = hπZ(f2).

The others can be proved in a similar fashion.

Proposition 3.5. Let X be a topological space and f : X → X a proper map,
then hf(Z)(f) = hZ(f), Chf(Z)(f) = ChZ(f), Chf(Z)(f) = ChZ(f), ∀Z ⊂ X.

Proof. Let U be an admissible cover of X and G ⊂ ⋃
m≥N

Sm(U) cover Z, i.e.,

Z ⊂ ⋃
U∈G

X(U). We write U = {Ui0, · · · , Uim(U)−1
} for any U ∈ G. Then

f(Z) ⊂ f(
⋃
U∈G

X(U)) =
⋃
U∈G

f(X(U))

⊂
⋃
U∈G

(f(Ui0) ∩ Ui1 ∩ · · · ∩ f−m(U)+2(Uim(U)−1
))

⊂
⋃
U∈G

(Ui1 ∩ · · · ∩ f−m(U)+2(Uim(U)−1
)).

That is, {Ui1 ∩ · · · ∩ f−m(U)+2Uim(U)−1
}U∈G covers the set f(Z). Therefore,

M(f(Z), α,U , N − 1) ≤ eαM(Z, α,U , N ).

Letting N → ∞, then

eαm(Z, α,U) ≥ m(f(Z), α,U),

which implies
hZ(f,U) ≥ hf(Z)(f,U).

Then
hZ(f) ≥ hf(Z)(f).

On the other hand, For any G ⊂ ⋃
m≥N

Sm(U) covering f(Z), i.e.,

f(Z) ⊂
⋃

U∈G
X(U) =

⋃
U∈G

(Ui0 ∩ · · · ∩ f−m(U)+1(Uim(U)−1
)).

Then

Z ⊂ f−1(f(Z)) ⊂
⋃

U∈G
(f−1(Ui0) ∩ f−2(Ui1) ∩ · · · ∩ f−m(U)(Uim(U)−1

)).
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Choose {U1, · · · , Uk} ⊂ U such that it covers Z, i.e., Z ⊂ ∪k
i=1Ui. Then

Z ⊂ (
k⋃

j=1

Ui)
⋂

(
⋃
U∈G

(f−1(Ui0) ∩ f−2(Ui1) ∩ · · · ∩ f−m(U)Uim(U)−1
))

=
⋃
U∈G

k⋃
j=1

(Uj ∩ f−1(Ui0) ∩ f−2(Ui1) ∩ · · · ∩ f−m(U)(Uim(U)−1
)).

That is to say,
{
Uj ∩ f−1(Ui0) ∩ f−2(Ui1) ∩ · · · ∩ f−m(U)(Uim(U)−1

)
}

1≤j≤k,U∈G
cov-

ers the set Z. Therefore,

M(Z, α,U , N + 1) ≤ kM(f(Z), α,U , N ).

Letting N → ∞, we have

m(Z, α,U) ≤ k ·m(f(Z), α,U).

Thus
hZ(f,U) ≤ hf(Z)(f,U).

Moreover,
hZ(f) ≤ hf(Z)(f).

The others can be proved in a similar fashion.

Remark 3.2. Proposition 3.4 and 3.5 extend Bowen’s results [5].

Example 3.1. Let X be a topological space and I : X → X the identity map,
then hZ(I) = ChZ(I) = ChZ(I) = 0, ∀Z ⊂ X.

In the next example, we consider a non-trivial map and its entropies.

Example 3.2 Let X = R, f(x) = x2, then

hZ(f) = ChZ(f) = ChZ(f) = 0, ∀Z ⊂ [0,+∞).

Proof. We only need to show the case of Z = [0,+∞). It is easy to see that f is
a proper map. For any admissible cover U = {U0, U1, · · · , Um−1} of R, there exists
a Up ∈ U such that R\Up is compact, i.e., R\Up is a bounded closed set. Letting
K = sup{x : x ∈ R\Up}. Since U is a cover of R, assume 0 ∈ U0, 1 ∈ U1, then
there exist closed intervals [a0, b0] and [a1, b1], where b0 < a1, such that 0 ∈ [a0, b0] ⊂
U0, 1 ∈ [a1, b1] ⊂ U1. By the monotonicity of f , there exists n0 ∈ N such that
fn0(a1) < b0 < 1, fn0(b1) > K. Let N > n0, we discuss it in the following four
cases.
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(1) For any x ∈ [b1,+∞), fn0(x) ≥ fn0(b1) > K, i.e., x ∈ Ui0 , f(x) ∈ Ui1, · · · ,
fn0−1(x) ∈ Uin0−1, f

n0(x) ∈ Up, · · · , fN−1(x) ∈ Up, where i0, i1, · · · , in0−1 ∈
{0, 1, · · · , m − 1}. Then there exist at most mn0 strings in SN(U) cover
[b1,+∞).

(2) For any x ∈ [1, b1), if K � b1, we discuss it in the following three cases.

(2.1) fN−1(x) > K. In this case, there exists j ∈ {1, 2, · · · , N − 1} such
that f j−1(x) < b1, f

j(x) ≥ b1, i.e., x ∈ U1, f(x) ∈ U1, · · · , f j−1(x) ∈
U1, f

j(x) ∈ Uij , · · · , f j+n0−1(x) ∈ Uij+n0−1, f
j+n0(x) ∈ Up, · · · ,

fN−1(x) ∈ Up, where ij, ij+1, · · · , ij+n0−1 ∈ {0, 1, · · · , m − 1}. Then
there exist at most Nmn0 strings in SN(U) cover these points.

(2.2) b1 ≤ fN−1(x) ≤ K. If fN−2(x) < b1, f
N−1(x) ≥ b1, i.e., x ∈

U1, f(x) ∈ U1, · · · , fN−2(x) ∈ U1, f
N−1(x) ∈ UiN−1

, where iN−1 ∈
{0, 1, · · · , m − 1}, then there exist at most m strings in SN(U) cover
these points. If fN−3(x) < b1, f

N−2(x) ≥ b1, i.e., x ∈ U1, f(x) ∈
U1, · · · , fN−3(x) ∈ U1, f

N−2(x) ∈ UiN−2
, fN−1(x) ∈ UiN−1

, where
iN−2, iN−1 ∈ {0, 1, · · · , m − 1}, then there exist at most m2 strings in
SN (U) cover these points. · · · · · · . If fN−(n0+1)(x) < b1, f

N−n0(x) ≥ b1,
i.e., x ∈ U1, f(x) ∈ U1, · · · , fN−(n0+1)(x)∈U1, f

N−n0(x) ∈ UiN−n0
, · · · ,

fN−1(x) ∈ UiN−1
, where iN−n0 , · · · , iN−1 ∈ {0, 1, · · · , m−1}, then there

exist at most mn0 strings in SN(U) cover these points. If fN−(n0+2)(x) <
b1, f

N−(n0+1)(x) ≥ b1, then fN−1(x) ≥ fn0(b1) > K and return to the
case (2.1).

(2.3) fN−1(x) < b1. In this case x ∈ U1, f(x) ∈ U1, · · · , fN−1(x) ∈ U1, then
there exists one string in SN (U) cover these points. So we get that there
exist at most 1 +m+ · · ·+mn0 +Nmn0 strings in SN (U) cover [1, b1).

If K < b1, similar to the above, we can consider the cases fN−1(x) > K and
fN−1(x) ≤ K < b1 respectively, there exist at most 1+mn0 strings in SN−1(U)
cover [1, b1).

(3) For any x ∈ (a1, 1), we discuss it in the following three cases

(3.1) fN−1(x) ≤ b0. In this case there exists j ∈ {1, 2, · · · , N − 1} such
that f j−1(x) ≥ a1, f

j(x) < a1, then x ∈ U1, f(x) ∈ U1, · · · , f j−1(x) ∈
U1, f

j(x) ∈ Uij , · · · , f j+n0−1(x) ∈ Uij+n0−1, f
j+n0(x) ∈ U0, · · · ,

fN−1(x) ∈ U0, where j, j + 1, · · · , j + n0 − 1 ∈ {0, 1, · · · , m − 1}.
Then there exist at most Nmn0 strings in SN (U) cover these points.

(3.2) b0 < fN−1(x) < a1. If fN−2(x) ≥ a1, f
N−1(x) < a1, then x ∈

U1, f(x) ∈ U1, · · · , fN−2(x) ∈ U1, f
N−1(x) ∈ UiN−1

, where iN−1 ∈
{0, 1, · · · , m−1}, there exist at mostm strings in SN(U) cover these points.
If fN−3(x) ≥ a1, f

N−2(x) < a1, then x ∈ U1, f(x) ∈ U1, · · · , fN−3(x) ∈
U1, f

N−2(x) ∈ UiN−2
, fN−1(x) ∈ UiN−1

, where iN−2, iN−1 ∈ {0, 1, · · · ,



1232 Dongkui Ma and Bin Cai

m− 1}. Then there exist at most m2 strings in SN(U) cover these points.
· · · · · · . If fN−(n0+1)(x) ≥ a1, f

N−n0(x) < a1, then x ∈ U1, f(x) ∈
U1, · · · , fN−(n0+1)(x) ∈ U1, f

N−n0(x) ∈ UiN−n0
, · · · , fN−1(x) ∈ UiN−1

,
where iN−n0 , · · · , iN−1 ∈ {0, 1, · · · , m−1}. Then there exist at most mn0

strings in SN(U) cover these points. If fN−(n0+2)(x)≥a1, f
N−(n0+1)(x)<

a1, then fN−1(x)<fn0(a1)<b0 and return to the case (3.1).
(3.3) fN−1(x) ≥ a1. In this case x ∈ U1, f(x) ∈ U1, · · · , fN−1(x) ∈ U1, there

exists one string cover these points. So we get that there exist at most
1 +m+ · · ·+mn0 +Nmn0 strings in SN (U) cover [a1, 1).

(4) For any x ∈ [0, a1], since there exists n0 ∈ N such that fn0(x) < b0, then x ∈
Ui0 , f(x) ∈ Ui1 , · · · , fn0−1(x) ∈ Uin0−1 , f

n0(x) ∈ U0, · · · , fN−1(X) ∈ U0.
Hence there exist at most mn0 strings in SN−1(U) cover [0, a1].

By the above four cases, there exist at most L := 2mn0 + 2(1 +m+ · · ·+mn0 +
Nmn0) + (1 +mn0) strings in SN(U) cover Z = [0,+∞). So we get that

R(Z, α,U , N )≤ L exp(−αN ).

For any α>0, we have r(Z, α,U)=0, then ChZ(f,U)≤0. Moreover, ChZ(f)≤0.
By 0≤hZ(f)≤ChZ(f)≤ChZ(f)≤0, we have hZ(f)=ChZ(f)=ChZ(f)=0.

4. SOME FURTHER PROPERTIES OF THE TOPOLOGICAL ENTROPY AND LOWER AND UPPER

CAPACITY TOPOLOGICAL ENTROPY

In this section, we give some further properties of these entropies introduced in this
paper. These results show some relationships among these entropies and some classical
entropies and generalize some classical results.

Theorem 4.1.

(1) Let X be a topological space and f : X → X be a proper map. For any
Z ⊂ X and satisfy f−1(Z) = Z, we have ChZ(f) = ChZ(f). In particular,
hP (f) = ChX(f) = ChX(f), Where hP (f) denotes the Patrão entropy of f .

(2) Under the conditions of (1), if Z is compact set, then hZ(f) = ChZ(f) =
ChZ(f), in particular, if X is a compact space, then hP (f) = hAKM (f) =
hX(f) = ChX(f) = ChX(f), where hAKM (f) denotes the AKM entropy of f .

We can use the analogous method as that of [15] to prove this theorem, so we omit
the proof.

Remark 4.1. It is easy to see that the lower and upper capacity topological en-
tropies are generalizations of the Patrão entropy and AKM entropy. The topological
entropy are generalizations of the Bowen dimensional entropy and AKM entropy.
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Theorem 4.2. Let X be a locally compact separable metric space and f : X →
X be a proper map. Let d be the metric given by the restriction to X of some metric
d̃ on X̃, the one-point compactification of X . Then for any Z ⊂ X , the following
limit exist:

lim
|U|→0

hZ(f,U) = hZ(f),

lim
|U|→0

ChZ(f,U) = ChZ(f),

lim
|U|→0

ChZ(f,U) = ChZ(f),

where U is any admissible cover of X .

Lemma 4.1. ([13]). Let f : X → X be a proper map, where X is a locally
compact separable metric space. Let d be the metric given by the restriction to X of
some metric d̃ on X̃, the one-point compactification of X . Then d is an admissible
metric and for any ε > 0 there exists an admissible cover of X, such that the diameter
of this cover is less than ε.

Proof of theorem 4.2. It is easy to see that

lim
|U|→0

hZ(f,U) ≤ sup
U
hZ(f,U) = hZ(f).

We are going to show that lim
|U|→0

hZ(f,U) ≥ hZ(f). By Lemma 4.1, for any ε > 0

there exists an admissible cover V such that |V| < ε and sup
U
hZ(f,U)−ε ≤ hZ(f,V).

Let δ be a Lebesgue number of V and W be an admissible cover of X with |W| <
δ. Then each element of W is contained in some element of V . Hence we get
that M(Z, α,V , N ) ≤ M(Z, α,W , N). Then hZ(f,V) ≤ hZ(f,W). Moreover,
sup
U
hZ(f,U)−ε ≤ hZ(f,V) ≤ hZ(f,W). Letting |W| → 0, we have sup

U
hZ(f,U)−

ε ≤ lim
|W|→0

hZ(f,W). By the arbitrarily of ε we have sup
U
hZ(f,U) ≤ lim

|W|→0

hZ(f,W).

Hence lim
|U|→0

hZ(f,U) = hZ(f). The existence of two other limits can be proved in a

similar fashion.

Remark 4.2. It is easy to see that the topological entropy is a generalization of
the PP entropy.

Theorem 4.3. Let X be a locally compact separable metric space and f : X →
X be a proper map. Let X̃ be the one-point compactification of X and f̃ : X̃ → X̃

be the extension of f . Then for any Z ⊂ X , we have that

hZ(f) = hPP
Z (f̃), ChZ(f) = ChPP

Z (f̃), ChZ(f) = Ch
PP
Z (f̃).
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Where hPP
Z (f̃), ChPP

Z (f̃), and ChPP
Z (f̃) denote the PP entropy and lower and upper

capacity PP entropy of f̃ on set Z respectively.

Proof. Let d be the metric given by the restriction to X of some metric d̃ on
X̃ and U = {U0, U1, · · · , Uk−1} be an admissible cover of X . Let Ũi = {y : ∃x ∈
Ui, d̃(x, y) < |Ui|}, 0 ≤ i ≤ k − 1, then Ũ = {Ũ0, · · · , Ũk−1} be an open cover of
X̃ and |U| → 0 implies |Ũ | → 0. Let G ⊂ ⋃

n≥N

Sn(U) cover a set Z ⊂ X . For

any U = {Ui0, Ui1, · · · , Uin−1} ∈ G, define Ũ = {Ũi0, Ũi1, · · · , Ũin−1} ∈ Sn(Ũ) and
denote by G̃ the collection of all these strings, then G̃ covers Z ⊂ X̃. Moreover, we
have that

M(Z, α,U , N ) = inf
G
{
∑
U∈G

exp(−αm(U))}

≥ inf
G̃
{
∑
Ũ∈G̃

exp(−αm(Ũ))} := M̃(Z, α, Ũ, N ).

Letting N → ∞ we have

m(Z, α,U) ≥ m̃(Z, α, Ũ)

and then hZ(f,U) ≥ hPP
Z (f̃ , Ũ). Applying Theorem 4.2 and letting |U| → 0, it follows

thathZ(f) ≥ hPP
Z (f̃).

we are going to show that hZ(f) ≤ hPP
Z (f̃). If Ũ ε

2
= {B̃(x̃0,

ε
2 ), · · · , B̃(x̃k−1,

ε
2 )}

is a cover of X̃, for every ε ∈ (a, b), where 0 < a < b. By the density of X in X̃ , it
follows that there exist {x0, · · · , xk−1} ⊂ X, such that d̃(xi, x̃i) < ε

2 , 0 ≤ i ≤ k − 1.
If x ∈ X , we have that d̃(x, x̃i) < ε

2 , for some x̃i ∈ {x̃0, · · · , x̃k−1}. Hence it follows
that d(x, xi) ≤ d̃(x, x̃i) + d̃(xi, x̃i) < ε, showing that {B(x0, ε), · · · , B(xk−1, ε)} is
a cover of X. Applying Lemma 4.1, we have that d is an admissible metric, then there
exists δ ∈ (a, b) such that Uδ := {B(x0, δ), · · · , B(xk−1, δ)} is an admissible cover
of X . For a < ε1 < δ < b, we have that

M̃(Z, α, Ũ ε1
2
, N ) = inf

G̃
{
∑
Ũ∈G̃

exp(−αm(Ũ))}

≥ inf
G
{
∑
U∈G

exp(−αm(U))} = M(Z, α,U , N ),

where the first infimum is taken over all finite or countable collections of strings
G̃ ⊂ S(Ũ ε1

2
) and the second infimum is taken over all finite or countable collections

of strings G ⊂ S(Uδ). Letting N → ∞, we have

m̃(Z, α, Ũ ε1
2

) ≥ m(Z, α,Uδ).
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Moreover, hPP
Z (f̃ , Ũ ε1

2
) ≥ hZ(f,Uδ). Letting b → 0, then ε1 → 0 and δ → 0.

Applying Theorem 4.2, it follows that hPP
Z (f̃) ≥ hZ(f). Then hZ(f) = hPP

Z (f̃). The
other equalities can be proved in a similar fashion.

Remark 4.3. In [13], Patrão proved hP (f) = hAKM (f̃), this is a special case
of Theorem 4.3.

Example 4.1. Let f : R → R be a homeomorphism then hZ(f) = 0, ∀Z ⊂ R.

Corollary 4.1. Let X be a locally compact separable metric space and f : X →
X be a proper map. Then we have that

hZ(fn) = nhZ(f), ChZ(fn) = nChZ(f), ChZ(fn) = nChZ(f), ∀Z ⊂ X, ∀n ∈ N.

Proof. Since hPP
Z (f̃n) = nhPP

Z (f̃), ∀Z ⊂ X̃, ∀n ∈ N[5]. Applying Theorem 4.3,
we have hZ(f) = hPP

Z (f̃), hZ(fn) = hPP
Z (f̃n). Hence

hZ(fn) = nhZ(f), ∀Z ⊂ X, ∀n ∈ N.

The other equalities can be proved in a similar fashion.

Corollary 4.2. Let X be a locally compact separable metric space and f : X →
X be a proper map. Let g : X → [−∞,+∞] be a function and g̃ : X̃ → [−∞,+∞]
any extension of g. If the set functions G and G̃ is defined as G(Z) = hZ(f) and
G̃(Z̃) = hPP

Z (f̃) respectively, then (X, f) and (X̃, f̃) have the same multifractal
spectrum specified by (g, G) and (G̃, f̃) respectively.

Proof. Let α ∈ [−∞,+∞], then

K g̃
α = {x ∈ X̃ : g̃(x) = α} = {x ∈ X : g(x) = α} = Kg

α,

or

K g̃
α = {x ∈ X̃ : g̃(x) = α} = {x ∈ X : g(x) = α} ∪ {∞} = Kg

α ∪ {∞}.
Combining the fact that hPP

{∞}(f̃) = 0, Theorem 4.3 and Proposition 3.1 gives us our
desired result.

Corollary 4.3. Let X be a locally compact separable metric space, f : X → X
be a proper map with the specification property respect to the metric that is the
restriction of some metric on X̃ , ϕ ∈ C(X,R) be bounded and can be continuously
extended to X̃ and satisfies infμ∈M (X,f)

∫
ϕdμ < supμ∈M (X,f)

∫
ϕdμ. Let

Qϕ := {x ∈ X : lim
n→∞

1
n

n−1∑
i=o

ϕ(f i(x)) dose not exist.}
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Then
hQϕ(f) = hX(f) = hP (f).

Lemma 4.2. LetX be a locally compact separable metric space, f : X → X be a
proper map with the specification property respect to the metric that is the restriction
of some metric on X̃. If f satisfies the specification property, then f̃ satisfies the
specification property too.

Proof. Let d̃ denote the metric on X̃ and d the restriction of d̃ to X . For any
ε > 0 there exists an integer m = m(ε) such that for arbitrary finite intervals Ij =
[aj, bj] ⊂ N, j = 1, · · · , k, such that

dist(Ii, Ij) ≥ m(ε), i �= j,

and any x1, · · · , xk ∈ X = X̃ \ {∞} there exists a point x ∈ X such that

d̃(fp+aj(x), fp(xj)) < ε

for all p = 0, · · · , bj − aj and every j = 1, · · · , k.
If x1, · · · , xk ⊂ X̃ and xi = ∞, 1 ≤ i ≤ k. Putting m̃(ε) = m( ε

2 ) such that for
arbitrary finite intervals Ij = [aj, bj] ⊂ N, j = 1, · · · , k, such that

dist(Ii, Ij) ≥ m̃(ε), i �= j.

By the density of X in X̃ and the uniform continuity of f̃ , f̃2, · · · , f̃ bi−ai , it follows
that there exists yi ∈ X , such that

d̃(xi, yi) <
ε

2
, d̃(f̃(xi), f̃(yi)) <

ε

2
, · · · , d̃(f̃ bi−ai(xi), f̃ bi−ai(yi)) <

ε

2
.

For x1, · · · , xi−1, yi, xi+1, · · · , xk ∈ X there exists a point z ∈ X such that

d̃(f̃p+aj(z), f̃p(xj)) <
ε

2
, p = 0, · · · , bj − aj , j = 1, · · · , i− 1, i+ 1, · · · , k,

and
d̃(f̃p+ai(z), f̃p(yi)) <

ε

2
, p = 0, · · · , bi − ai.

Then d̃(f̃p+ai(z), f̃p(xi)) ≤ d̃(f̃p+ai(z), f̃p(yi))+ d̃(f̃p(yi), f̃p(xi)) < ε
2 + ε

2 = ε, p =
0, · · · , bi − ai. Hence we get that f̃ satisfies the specification property.

The Proof of Corollary 4.3. Let ϕ̃ ∈ C(X̃,R) be a extension of ϕ, then Qϕ̃ = Qϕ

or Qϕ̃ = Qϕ ∪ {∞}. Combining the fact that hPP
{∞}(f̃) = 0, Theorem 4.3, Proposition

3.1, Lemma 4.2 and Theorem B gives us our desired result.
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Remark 4.4. If X is a compact metric space, under the same conditions as that
of Corollary 4.3, Chen, Küpper and Shu[7] proved Theorem B. Then Corollary 4.3 is
a extension of Theorem B.

Example 4.2. Let X be a locally compact separable metric space and f : X → X
be a proper map. Let μ ∈M(X, f) and ξ = {A1, A2, · · · , Ak} be a finite measurable
partition ofX. For every n ∈ N, we write ξn = {Ai0∩f−1Ai1∩· · ·∩f−nAin : Aij ∈ ξ}
and denoted by ξn(x) the element of the partition ξn that contains the point x. Consider
the subset Y ⊂ X consisting of all points x ∈ X for which the limit

hμ(f, ξ, x) := lim
n→∞−1

n
log μ(ξn(x))

exists. The number hμ(f, ξ, x) is called the μ−local entropy of f at x(respect to ξ).
By the Shannon-McMillan-Breman theorem, μ(X \ Y ) = 0. We define the function g
on Y by g(x) = hμ(f, ξ, x). Defining μ̃(Ã) = μ(Ã ∩X), it is immediate that μ̃ be a
f̃−invariant probability measures on X̃ , since X and {∞} are f̃−invariant sets. Let
ξ̃ = {A1 ∪ {∞}, A2, · · · , Ak}, then ξ̃ is a finite measurable partition of X̃ respect to
μ̃. Let Ỹ ⊂ X̃ consisting of all points x ∈ X̃ for which hμ̃(f̃ , ξ̃, x) exists. We define
the function g̃ on Ỹ by g̃(x) = hμ̃(f̃ , ξ̃, x). If the set functions G and G̃ is defined
as G(Z) = hZ(f) and G̃(Z̃) = hPP

Z (f̃) respectively, then (X, f) and (X̃, f̃) have the
same multifractal spectrum specified by (g, G) and (g̃, G̃) respectively.

5. SOME VARIATIONAL PRINCIPLES

In this section we present three variational principles involving entropies.

Theorem 5.1 Let f : X → X be a proper map, where X is a locally compact
separable metric space. Then it follows that

ChZ(f) = min
d
hBD

d (f, Z), ∀Z ⊂ X.

Where the minimum is attained whenever d is the metric given by the restriction to X
of some metric d̃ on X̃ the one-point compacification of X and hBD

d (f, Z) denotes
the BD entropy.

Lemma 5.1. Let (X, d) be a metric space, then every admissible cover of X has
a Lebesgue number.

Proof. If (X, d) is compact, the existence of a Lebesgue number is a classical
result. Thus assume that (X, d) is not compact. If U = {A1, A2, · · · , An} is an
admissible cover of X , there exists at least one Ak ∈ U with compact complement
in X . Assume U has not Lebesgue numbers, i.e., for every i ∈ N, there exists a set
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Ei ⊂ X , such that diam(Ei) < 1
i and Ei can not contain in any element of U . Then

there exists xi ∈ Ei and xi ∈ X\Ak. Since X\Ak is compact, then there exists a
convergent subsequence {xij} of {xi}. If lim

j→+∞
xij = x0, then x0 ∈ X\Ak. By U is

an admissible cover of X , then there exists Am ∈ U , such that x0 ∈ Am. Since Am is
an open set, then there exists ε > 0 such that B(x0, ε) ⊂ Am.

On the other hand, there exists a N ∈ N such that if j > N then xij ∈ B(x0,
ε
2) ⊂

Am. Letting j > N + 2
ε , then for any x ∈ Eij , we have that

d(x, x0) ≤ d(x, xij) + d(xij , x0) <
ε

2
+
ε

2
= ε.

Hence Eij ⊂ B(x0, ε) ⊂ Am, then we get a contradiction.

Remark 5.1. By Lemma 5.1, the (2) of the definition of admissible metric[13]
can be deleted. In [18], the authors proved that every co-compact open cover of a
metric space has a lebesgue number.

The proof of theorem 5.1. For every metric d induced the topology of X . Let U be
an admissible cover of X . Applying lemma 5.1, U has a Lebesgue number denoted by δ.
Let S be a (n, ε)−spanning set of Z, such that ε < δ, then for every x ∈ S, there exists a
string U ∈ Sn(U) such that X(U) ⊃ Bn(x, ε), where Bn(x, ε) denote the Bowen ball.
Hence we have that Λ(Z,U , n) ≤ Sn(Z, ε), where Sn(Z, ε) denote the smallest car-
dinality of all (n, ε)−spanning sets of Z. So ChZ(f,U) = lim

n→+∞
1
n logΛ(Z,U , n) ≤

lim
n→+∞

1
n logSn(Z, ε), Letting ε → 0, we have that ChZ(f,U) ≤ hBD

d (f, Z). More-

over, we have that ChZ(f) = sup
U
ChZ(f,U) ≤ hBD

d (f, Z). By the arbitrarily of the

metric d, we have that ChZ(f) ≤ inf
d
hBD

d (f, Z).

On the other hand, if the metric d′ is given by the restriction toX of the d̃ on X̃. By
the lemma 4.1, d′ is an admissible metric, then for any ε > 0, there exists an admissible
cover of X such that the diameter of the cover is less than ε. Let U be an admissible
cover with |U| < +∞. Assume G ∈ Sn(U) covers Z. Fixing xU ∈ X(U), ∀U ∈ G,
then S := {xU : U ∈ G} be a (n, |U|)−spanning set of Z. Moreover, we have that
Sn(Z, |U|) ≤ Λ(Z,U , n). Hence

lim
n→+∞

1
n

logSn(Z, |U|) ≤ lim
n→+∞

1
n

log Λ(Z,U , n) = ChZ(f,U).

Applying Theorem 4.2 and letting |U| −→ 0, we have that hBD
d′ (f, Z) ≤ ChZ(f).

Then ChZ(f) = min
d
hBD

d (f, Z), and ChZ(f) = hBD
d′ (f, Z).

Remark 5.2. In [13], Patrão proved hP (f) = min
d
hBD

d (f, X). This is a special
case of Theorem 5.1.
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Theorem 5.2. (Inverse variational principle). Let X be a locally compact sepa-
rable metric space, f : X → X be a proper map and μ ∈M(X, f) then

hμ(f) = inf{hZ(f) : Z ⊂ X, μ(Z) = 1}.

where M(X, f) denotes the set of all f−invariant probability measures on X and
hμ(f) the measure-theoretic entropy of f with respect to μ ∈M(X, f).

Proof. If μ ∈ M(X, f), defining μ̃(Ã) = μ(Ã ∩ X). It is immediate that
μ̃ ∈ M(X̃, f̃), since X and {∞} are f̃−invariant sets. It is also immediate that
hμ(f) = hμ̃(f̃). By Bowen and Pesin’s result([5,15]), i.e., hμ̃(f̃) = inf{hPP

Z̃
(f̃) :

Z̃ ⊂ X̃, μ̃(Z̃) = 1}. If Z ⊂ X and μ(Z) = 1, then μ̃(Z) = 1. If Z̃ ⊂ X̃,∞ ∈ Z̃ and
μ̃(Z̃) = 1, then μ(Z̃ ∩X) = 1 and μ̃({∞}) = 0. Applying theorem 4.3, we have that

inf{hPP
Z̃

(f̃) : Z̃ ⊂ X̃, μ̃(Z̃) = 1}

= inf{hPP
Z̃

(f̃) : Z̃ = Z ∪ {∞} or Z̃ = Z ⊂ X, μ(Z) = 1}
= inf{hZ(f) : Z ⊂ X, μ(Z) = 1}.

Hence, hμ(f) = inf{hZ(f) : Z ⊂ X, μ(Z) = 1}.
Remark 5.3. Theorem 5.2 is an extension of the classical result of Bowen and

Pesin ([5, 15]).
Relative to the classical variational principle[17], we call Theorem 5.2 the inverse

variational principle. Recently, there are some extensions of the classical variational
principle, such as [9] and [13]. Under the same conditions as that of Theorem 5.2,
Patrão[13] proved a variational principle, i.e., hP (f) = sup{hμ(f) : μ ∈ M(X, f)}.
For the compact system, Feng and Huang[9] defined the measure theoretical lower
and upper entropies and obtained some valuable variational principles for topological
entropies of subsets. We can consider the extensions of these results for some proper
maps. We will do this work in another paper.

Theorem 5.3. Let X be a locally compact separable metric space, f : X → X be
a proper map with the specification property respect to the metric that is the restriction
of some metric on X̃ to X . Let ϕ ∈ C(X,R) be bounded and can be continuously
extended to X̃. Let g(x) = limn→∞ 1

n

∑n−1
i=o ϕ(f i(x)) = α. If there exists some

α ∈ R such that Kg
α �= ∅, then

hKg
α
(f) = sup{hμ(f) : μ ∈M(X, f),

∫
ϕdμ = α}.

Proof. Combining Lemma 4.2, Corollary 4.2 and Theorem A, we get the result
immediately.



1240 Dongkui Ma and Bin Cai

Remark 5.4. If X is a compact metric space, under the same conditions as that
of Theorem 5.3, Takens and Verbitskiy[16] proved Theorem A. Then Theorem 5.3 is
a extension of Theorem A.
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