TAIWANESE JOURNAL OF MATHEMATICS
Vol. 18, No. 3, pp. 895-907, June 2014
DOI: 10.11650/tjm.18.2014.3724
This paper is available online at http://journal.taiwanmathsoc.org.tw

SINGULAR VALUE INEQUALITIES OF LEWENT TYPE

Yun Zhang

Abstract. Let A_{i} be strictly contractive matrices and let λ_{i} be nonnegative real numbers with $\sum_{i=1}^{m} \lambda_{i}=1, i=1, \ldots, m$. We prove that

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right)
$$

which generalizes a Lewent type determinantal inequality due to Lin [M. Lin, A Lewent type determinantal inequality, Taiwanese J. Math. 17(2013), 1303-1309]. On the other hand, we also prove

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \sum_{i=1}^{m} \lambda_{i} s\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right) .
$$

Here " $\prec_{\text {wlog }}$ " stands for weakly log-majorization. In addition, some other related inequalities are also obtained.

1. Introduction

Let M_{n} denote the vector space of all complex $n \times n$ matrices and let H_{n} be the set of all Hermitian matrices of order n. We always denote the eigenvalues of $A \in H_{n}$ in decreasing order by $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$ and denote $\lambda(A)=$

Received August 31, 2013, accepted November 22, 2013.
Communicated by Wen-Wei Lin.
2010 Mathematics Subject Classification: 47A30, 47B15, 15A45, 15A60.
Key words and phrases: Lewent inequality, Weak log-majorization, Singular values, Strict contractions. The work was supported by the NSFC grant 11371145 and the Science Foundation for the Excellent Youth Scholars of Anhui Education Ministry (No. 2011SQRL070).
$\left(\lambda_{1}(A), \lambda_{2}(A), \ldots, \lambda_{n}(A)\right)$. The singular values of $A \in M_{n}$ are defined to be the nonnegative square roots of the eigenvalues of $A^{*} A$. The absolute value of $A \in M_{n}$ is defined and denoted by $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. Thus the singular values of A are the eigenvalues of $|A|$. We always denote the singular values of $A \in M_{n}$ by $s_{1}(A) \geq$ $s_{2}(A) \geq \cdots \geq s_{n}(A)$ and denote $s(A)=\left(s_{1}(A), s_{2}(A), \ldots, s_{n}(A)\right)$. Denote by $\|\cdot\|_{\infty}$ the spectral norm. For $A \in M_{n},\|A\|_{\infty}=s_{1}(A)$. For $A, B \in H_{n}$, we use the notation $A \leq B$ or $B \geq A$ to mean that $B-A$ is positive semidefinite. Clearly, " \leq " and " \geq " define two partial orders on H_{n}, each of which is called Löwner partial order. In particular, $B \geq 0$ means that B is positive semidefinite. Recall that a complex matrix C is called a contraction if $\|C\|_{\infty} \leq 1$, or equivalently $C^{*} C \leq I$. Moreover, C is called a strict contraction if $\|C\|_{\infty}<1$. Given a real vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we rearrange its components as $x_{[1]} \geq x_{[2]} \geq \cdots \geq x_{[n]}$.

Definition 1. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, if

$$
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1,2, \ldots, n,
$$

then we say that x is weakly majorized by y and denote $x \prec_{\mathrm{w}} y$. If $x \prec_{\mathrm{w}} y$ and $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, then we say that x is majorized by y and denote $x \prec y$.

Definition 2. Let the components of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be nonnegative. If

$$
\prod_{i=1}^{k} x_{[i]} \leq \prod_{i=1}^{k} y_{[i]}, k=1,2, \ldots, n,
$$

then we say that x is weakly log-majorized by y and denote $x \prec_{\text {wlog }} y$. If $x \prec_{w l o g} y$ and $\prod_{i=1}^{n} x_{i}=\prod_{i=1}^{n} y_{i}$, then we say that x is log-majorized by y and denote $x \prec_{\log } y$.

In 1908, by using the power-series method Lewent [7] proved the following numerical inequality:

$$
\begin{equation*}
\frac{1+\sum_{i=1}^{m} \lambda_{i} x_{i}}{1-\sum_{i=1}^{m} \lambda_{i} x_{i}} \leq \prod_{i=1}^{m}\left(\frac{1+x_{i}}{1-x_{i}}\right)^{\lambda_{i}} \tag{1}
\end{equation*}
$$

where $x_{i} \in[0,1)$ and the nonnegative real numbers $\lambda_{i}, i=1, \ldots, m$, are (scalar) weights with $\sum_{i=1}^{m} \lambda_{i}=1$.

Recently, Lin [5] proved an interesting analogue of (1) for the determinant of strict contractions: Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. Then

$$
\begin{equation*}
\left|\operatorname{det}\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right)\right| \leq \prod_{i=1}^{m} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}} \tag{2}
\end{equation*}
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.
Here $\frac{I+A}{I-A}$ is understood as $(I+A)(I-A)^{-1}$, which is also equal to $(I-A)^{-1}(I+$ A).

For simplicity, we state our results for matrices, but these results still hold for trace class operators on a complex separable Hilbert space via limiting arguments.

For $B_{i} \in M_{n}, i=1, \ldots, m$, we always denote $\prod_{i=1}^{m} s\left(B_{i}\right):=\left(\prod_{i=1}^{m} s_{1}\left(B_{i}\right), \cdots\right.$, $\left.\prod_{i=1}^{m} s_{n}\left(B_{i}\right)\right)$. In this paper, we shall prove the following inequalities: Let $A_{i} \in$ $M_{n}, i=1, \ldots, m$, be strictly contractive matrices and let λ_{i} be nonnegative real numbers with $\sum_{i=1}^{m} \lambda_{i}=1, \quad i=1, \ldots, m$.. Then

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right)
$$

which generalizes (2). Meanwhile, we also prove

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \sum_{i=1}^{m} \lambda_{i} s\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right) .
$$

Some other related results are also obtained.

2. Results and Proof

We start with several lemmas which will be used in our proof.

The following well known result is due to Ky Fan [3, 10].
Lemma 1. Let $A, B \in H_{n}$. Then $\lambda(A+B) \prec \lambda(A)+\lambda(B)$.
Denote by $H_{n}(\Omega)$ the set of $n \times n$ Hermitian matrices with the spectra in an interval Ω. We have the following

Lemma 2. [1] Let f be a convex function on Ω. Then

$$
\lambda(f(\alpha A+(1-\alpha) B)) \prec_{\mathrm{w}} \lambda(\alpha f(A)+(1-\alpha) f(B))
$$

for all $A, B \in H_{n}(\Omega)$ and $0 \leq \alpha \leq 1$.
Remark. Using an idea similar to that in [1], we can generalize Lemma 2 to m matrices:

$$
\begin{equation*}
\lambda\left(f\left(\alpha_{1} A_{1}+\cdots+\alpha_{m} A_{m}\right)\right) \prec_{\mathrm{w}} \lambda\left(\alpha_{1} f\left(A_{1}\right)+\cdots+\alpha_{m} f\left(A_{m}\right)\right) \tag{3}
\end{equation*}
$$

for $A_{1}, \ldots, A_{m} \in H_{n}(\Omega)$ and $\alpha_{1}, \ldots, \alpha_{m} \in[0,1]$ with $\sum_{i=1}^{m} \alpha_{i}=1$.
Lemma 3. [3, 10]. Let $g(t)$ be an increasing convex function. If $x \prec_{\mathrm{w}} y$ with $x, y \in \mathbb{R}^{n}$, then

$$
\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) \prec_{\mathrm{w}}\left(g\left(y_{1}\right), \ldots, g\left(y_{n}\right)\right) .
$$

Let f be a real valued function defined on an interval Ω. If f is positive and

$$
f(\alpha s+(1-\alpha) t) \leq f(s)^{\alpha} f(t)^{1-\alpha}
$$

for all $0 \leq \alpha \leq 1$, then f is called log-convex. The reader is referred to [8] for general properties of convex and log-convex functions.

Lemma 4. Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. If $A_{i}, i=$ $1, \ldots, m$, are positive semidefinite, then

$$
\begin{equation*}
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \prod_{i=1}^{m} s\left(\left(\frac{I+A_{i}}{I-A_{i}}\right)^{\lambda_{i}}\right), \tag{4}
\end{equation*}
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.
Proof. First, we will show that $f(t)=\frac{1+t}{1-t}$ is log-convex on $[0,1)$. It is clear that $f(t)$ is positive on $[0,1)$. Let

$$
g(t):=\log f(t) .
$$

It is equivalent to showing that $g(t)$ is convex on $[0,1)$. Since $g(t)$ is continuous, we only need show $g^{\prime \prime}(t) \geq 0$, for all $t \in[0,1)$. A routine calculation shows that

$$
g^{\prime \prime}(t)=\frac{4 t}{(1+t)^{2}(1-t)^{2}} \geq 0
$$

for all $t \in[0,1)$. This shows that

$$
f(t)=\frac{1+t}{1-t}
$$

is log-convex on $[0,1)$. Since the spectra of $\sum_{i=1}^{m} \lambda_{i} A_{i}$ and A_{i} are contained in $[0,1), i=$ $1, \ldots, m$, it follows that each A_{i} and $\sum_{i=1}^{m} \lambda_{i} A_{i}$ belong to $H_{n}([0,1))$. By the spectral mapping theorem, the spectra of $f\left(\sum_{i=1}^{m} \lambda_{i} A_{i}\right)$ and $f\left(A_{i}\right)$ are contained in $[1,+\infty)$. For $\lambda_{i} \geq 0$ with $\sum_{i=1}^{m} \lambda_{i}=1$, we have

$$
\begin{aligned}
& \log \lambda\left(f\left(\sum_{i=1}^{m} \lambda_{i} A_{i}\right)\right) \\
= & \lambda\left(\log f\left(\sum_{i=1}^{m} \lambda_{i} A_{i}\right)\right) \\
\prec_{\mathrm{w}} \lambda\left(\sum_{i=1}^{m} \lambda_{i} \log f\left(A_{i}\right)\right) & \text { by the Spectral Mapping Theorem } \\
\prec & \sum_{i=1}^{m} \lambda\left(\lambda_{i} \log f\left(A_{i}\right)\right) \\
= & \text { by Lemma 1 } \\
=\sum_{i=1}^{m} \log \lambda\left(f\left(A_{i}\right)^{\lambda_{i}}\right) . & \text { by the Spectral Mapping Theorem }
\end{aligned}
$$

Then

$$
\log \lambda\left(f\left(\sum_{i=1}^{m} \lambda_{i} A_{i}\right)\right) \prec_{\mathrm{w}} \sum_{i=1}^{m} \log \lambda\left(f\left(A_{i}\right)^{\lambda_{i}}\right) .
$$

Applying Lemma 3 to the above weak-majorization with the increasing convex function e^{t}, we obtain

$$
\lambda\left(f\left(\sum_{i=1}^{m} \lambda_{i} A_{i}\right)\right) \prec_{\operatorname{wlog}} \prod_{i=1}^{m} \lambda\left(f\left(A_{i}\right)^{\lambda_{i}}\right) .
$$

Clearly, each $f\left(A_{i}\right)$ and $f\left(\sum_{i=1}^{m} \lambda_{i} A_{i}\right)$ are positive definite. Note that for positive definite matrices, singular values and eigenvalues are the same. Thus the inequality (4) holds. This completes the proof.

Remark. In [5], Lin proved the following result: Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. If $A_{i}, i=1, \ldots, m$, are positive semidefinite, then

$$
\begin{equation*}
\operatorname{det}\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \leq \prod_{i=1}^{m} \operatorname{det}\left(\frac{I+A_{i}}{I-A_{i}}\right)^{\lambda_{i}}, \tag{5}
\end{equation*}
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$. The author pointed out this result was also an application of Theorem 3.3 in [2]. Note that (5) is the special case $k=n$ of (4) in Lemma 4.

Let $\Phi: M_{n} \rightarrow M_{n}$ be a map. We say that Φ is 2-positive if whenever the 2×2 operator matrix $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) \geq 0$ then $\left(\begin{array}{cc}\Phi(A) & \Phi(B) \\ \Phi\left(B^{*}\right) & \Phi(C)\end{array}\right) \geq 0$. It is clear that any Liebian function is 2-positive [9].

Lemma 5. [5] $\Phi(t)=\frac{1+t}{1-t}$ is 2-positive over the strictly contractive matrices.
Lemma 6. [4, p.208] The partitioned block matrix $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ is positive semidefinite if and only if both A and C are positive semidefinite and there exists a contraction W such that $B=A^{\frac{1}{2}} W C^{\frac{1}{2}}$. Moreover, we have

$$
s(B) \prec_{w \log } s\left(A^{\frac{1}{2}}\right) s\left(B^{\frac{1}{2}}\right) .
$$

Theorem 7. Let $A_{i} \in M_{n}, i=1, \ldots, m$, be strictly contractive matrices. Then

$$
\begin{equation*}
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right), \tag{6}
\end{equation*}
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.
Proof. Note that $\left.A_{i}=\left|A_{i}^{*} \frac{1}{2} U_{i}\right| A_{i} \right\rvert\,, i=1, \ldots, m$, with unitary U_{i}. By Lemma 6, we have $\left(\begin{array}{cc}\left|A_{i}^{*}\right| & A_{i} \\ A_{i}^{*} & \left|A_{i}\right|\end{array}\right) \geq 0$, for any i. For each $\lambda_{i} \geq 0$ with $\sum_{i=1}^{m} \lambda_{i}=1$, then we
have

$$
\left(\begin{array}{cc}
\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right| & \sum_{i=1}^{m} \lambda_{i} A_{i} \\
\sum_{i=1}^{m} \lambda_{i} A_{i}^{*} & \sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|
\end{array}\right)=\sum_{i=1}^{m} \lambda_{i}\left(\begin{array}{cc}
\left|A_{i}^{*}\right| & A_{i} \\
A_{i}^{*} & \left|A_{i}\right|
\end{array}\right) \geq 0 .
$$

Applying Lemma 5 to the above partitioned block matrix, we obtain the following 2×2 block matrix

$$
\left(\begin{array}{cc}
\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}{} & I+\sum_{i=1}^{m} \lambda_{i} A_{i} \\
I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right| & I-\sum_{i=1}^{m} \lambda_{i} A_{i} \\
\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}^{*}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}^{*}} & \frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}
\end{array}\right) \geq 0
$$

By Lemma 6, we have

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} s\left(\left(\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}\right)^{\frac{1}{2}}\right) s\left(\left(\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}\right)^{\frac{1}{2}}\right)
$$

Let $x \in \mathbb{R}^{n}$ be an vector with nonnegative components and denote $x^{\frac{1}{2}}:=\left(x_{1}^{\frac{1}{2}}, \ldots, x_{n}^{\frac{1}{2}}\right)$. Then we have

$$
\left.\begin{array}{c}
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \\
\left.\prec_{\text {wlog }} s\left(\left(\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}\right)\right)^{\frac{1}{2}}\right) s\left(\left(\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}\right)\right.
\end{array}\right)
$$

$$
\begin{aligned}
& =s\left(\left(\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}^{*}\right|}\right)\right)^{\frac{1}{2}} s\left(\left(\frac{I+\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}{I-\sum_{i=1}^{m} \lambda_{i}\left|A_{i}\right|}\right)\right)^{\frac{1}{2}} \\
& \prec_{\text {wlog }}\left[\prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}^{*}\right|}{I-\left|A_{i}^{*}\right|}\right)^{\lambda_{i}}\right)\right]^{\frac{1}{2}}\left[\prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}^{*}\right|}{I-\left|A_{i}^{*}\right|}\right)^{\lambda_{i}}\right)\right]^{\frac{1}{2}} \quad \text { by Lemma } 4 \\
& =\left[\prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}^{*}\right|}{I-\left|A_{i}^{*}\right|}\right)^{\lambda_{i}}\right) s\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right)\right]^{\frac{1}{2}} \\
& =\prod_{i=1}^{m} s\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right)
\end{aligned}
$$

where the last equality can be seen as follows. Using the spectral mapping theorem and $\lambda\left(\left|A_{i}\right|\right)=\lambda\left(\left|A_{i}^{*}\right|\right)=s\left(\left|A_{i}^{*}\right|\right)=s\left(\left|A_{i}\right|\right)$ for any i, we have

$$
s\left(\left(\frac{I+\left|A_{i}^{*}\right|}{I-\left|A_{i}^{*}\right|}\right)^{\lambda_{i}}\right)=\lambda\left(\left(\frac{I+\left|A_{i}^{*}\right|}{I-\left|A_{i}^{*}\right|}\right)^{\lambda_{i}}\right)=\lambda\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right)=s\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right),
$$

for any i. This completes the proof.
The following corollary is the main result [5], which follows by Theorem 7.
Corollary 8. [5]. Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. Then

$$
\left|\operatorname{det}\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right)\right| \leq \prod_{i=1}^{m} \operatorname{det}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}},
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.

$$
\text { Proof. Denote } M=\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}} \text { and denote } M_{i}=\left(\frac{I+A_{i}}{I-A_{i}}\right)^{\lambda_{i}} \text { for } i=1, \ldots, m \text {. }
$$

Suppose the eigenvalues of M is $\lambda_{1}(M), \ldots, \lambda_{n}(M)$ with $\left|\lambda_{1}(M)\right| \geq \cdots \geq\left|\lambda_{n}(M)\right|$
and denote $|\lambda(M)|=\left(\left|\lambda_{1}(M)\right|, \ldots,\left|\lambda_{n}(M)\right|\right)$. Using Weyl’s Theorem [10, p.81] and Theorem 7, we have

$$
|\lambda(M)| \prec_{\log } s(M) \prec_{\mathrm{wlog}} \prod_{i=1}^{m} s\left(M_{i}\right) .
$$

Note that $M_{j}, j=1, \ldots, m$, are positive definite. Letting $k=n$, we have
$|\operatorname{det} M|=\prod_{i=1}^{n}\left|\lambda_{i}(M)\right| \leq \prod_{i=1}^{n} \prod_{j=1}^{m} s_{i}\left(M_{j}\right)=\prod_{j=1}^{m} \prod_{i=1}^{n} s_{i}\left(M_{j}\right)=\prod_{j=1}^{m}\left|\operatorname{det} M_{j}\right|=\prod_{j=1}^{m} \operatorname{det} M_{j}$.
This completes the proof.
Setting $k=1$ in (6) of Theorem 7, we deduce an analogue of (1) for the spectral norm of strictly contractions:

Corollary 9. Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. Then
(7)

$$
\left\|\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right\|_{\infty} \leq \prod_{i=1}^{m}\left\|\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}\right\|_{\infty}
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.
Next, we derive another weak log-majorization involving contractive matrices and singular values.

Theorem 10. Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. Then
(8)

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \sum_{i=1}^{m} \lambda_{i} s\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)
$$

where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.
Proof. Denote $M=\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}$ and denote $M_{i}=\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)^{\lambda_{i}}$ for $i=1, \ldots, m$.

Note that $\prod_{i=1}^{m} s\left(M_{i}\right)=\left(\prod_{i=1}^{m} s_{1}\left(M_{i}\right), \ldots, \prod_{i=1}^{m} s_{n}\left(M_{i}\right)\right)$. Let x_{1}, \ldots, x_{n} and $\omega_{1}, \ldots, \omega_{n}$ be the nonnegative real numbers with $\sum_{i=1}^{n} \omega_{i}=1$. Then the weighted arithmeticgeometric mean inequality says that

$$
\prod_{i=1}^{n} x_{i}^{\omega_{i}} \leq \sum_{i=1}^{n} \omega_{i} x_{i}
$$

For each given j, we have

$$
\begin{equation*}
\prod_{i=1}^{m} s_{j}\left(M_{i}\right)=\prod_{i=1}^{m} s_{j}\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)\right)^{\lambda_{i}} \leq \sum_{i=1}^{m} \lambda_{i} s_{j}\left(\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)\right) \tag{9}
\end{equation*}
$$

where the first equality holds by the spectral mapping theorem and the last inequality holds by the weighted arithmetic-geometric mean inequality. Combining (9) and Theorem 7, we have

$$
s(M) \prec_{\mathrm{wlog}}\left(\sum_{i=1}^{m} \lambda_{i} s_{1}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right), \ldots, \sum_{i=1}^{m} \lambda_{i} s_{n}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)\right)
$$

i.e.,

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{wlog}} \sum_{i=1}^{m} \lambda_{i} s\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)
$$

This completes the proof.
Denote by $\mathbb{R}_{+}^{n} \downarrow$ the set of vectors in \mathbb{R}^{n} whose components are nonnegative and are decreasingly ordered.

Lemma 11. [10, p. 74]. Let $x, y, z \in \mathbb{R}^{n}$ with their components in decreasing order. If $x \prec_{w} y$ and $z \in \mathbb{R}_{+}^{n} \downarrow$, then

$$
\begin{equation*}
\langle x, z\rangle \leq\langle y, z\rangle \tag{10}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard Euclidean inner product.
Corollary 12. Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. Then

$$
\begin{equation*}
\left\|\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right\| \leq \sum_{i=1}^{m} \lambda_{i}\left\|\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right\| \tag{11}
\end{equation*}
$$

for every unitarily invariant norm, where each $\lambda_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$.
Proof. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right) \in \mathbb{R}_{+}^{n} \downarrow$. Define $\|X\|_{\alpha}:=\sum_{j=1}^{n} \alpha_{j} s_{j}(X)$ for $X \in M_{n}$. In other words, $\|X\|_{\alpha}=\langle s(X), \alpha\rangle$. It is known [10, p.56] that this $\|\cdot\|_{\alpha}$ is a unitarily invariant norm.

Note that for nonnegative vectors, weak log-majorization implies weak majorization [10, p.67]. By Theorem 10, we have

$$
s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \prec_{\mathrm{w}} \sum_{i=1}^{m} \lambda_{i} s\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right) .
$$

By Lemma 11, we have

$$
\left\langle s\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right), \alpha\right\rangle \leq\left\langle\sum_{i=1}^{m} \lambda_{i} s\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right), \alpha\right\rangle
$$

i.e.,

$$
\left\|\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right\|_{\alpha} \leq \sum_{i=1}^{m} \lambda_{i}\left\|\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right\|_{\alpha} .
$$

As α was arbitrarily chosen, the inequality (11) follows from Corollary 3.5.9 in [4, p.206]. This completes the proof.

Remark. Note that the spectral norm is a unitarily invariant norm. Then we have

$$
\begin{equation*}
\left\|\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right\|_{\infty} \leq \sum_{i=1}^{m} \lambda_{i}\left\|\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right\|_{\infty} \tag{12}
\end{equation*}
$$

where each $\lambda_{i} \geq 0$ with $\sum_{i=1}^{m} \lambda_{i}=1$.

For $A \in M_{n}$, we denote by $\operatorname{tr} A$ the trace of A. We have
Corollary 13. Let $A_{i}, i=1, \ldots, m$, be strictly contractive matrices. Then

$$
\begin{equation*}
\left.\operatorname{tr}\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right) \right\rvert\, \leq \sum_{i=1}^{m} \lambda_{i} \operatorname{tr}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right), \tag{13}
\end{equation*}
$$

where each $\lambda_{i} \geq 0$ such that $\sum_{i=1}^{m} \lambda_{i}=1$.
Proof. Applying Corollary 12 to the trace norm and using Weyl's theorem, we have the inequality (13). This completes the proof.

Remark. By Corollary 13, we have

$$
\begin{gather*}
\left|\operatorname{tr}\left(\frac{I+\sum_{i=1}^{m} \lambda_{i} A_{i}}{I-\sum_{i=1}^{m} \lambda_{i} A_{i}}\right)\right| \leq \max _{i}\left\{\operatorname{tr}\left(\frac{I+\left|A_{i}\right|}{I-\left|A_{i}\right|}\right)\right\} . \tag{14}\\
\text { AcKNOWLEDGMENT }
\end{gather*}
$$

The author is indebted to the anonymous referee for his/her suggestions that improved the paper. The author is also grateful to Dr. Minghua Lin for his helpful discussions on Lemma 4.

References

1. J. S. Aujla and F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217-233.
2. J. S. Aujla and J. C. Bourin, Eigenvalues inequalities for convex and log-convex functions, Linear Algebra Appl., 424 (2007), 25-35.
3. R. Bhatia, Matrix Analysis, Springer-Verlag, 1997.
4. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
5. M. Lin, A Lewent type determinantal inequality, Taiwanese J. Math., 17 (2013), 13031309.
6. M. V. Jovanoié, T. K. Pogány and J. Sándor, Notes on certain inequalities by Holder, Lewent and Ky Fan, J. Math. Inequal., 1 (2007), 53-55.
7. L. Lewent, Über einige Ungleichungen, Sitzungsber. Berl. Math. Ges., 7 (1908), 95-100.
8. A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, London, 1973.
9. B. Simon, Trace Ideals and Their Applications, 2nd ed., American Mathematical Society, Providence, R.I., 2005.
10. X. Zhan, Matrix theory, Graduate Studies in Mathematics, Vol. 147, American Mathematical Society, Providence, R.I., 2013.

Yun Zhang
Department of Mathematics
East China Normal University
Shanghai 200241
and
School of Mathematical Sciences
Huaibei Normal University
Huaibei 235000
P. R. China
E-mail: zhangyunmaths@163.com

