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MODULES WHOSE CLOSED SUBMODULES WITH ESSENTIAL SOCLE
ARE DIRECT SUMMANDS

Septimiu Crivei and Serap Şahinkaya

Abstract. We introduce and study CLESS-modules, which subsume two gen-
eralizations of extending modules due to P.F. Smith and A. Tercan. A module
M will be called a CLESS-module if every closed submodule N of M (in the
sense that M/N is non-singular) with essential socle is a direct summand of M .
Various properties concerning direct sums of CLESS-modules are established. We
show that, over a Dedekind domain, a module is CLESS if and only if its torsion
submodule is a direct summand. We also study the behaviour of CLESS-modules
under excellent extensions of rings.

1. INTRODUCTION

Extending modules (or CS-modules) have offered a rich topic of research, especially
in the last 20 years, due to their important role played in ring and module theory. The
monograph by N.V. Dung et al. [6] gives an excellent account on the developments of
the theory up to that moment. In parallel, several generalizations of CS-modules have
been considered, for instance CESS-modules [3], weak CS-modules [18], C11-modules
[19], CLS-modules [21] etc. They generalize the theory of extending modules towards
different directions.

The purpose of the present paper is to introduce and study CLESS-modules, which
allow us to give a unified approach of CESS-modules and CLS-modules, introduced
by P.F. Smith [18] and A. Tercan [21] respectively. Recall that a module M is called
a CS-module (or extending module) if every complement submodule of M is a direct
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summand of M , a CESS-module if every complement submodule of M with essential
socle is a direct summand of M , and a CLS-module if every closed submodule N of
M (in the sense that M/N is non-singular, see [7, 16]) is a direct summand of M . Let
us emphasize that the terminology of closed submodule which we shall use is not the
one employed in classical references on extending modules such as [6], where closed
submodules are the same as complements. Every closed submodule in our sense is a
complement, and every complement of a non-singular module is a closed submodule
[16, Lemma 2.3].

We define a CLESS-module by the property that every closed submodule with
essential socle is a direct summand. We study these modules, generalizing several
results both on CESS-modules and CLS-modules. We show that if M is a module
such that Soc(Z2(M)) � Z2(M), then M is a CLESS-module if and only if M =
Z2(M)⊕M ′ for some (non-singular) CESS-submodule M ′ of M . We emphasize that
our properties are of the same type as those for extending modules, sharing similar
limitations in studying certain properties, such as the closure of the respective class
of modules under direct sums. We analyze when a direct sum of CLESS-modules
is a CLESS-module, using the concepts of relative ojectivity and relative ejectivity.
We discuss the case of a Dedekind domain, since it offers some further motivation
for considering CLESS-modules. An important question for a module over a domain
is: when does it split, in the sense that its torsion submodule is a direct summand?
Some classical results show that a commutative domain is a: (i) field if and only if
every module splits (see J. Rotman [15]); (ii) Dedekind domain if and only if every
module whose torsion submodule is of bounded order splits (see S.U. Chase [4] and
I. Kaplansky [9]). We prove that, over a Dedekind domain, CLESS-modules coincide
with modules that split. Finally, we study the behaviour of CLESS-modules under
excellent extensions of rings. Our results on CLESS-modules can be used to derive
new corresponding results for CESS-modules and CLS-modules.

Now let us give some basic notation and set the terminology. Throughout this
paper, we assume that R is an associative ring with identity and all modules are unitary
right R-modules. We shall denote the fact that a submodule N is essential in a module
M by N � M . The socle and the singular submodule of a module M will be denoted
by Soc(M) and Z(M) = {m ∈ M | annR(m) � R} respectively. A module M is
called singular (respectively non-singular) if Z(M) = M (respectively Z(M) = 0).
The class of singular modules is a hereditary pretorsion class (i.e. it is closed under
submodules, homomorphic images and direct sums), whereas the class of non-singular
modules is a torsionfree class (i.e. it is closed under submodules, direct products and
extensions). By [6, 4.6], M is a singular module if and only if M ∼= L/K for a
module L and K � L. The second singular submodule Z2(M) of M is defined by
the equality Z2(M)/Z(M) = Z(M/Z(M)). A submodule N of a module M will be
called closed if M/N is non-singular (see [7, 16]). For a positive integer n, we denote
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Zn = Z/nZ. We refer to [6, 7] for the undefined notions used in the text.

2. BASIC PROPERTIES OF CLESS-MODULES

We begin with the definition of the main concept of the paper.

Definition 2.1. A module M is called a CLESS-module if every closed submodule
of M with essential socle is a direct summand of M . The ring R is called a right
CLESS-ring if it is CLESS as a right R-module.

Let us see how CLESS-modules relate to CS-modules, CESS-modules and CLS-
modules, as defined in the introduction. We have the following hierarchy:

There are immediate instances when the above notions coincide. We also note some
obvious classes of CESS-modules and CLS-modules.

Remark 2.2. (1) Let M be a module with essential socle. Then M is a CESS-
module if and only if M is a CS-module, and M is a CLESS-module if and only if
M is a CLS-module.

(2) Let M be a non-singular module. Then M is a CLS-module if and only if M
is a CS-module, and M is a CLESS-module if and only if M is a CESS-module.

(3) Every module with zero socle is CESS, and every singular module is CLS.

But in general none of the implications from the above diagram is an equiva-
lence, and CESS-modules and CLS-modules are not directly related. All the necessary
examples can be immediately obtained from the following ones. Other classes of ex-
amples will emerge from a forthcoming characterization theorem of CLESS-modules
over Dedekind domains (see Theorem 4.1).

Example 2.3. (1) The free Z-module of infinite rank Z
(N) is a CESS-module [18,

p. 101], but not a CLS-module [21, Example 16].
(2) Let p be a prime. The Z-module Zp ⊕ Zp3 is a CLS-module [21, Example 6],

but not a CESS-module [18, Example 1.1].

We point out that CLESS-modules also generalize Goldie extending modules, re-
cently introduced and studied in [1]. Recall that a module is called Goldie extending
if for every submodule X of M there is a direct summand D of M such that X ∩D
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is essential both in X and D. It is easy to see that every Goldie extending module is
CLS, and consequently CLESS.

We collect in the following lemma some frequently used immediate properties on
closed submodules and modules with essential socle.

Lemma 2.4. (i) The relation of being a closed submodule is transitive.
(ii) Let M be a module and let K and N be submodules of M such that K is a

closed submodule of M . Then K ∩N is a closed submodule of N .
(iii) The class of modules with essential socle is closed under submodules, direct

sums and essential extensions.

We continue with a lemma on closed submodules and direct summands of CLESS-
modules.

Lemma 2.5. (i) Let M be a CLESS-module and N a closed submodule of M .
Then N is a CLESS-module.

(ii) Let M = M1 ⊕M2 be a CLESS-module such that Soc(M1) � M1. Then M2

is a CLESS-module.

Proof. (i) Clear, using Lemma 2.4.
(ii) Let K be a closed submodule of M2 with Soc(K) � K . Since we have

M/(M1 ⊕K) ∼= M2/K, M1 ⊕K is a closed submodule of M . Moreover, Soc(M1 ⊕
K) � M1 ⊕K. Since M is a CLESS-module, M1 ⊕K is a direct summand of M .
Then it follows that K is a direct summand of M2. Hence M2 is a CLESS-module.

Theorem 2.6. Let M = M1 ⊕M2 be a module. Then M is a CLESS-module if
and only if every closed submodule K of M with Soc(K) � K such that K ∩M1 = 0
or K ∩M2 = 0 is a direct summand of M .

Proof. The necessity is clear. Conversely, assume that every closed submoduleK
of M with Soc(K) � K such that K∩M1 = 0 or K∩M2 = 0 is a direct summand of
M . Let K be a closed submodule of M with Soc(K) � K . By Lemma 2.4, K ∩M1

is closed in M1 and Soc(K ∩M1) � K ∩M1. Since K ∩M1∩M2 = 0, by hypothesis
K ∩M1 is a direct summand of M , say M = (K ∩M1) ⊕ L for some submodule
L of M . By Lemma 2.5, L is a CLESS-module. Since K ∩ L is closed in L and
Soc(K ∩L) � K ∩L by Lemma 2.4, it follows that K ∩L is a direct summand of L.
Hence K is a direct summand of M . This shows that M is a CLESS-module.

We have the following direct sum decomposition theorem for CLESS-modules
whose second singular submodule has essential socle.

Theorem 2.7. Let M be a module such that Soc(Z2(M)) � Z2(M). Then M
is a CLESS-module if and only if M = Z2(M) ⊕M ′ for some (non-singular) CESS-
submodule M ′ of M .
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Proof. Assume first that M is a CLESS-module. Since Z2(M) is a closed
submodule of M with essential socle, we have a decomposition M = Z2(M) ⊕M ′

for some submodule M ′ of M . By Lemma 2.5, M ′ is a CLESS-module. Moreover,
since M ′ is non-singular, M ′ is a CESS-module by Remark 2.2.

Conversely, assume that M = Z2(M)⊕M ′ for some CESS-submodule M ′ of M .
Let K be a closed submodule of M with essential socle. We must have Z2(M) ⊆ K ,
and so K = Z2(M)⊕(K∩M ′). By Lemma 2.4, Soc(K∩M ′) � K∩M ′, and K∩M ′

is closed in M ′, and consequently, K ∩M ′ is a complement submodule of M ′. Since
M ′ is a CESS-module, K ∩M ′ is a direct summand of M ′, say M ′ = (K ∩M ′)⊕K ′

for some submodule K ′ of M ′. Then M = K ⊕K ′, that is, K is a direct summand
of M . Hence M is a CLESS-module.

Recall that a module M is called semiartinian if every non-zero factor of M has a
simple submodule. It is well known that if M is semiartinian, then its socle is essential
in M , and every submodule of M is semiartinian.

Corollary 2.8. Let M be a semiartinian module. Then M is a CLS-module if and
only if M = Z2(M)⊕M ′ for some (non-singular) CS-submodule M ′ of M .

Proof. This follows by Theorem 2.7 and Remark 2.2.

3. DIRECT SUMS OF CLESS-MODULES

It is well-known that in general the class of extending modules is not closed under
direct sums, and this behaviour is also carried on by CESS-modules (see [3, The-
orem 2.2]) and CLS-modules (see [21, p. 1560]). Finding necessary and sufficient
conditions for ensuring the closure of such classes under direct sums has been one of
the most important open problems in the theory of extending modules and their general-
izations. In what follows we shall deal with such a problem for CLESS-modules. But
first let us give an example which shows that in general the class of CLESS-modules
is not closed under direct sums. Efficient tools for such counterexamples have been
the rings of trivial extensions. We use a clue from [22, Example 3].

Example 3.1. Let B = Z ⊕ Zp for some prime number p, and let R be the trivial
extension of Z and B. The ring R = Z⊕B has addition and multiplication defined by
(a1, b1)+(a2, b2) = (a1+a2, b2+b2) and (a1, b1)(a2, b2) = (a1a2, a1b2+a2b1). Then
R is CESS by [19, Corollary 1.3], and so R is CLESS. Note that I = Soc(R) = 0⊕B
is essential in R, hence R/I is singular, and so R/I is CLESS (see Remark 2.2). We
claim thatM = R⊕R/I is not a CLESS-module. To this end, view Zp as a submodule
K of M . Then Soc(K) = K. Since Z is non-singular, we have Z(M/K) = 0, hence
K is a closed submodule of M . As in [22, Example 3], if M = K ⊕ L for some
submodule L of M , then L = {((a1, b), (a2, 0) + I) | a1, a2 ∈ Z, b ∈ B}, which
implies that K ⊆ L, a contradiction. Hence K is not a direct summand of M , and
consequently, M is not a CLESS-module.
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In order to see when a direct sum of two CLESS-modules has the same property,
the following concept generalizing relative injectivity will be useful. For a module
M = M1 ⊕M2, recall that M2 is called M1-ojective if for every complement K of
M2 in M , we have M = K ⊕M ′

1 ⊕M ′
2 for some submodules M ′

1 of M1 and M ′
2 of

M2 [11]. Also, M1 and M2 are called relatively ojective if M1 is M2-ojective and M2

is M1-ojective.
We shall use an approach similar to that in [11] combined with the following

technique. First we show some properties of direct sums of non-singular CLESS-
modules, and then we use them for proving similar properties of direct sums of arbitrary
CLESS-modules. We have seen that complement submodules and closed submodules
of a non-singular module coincide, and non-singular CLESS-modules are the same as
non-singular CESS-modules.

Lemma 3.2. Let M = M1 ⊕M2 be a module such that M1 is a non-singular
CLESS-module and M2 is M1-ojective. Then for every closed submodule K of M
with Soc(K) � K and K ∩M2 = 0, M = K ⊕M ′

1 ⊕M ′
2 for some submodules M ′

1

of M1 and M ′
2 of M2.

Proof. Let K be a complement (closed) submodule of M with Soc(K) � K and
K ∩M2 = 0. By Lemma 2.4, K ∩M1 is closed in M1 and Soc(K ∩M1) � K ∩M1.
Since M1 is a CLESS-module, it follows that K ∩M1 is a direct summand of M1,
say M1 = (K ∩M1) ⊕N1 for some submodule N1 of M1. By Lemma 2.5, N1 is a
CLESS-module. Now let L = (K ⊕M2) ∩M1. Let N ′

1 be a complement closure of
K∩L∩N1 in N1. By Lemma 2.4, K ∩L∩N1 has essential socle and, furthermore, so
has its essential extension N ′

1. Since N1 is non-singular, it is a CESS-module, hence
N ′

1 is a direct summand of N1, say N1 = N ′
1 ⊕N ′′

1 for some submodule N ′′
1 of N1.

Then we have:

K ⊕M2 = L⊕M2 = (K ∩M1) ⊕ (L∩N1) ⊕M2 � (K ∩M1) ⊕N ′
1 ⊕M2.

It follows that K is a complement of M2 in N = (K ∩M1) ⊕ N ′
1 ⊕M2. By [11,

Proposition 8], M2 is (K ∩M1)⊕N ′
1-ojective. Hence N = K ⊕M ′′

1 ⊕M ′
2 for some

submodulesM ′′
1 of (K∩M1)⊕N ′

1 and M ′
2 of M2. Consequently, M = K⊕M ′

1⊕M ′
2

with M ′
1 = M ′′

1 ⊕N ′′
1 ⊆M1 and M ′

2 ⊆M2.

Lemma 3.3. Let M = M1⊕M2 be a direct sum of relatively ojective non-singular
CLESS-modules. Then for every closed submodule K of M with Soc(K) � K ,
M = K ⊕M ′

1 ⊕M ′
2 for some submodules M ′

1 of M1 and M ′
2 of M2. In particular,

M is a CLESS-module.

Proof. Let K be a complement (closed) submodule of M with Soc(K) � K.
Let L be a complement closure of K ∩ M1 in K . By Lemma 2.4, L is a closed
submodule of M and Soc(L) � L. Since L ∩ M2 = 0, by Lemma 3.2 we have



CLESS-modules 995

M = L ⊕ N1 ⊕N2 for some submodules N1 of M1 and N2 of M2. It follows that
N = N1 ⊕N2 is non-singular. Also, we have K = L ⊕ L′, where L′ = K ∩N . By
Lemma 2.4, L′ is closed in M , and so L′ is closed in N . Also, Soc(L) � L. We have
L′∩N1 = L′ ∩K ∩N1 ⊆ L′ ∩K ∩M1 ⊆ L′ ∩L = 0. Note that N1 is N2-ojective by
[11, Proposition 8]. By [18, Corollary 1.3], N2 is a CESS-module as a direct summand
of M2. Then by Lemma 3.2 we have N = L′⊕M ′

1⊕M ′
2 for some submodules M ′

1 of
N1 and M ′

2 of N2. It follows that M = L⊕N = L⊕L′⊕M ′
1 ⊕M ′

2 = K⊕M ′
1 ⊕M ′

2

with M ′
1 ⊆M1 and M ′

2 ⊆M2.

Now we can return to arbitrary CLESS-modules.

Theorem 3.4. Let M = M1 ⊕M2 be a direct sum of relatively ojective CLESS-
modules. Then for every closed submodule K of M with Soc(K) � K , M = K ⊕
M ′

1 ⊕M ′
2 for some submodules M ′

1 of M1 and M ′
2 of M2. In particular, M is a

CLESS-module.

Proof. Let K be a closed submodule of M with Soc(K) � K. Then K ∩M1

is closed in M1 and Soc(K ∩M1) � K ∩M1 by Lemma 2.4. Since M1 is a CLESS-
module, K ∩M1 is a direct summand of M1, say M1 = (K ∩M1) ⊕ N1 for some
submodule N1 of M1. Then N1 is a non-singular CLESS-module by Lemma 2.5.
Similarly, we may writeM2 = (K∩M2)⊕N2 for some non-singular CLESS-submodule
N2 of M2. By [11, Proposition 8], N1 and N2 are relatively ojective. Now N1 ⊕N2

is a CLESS-module by Lemma 3.3. We have

K = (K ∩M1) ⊕ (K ∩M2) ⊕ (K ∩ (N1 ⊕N2)).

Hence K∩(N1⊕N2) is clearly a complement submodule of N1⊕N2 and has essential
socle by Lemma 2.4. By Lemma 3.3, we have N1⊕N2 = (K∩(N1⊕N2))⊕M ′

1⊕M ′
2

for some submodules M ′
1 of N1 and M ′

2 of N2. Then we have

M = M1 ⊕M2 = (K ∩M1)⊕ (K ∩M2)⊕N1 ⊕N2

= (K ∩M1) ⊕ (K ∩M2) ⊕ (K ∩ (N1 ⊕N2))⊕M ′
1 ⊕M ′

2

= K ⊕M ′
1 ⊕M ′

2

with M ′
1 ⊆M1 and M ′

2 ⊆M2.

Lemma 3.5. Let M = M1 ⊕M2 be a direct sum of CLESS-modules such that M2

is M1-injective. Then M is a CLESS-module.

Proof. Let K be a closed submodule of M with Soc(K) � K . By Lemma 2.4,
K ∩M2 is closed in M2 and Soc(K ∩M2) � K ∩M2. Since M2 is a CLESS-module,
K ∩M2 is a direct summand of M2, and so it is a direct summand of M . Hence
K ∩M2 is a direct summand of K , say K = (K ∩M2) ⊕N for some submodule N
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of K. Since N ∩M2 = 0 and M2 is M1-injective, the proof of [6, Lemma 7.5] yields
the existence of a submodule M ′ of M such that M = M ′⊕M2 and N ⊆M ′ ∼= M1.
The isomorphism M/K ∼= (M2/(K ∩M2)) ⊕ (M ′/N ) implies that N is closed in
M ′. Since Soc(N ) � N and M ′ ∼= M1 is a CLESS-module, N is a direct summand
of M ′. It follows that K is a direct summand of M . Hence M is a CLESS-module.

Corollary 3.6. Let M = M1 ⊕M2 be a module. If either M1 is a CLESS-module
and M2 is injective, or M1 is semisimple and M2 is a CLESS-module, then M is a
CLESS-module.

Proof. Note that M2 is M1-injective in both situations. Now use Lemma 3.5.

Another notion generalizing relative injectivity was recently considered in [1]. Re-
call that, for a moduleM = M1⊕M2, M2 is called M1-ejective if for every submodule
K of M with K ∩M2 = 0, we have M = M2 ⊕M3 for some submodule M3 of M
such that K ∩M3 � K [1, Theorem 2.7].

Theorem 3.7. Let M = M1 ⊕M2 be a direct sum of CLESS-modules such that
M2 is M1-ejective. Then M is a CLESS-module.

Proof. Let K be a closed submodule of M with Soc(K) � K. Then K ∩M1

is closed in M1 and Soc(K ∩M1) � K ∩M1 by Lemma 2.4. Since M1 is a CLESS-
module, K ∩M1 is a direct summand of M1, say M1 = (K ∩M1) ⊕ N1 for some
submodule N1 of M1. Then N1 is a non-singular CLESS-module by Lemma 2.5.
Similarly, we may writeM2 = (K∩M2)⊕N2 for some non-singular CLESS-submodule
N2 of M2. By [23, Lemma 3.4], N2 is N1-ejective. Now by [1, Corollary 2.8], N2 is
N1-injective. Hence N1 ⊕ N2 is a CLESS-module by Lemma 3.5. Now continue as
in the proof of Theorem 3.4 in order to deduce that M is a CLESS-module.

4. CLESS-MODULES OVER DEDEKIND DOMAINS

In the case of Dedekind domains, we have the following direct sum decomposition
theorem.

Theorem 4.1. Let R be a Dedekind domain. Then a module M is a:

(i) CESS-module if and only if M = M1 ⊕M2 for some torsion CS-module M1

and torsionfree module M2.

(ii) CLS-module if and only if M = M1 ⊕M2 for some torsion module M1 and
torsionfree CS-module M2.

(iii) CLESS-module if and only if M = M1 ⊕M2 for some torsion module M1 and
torsionfree module M2.
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Proof. Note that a module X is torsion if and only if Soc(X) � X , and X is
torsionfree if and only if X is non-singular. Also, the torsion part of X is t(X) =
Z2(X) and Soc(Z2(X)) � Z2(X).

(i) This is [18, Proposition 1.8].
(ii) If M is a CLS-module, then by [21, Proposition 8] we have M = t(M) ⊕M2,

where M2 is a torsionfree CS-module. Conversely, assume that M = M1 ⊕M2

for some torsion module M1 and torsionfree CS-module M2. Moreover, the
torsion module M1 is CLS. Since M2 is clearly M1-injective, M is a CLS-
module by [21, Theorem 9].

(iii) If M is a CLESS-module, then by Theorem 2.7 we have M = t(M)⊕M2, where
M2 is obviously torsionfree. Conversely, assume that M = M1 ⊕M2 for some
torsion module M1 and torsionfree module M2. Let K be a closed submodule of
M with essential socle. Then K is torsion, and so K ⊆ M1. It follows that K
is a closed submodule of M1. But the torsion module M1 is a CLS-module, and
so K is a direct summand of M1. Hence K is a direct summand of M , which
shows that M is a CLESS-module.

Recall that a module is called a UC-module if every submodule has a unique
complement closure [20]. The structure of finite UC-abelian groups (Z-modules) is
given in [5].

Corollary 4.2. Let R be a Dedekind domain. Then:
(i) A module is CLESS if and only if it splits. Consequently, every module is CLESS

if and only if R is a field.
(ii) The class of CLESS-modules is closed under direct summands and finite direct

sums.
(iii) Every finitely generated module is CLESS.
(iv) Every module with finite uniform dimension is CLESS.
(v) Every UC-module is CLESS.

Proof.

(i) The first part follows by the proof of Theorem 4.1, and the second one by J.
Rotman’s result mentioned in the introduction.

(ii) Straightforward using (i).
(iii) Note that every finitely generated module is a direct sum of a torsion module and

a torsionfree module and use Theorem 4.1.
(iv) Let M be a module with finite uniform dimension. If M is torsionfree, then

it is clearly CLESS. If M is not torsionfree, then M = M1 ⊕ M2 for some
injective module M1 and finitely generated module M2 [9, Theorem 9]. Then
M is CLESS by (iii) and Corollary 3.6.
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(v) In this case, M is either torsion or torsionfree [3, Lemma 3.2]. Now use Theorem
4.1.

The structure of CS-modules over Dedekind domains (see [8] and [11]), and in
particular over the ring of integers, together with Theorem 4.1 and Corollary 4.2 pro-
vide good sources of examples concerning CESS-modules, CLS-modules and CLESS-
modules, and clarify why the modules in Example 2.3 have or do not have the required
properties. In view of the above results we also have the following examples.

Example 4.3.
(1) Let p be a prime and let Z(p) be the localization of Z at its prime ideal pZ. Then

the torsionfree Z-module Z ⊕ Z(p) is CESS, but not CLS, because Z ⊕ Z(p) is
not CS.

(2) Let p be a prime. The Z-module Zp ⊕Zp3 ⊕Z
(N) is infinitely generated CLESS,

and neither CESS nor CLS, because the Z-modules Zp ⊕ Zp3 and Z
(N) are not

CS.
(3) If P denotes the set of all primes, then the Z-module

∏
p∈P Zp is not CLESS,

because its torsion submodule is not a direct summand (e.g. see [17]).

5. EXCELLENT EXTENSIONS AND CLESS-MODULES

In this section we shall generalize to CLESS-modules corresponding results con-
cerning the behaviour of CS-modules with respect to excellent extensions of rings (see
[13]).

Let R be a subring of a ring S such that they have the same identity. Recall that
S is called a right excellent extension of R [14] if the following two conditions are
satisfied:

(1) SR and RS are free modules with a basis {1 = a1, a2, · · · , an} such that aiR =
Rai for every i ∈ {1, 2, . . . , n}.

(2) For every submodule NS of a module MS , if NR is a direct summand of MR,
then NS is a direct summand of MS .

In what follows, S will be a right excellent extension of R, and SR and RS have
a basis {1 = a1, a2, . . . , an}. We recall some needed basic properties.

Lemma 5.1.
(i) ([12, Proposition 1.1]). Let NS be a submodule of a module MS . Then NR �

MR if and only if NS � MS .
(ii) ([12, Corollary 1.2]). Let M be a right S-module. Then Soc(MS) = Soc(MR).

(iii) ([12, Lemma 2.1]). Let M be a right S-module. Then Z(MS) = Z(MR).
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(iv) ([12, Proposition 2.2]). Let M be a right R-module. Then Z((M ⊗R S)S) =
Z(MR) ⊗R S.

Lemma 5.2. Let NS be a submodule of a module MS . Then NS is closed in MS

if and only if NR is closed in MR.

Proof. Clear by Lemma 5.1 (iii).

Lemma 5.3. Let NR be a submodule of a module MR. Then:

(i) NR is closed in MR if and only if (N ⊗R S)S is closed in (M ⊗R S)S .
(ii) Soc(NR) � NR if and only if Soc((N ⊗R S)S) � (N ⊗R S)S .

Proof. (i) Assume first that NR is closed in MR, that is, Z(MR/NR) = 0.

Consider the element
n∑

i=1
mi ⊗ ai +N ⊗R S ∈ Z((M ⊗R S)S/(N ⊗R S)S) for some

elements mi ∈M . There exists IS � SS such that(
n∑

i=1

mi ⊗ ai +N ⊗R S

)
IS ⊆ N ⊗R S,

and so IR � SR by Lemma 5.1 (i). Then HR = IR ∩ RR � RR, and so we have(
n∑

i=1

mi ⊗ ai +N ⊗R S

)
HR ⊆ N ⊗R S.

This means that
(

n∑
i=1

mi ⊗ ai

)
HR ⊆ N ⊗R S. Since RS is a free module with basis

{1 = a1, a2, . . . , an}, every element in M ⊗R S is uniquely written as
n∑

i=1
mi ⊗ ai for

elements mi ∈M . Notice that for every i ∈ {1, . . . , n}, there exists an automorphism
σi of R such that σi(r)ai = air for every r ∈ R. Thus, for every h ∈ H we have:(

n∑
i=1

(mi ⊗ ai)

)
h =

n∑
i=1

mi ⊗ (aih) =
n∑

i=1

mi ⊗ (σi(h)ai)

=
n∑

i=1

(miσi(h)) ⊗ ai ∈ N ⊗R S.

Since RS is a free module with basis {1 = a1, a2, · · · , an}, every element of N ⊗R S

is uniquely written as
n∑

i=1
ni ⊗ ai for elements ni ∈ N . It follows that miσi(H) ⊆ N

for every i ∈ {1, . . . , n}. Since σi is an automorphism of R and HR � RR, we
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have σi(H) � RR for every i ∈ {1, . . . , n}. Then mi + N ∈ Z(MR/NR) for every
i ∈ {1, . . . , n}. Since Z(MR/NR) = 0, we have mi ∈ N for every i ∈ {1, . . . , n}.

Thus
n∑

i=1
mi ⊗ ai ∈ N ⊗R S, and so Z((M ⊗R S)S/(N ⊗R S)S) = 0.

Conversely, assume that (N ⊗R S)S is closed in (M ⊗R S)S , that is, Z((M ⊗R

S)S/(N ⊗R S)S) = 0. Then Z((M ⊗R S)R/(N ⊗R S)R) = 0 by Lemma 5.1 (iii).
Let m + N ∈ Z(MR/NR). There exists IR � RR such that mIR ⊆ NR. Therefore
(m⊗ 1 +N ⊗R S)IR ⊆ N ⊗R S. Since Z((M ⊗R S)R/(N ⊗R S)R) = 0, we obtain
that m⊗1 ∈ N⊗R S. From this we have m ∈ N , which shows that Z(MR/NR) = 0.

(ii) There is an R-isomorphism ψ : N ⊗R S → Nn, and so ψ(Soc(N ⊗R S)R) =
(Soc(NR))n.

Assume first that Soc(NR) � NR. Then (Soc(NR))n � Nn
R, and furthermore,

Soc(N ⊗R S)R � (N ⊗R S)R. By Lemma 5.1 (iii), Soc((N ⊗R S)S) = Soc((N ⊗R

S)R), which implies that Soc((N ⊗R S)S) � (N ⊗R S)S .
Conversely, assume that Soc((N⊗RS)S) � (N⊗RS)S. Then Soc((N⊗RS)R) �

(N ⊗R S)R by Lemma 5.1 (i), and so (Soc(NR))n � Nn
R. It follows that Soc(NR) �

NR.

Theorem 5.4.
(i) Let M be a right S-module. If MR is a CLESS-module, then so is MS .
(ii) Let M be a right R-module. If (M ⊗R S)S is a CLESS-module, then so is MR.

Proof.
(i) Assume that MR is a CLESS-module, and let NS be a closed submodule of MS

with Soc(NS) � NS . By Lemmas 5.1 and 5.2, Soc(NR) � NR and NR is a
closed submodule of MR. Then NR is a direct summand of MR. Since S is a
right excellent extension of R, NS is a direct summand of MS . Hence MS is a
CLESS-module.

(ii) Assume that (M⊗R S)S is a CLESS-module, and let NR be a closed submodule
of MR with Soc(NR) � NR. By Lemma 5.3 (i), (N ⊗R S)S is a closed
submodule of (M ⊗R S)S . By Lemma 5.3 (ii), we have Soc((N ⊗R S)S) �
(N ⊗R S)S . Then (N ⊗R S)S is a direct summand of (M ⊗R S)S . It follows
that (N ⊗R S)R is a direct summand of (M ⊗R S)R. Note that (N ⊗ 1)R is a
direct summand of (N ⊗R S)R and (N ⊗ 1)R ⊆ (M ⊗ 1)R. Then (N ⊗ 1)R is
a direct summand of (M ⊗ 1)R. This implies that NR is a direct summand of
MR. Hence MR is a CLESS-module.

Now Lemma 5.1 and Theorem 5.4 give the following consequence.

Corollary 5.5. Every right R-module (respectively singular, non-singular right
R-module) is CLESS if and only if every right S-module (respectively singular, non-
singular right S-module) is CLESS.
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