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FIXED POINTS AND SOLUTIONS OF OPERATOR EQUATIONS FOR THE
WEAK TOPOLOGY IN BANACH ALGEBRAS

Józef Banaś and Mohamed-Aziz Taoudi

Abstract. In this paper we prove some fixed point theorems for operators acting
in Banach algebras and satisfying conditions expressed mainly with help of weak
topology and measures of weak noncompactness. The existence of solutions to
some class of operator equations in Banach algebras is also discussed. Some
examples are presented to illustrate our results.

1. INTRODUCTION

Operator equations of various kind create the base of numerous considerations
conducted in nonlinear analysis and in the theories of differential and integral equations.
The existence of solutions of those operator equations is mostly proved with aid of
miscellaneous fixed point theorems.

In the present paper we prove some fixed point theorems for operators acting on
Banach algebras. We also discuss the solvability of some operator equations in Banach
algebras. Our analysis uses the concept of measures of noncompactness. In what
follows we formulate introductory facts allowing us to present concepts, tools and
auxiliary results needed further on.

Assume that X is a given Banach space with norm ‖.‖ and the zero element θ.
We denote by X∗ the dual space of X. We use standard notation M + M ′, λM to
denote algebraic operations on subsets of X. The symbol B(x, r) denotes the closed
ball centered at x with radius r. We write Br to denote B(θ, r). We write M and
ConvM to denote the closure and the closed convex hull of a set M, respectively.
The symbol Mw stands for the weak closure of M. Moreover, we write xn → x and
xn ⇀ x to denote the strong convergence (with respect to the norm of X) and the
weak convergence (with respect to the weak topology of X) of a sequence (xn) to x.
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Further, denote by B(X) the family of all nonempty and bounded subsets of X. The
symbol W(X) stands for the family of all nonempty and relatively weakly compact
subsets of X. The set of all real numbers will be denoted by R while R+ = [0,∞).

In the sequel we will use the following definition of the concept of a measure of
weak noncompactness [5].

Definition 1.1. A function ψ : B(X) → R+ is said to be a measure of weak
noncompactness if it satisfies the following conditions :

(1) The family kerψ={M ∈B(X) : ψ(M)=0} is nonempty and kerψ⊂W(X).

(2) M1 ⊂M2 ⇒ ψ(M1) ≤ ψ(M2).

(3) ψ(ConvM) = ψ(M).

(4) ψ(λM1 + (1 − λ)M2) ≤ λψ(M1) + (1− λ)ψ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of X with M1

bounded and M1 ⊇ M2 ⊇ . . . ⊇ Mn ⊇ . . . and such that limn→∞ ψ(Mn) = 0,
then the set M∞ :=

⋂∞
n=1 Mn is nonempty.

The family kerψ described in (1) is said to be the kernel of the measure of weak
noncompactness ψ. Notice that the intersection set M∞ from (5) belongs to kerψ since
ψ(M∞) ≤ ψ(Mn) for every n and limn→∞ ψ(Mn) = 0. Also, it can be easily verified
that the measure ψ satisfies

(1.1) ψ(Mw) = ψ(M),

for all M ∈ B(X).
In applications, there are measures of noncompactness satisfying some additional

handy conditions. Thus, if a measure of weak noncompactness ψ satisfies the condition

(1.2) ψ(M) = 0 ⇔ M ∈ W(X),

it is called a regular measure of weak noncompactness. Moreover, if ψ is such that

(1.3) ψ(M1 +M2) ≤ ψ(M1) + ψ(M2),

it is called subadditive, and if

(1.4) ψ(λM) = |λ|ψ(M),

for λ ∈ R, then ψ is called homogeneous. We say that ψ has the maximum property
if

(1.5) ψ(M1 ∪M2) = max(ψ(M1), ψ(M2)).
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The first important example of a measure of weak noncompactness was defined by
De Blasi [16] as follows :

(1.6) w(M) = inf{r > 0 : there exists W ∈ W(X) with M ⊆W +Br},

for each M ∈ B(X).
Notice that the De Blasi measure of weak noncompactness w is regular, homoge-

neous, subadditive and has the maximum property [16].
By a measure of noncompactness on a Banach spaceX we mean a map ψ : B(X) →

R+ which satisfies conditions (1)–(5) of Definition 1.1 relative to the strong topology
instead of the weak topology. Let us recall that the concept of a measure of noncom-
pactness was initiated by fundamental papers of Kuratowski [33] and Darbo [15]. It
turns out that measures of noncompactness create very useful tools in nonlinear analy-
sis. An important example of a measure of noncompactness is the so-called Hausdorff
measure of noncompactness χ [7], which is defined in the following way:

χ(M) := inf{r > 0 : there exists a finite setF withM ⊂ F + Br}.

Observe that since any finite subset F of the space X is weakly compact in X then
we have

(1.7) w(M) ≤ χ(M),

for any M ∈ B(X).

Now we formulate the definition of Darbo condition [7] being parallel to the
classical definition of Lipschitz condition.

Definition 1.2. Let X be a Banach space and let ψ be a measure of (weak) non-
compactness on X. Let T : D(T ) ⊂ X → X be an operator. We say that T satisfies
the Darbo condition with respect to ψ if there exists k, k ≥ 0, such that for each
bounded subset M of D(T ) the set T (M) is bounded and ψ(T (M)) ≤ kψ(M).

Next, we provide definitions distinguishing important classes of operators acting in
Banach spaces.

Definition 1.3. [29]. A mapping T : D(T ) → X is said to be ws- compact if it is
continuous and for any weakly convergent sequence (xn) in D(T ) the sequence (Txn)
has a strongly convergent subsequence in X.

Definition 1.4. A mapping T : D(T ) → X is said to be ww- compact if it is
continuous and for any weakly convergent sequence (xn) in D(T ) the sequence (Txn)
has a weakly convergent subsequence in X.
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Notice that the concepts of ww-compact and ws-compact mappings arise naturally
in the study of integral and partial differential equations (see [29, 25, 26, 27, 34, 35,
41, 1, 42, 43, 20]).

2. FIXED POINT THEOREMS

At the beginning we recall the definition of the concept of D-Lipschizian mapping
playing an important role in fixed point theory [19].

Definition 2.1. Let X be a Banach space. A mapping T : X → X is called D-
Lipschitzian if there exists a continuous nondecreasing function φ : R

+ → R
+ such

that
‖Tx− Ty‖ ≤ φ(‖x− y‖),

for all x, y ∈ X. The function φ is called a D-function of T. If, moreover, φ satisfies
φ(r) < r for r > 0, then T is called a nonlinear contraction with a contraction function
φ.

Remark 2.1. Obviously, every Lipschitzian mapping is D-Lipschitzian. The con-
verse may not be true. For example, take f(x) =

√|x|, x ∈ R and consider
φ(r) =

√
r, r ≥ 0. Clearly, φ is continuous and nondecreasing. First notice that

f is subadditive. To see this, let x, y ∈ R. Then,

(f(x+ y))2 = |x+ y| ≤ |x|+ |y|
≤

(√
|x|+

√
|y|

)2

= (f(x) + f(y))2 .

Thus, for all x, y ∈ R we have :

f(x+ y) ≤ f(x) + f(y).

Using the subadditivity of f we get

(2.1) |f(x)− f(y)| ≤ f(x− y) = φ(|x− y|),

for all x, y ∈ R. Thus, f is D- Lipschitzian with D− function φ. Now, suppose that
f is Lipschitzian with constant k. Then, for all x ∈ R we have f(x) ≤ k|x|. Hence,
for all x �= 0 we have k ≥ 1√

|x| . Letting x go to zero we obtain a contradiction.
Consequently, f is not Lipschitzian.

Lemma 2.1. Let T be a D-Lipschitzian mapping defined on a Banach space X
with a D-function φ. Then,
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(i) for each bounded subset M of X we have χ(TM) ≤ φ(χ(M)). Here, χ is the
Hausdorff measure of noncompactness.

(ii) if T is ww-compact then for each bounded subset M of X we have w(TM) ≤
φ(w(M)), where w stands for the De Blasi measure of weak noncompactness.

Proof. Let M be a bounded subset of X and r > χ(M). Then there exists a finite
subset F of X such that M ⊆ F +Br . Let x ∈M. Then there exist f ∈ F and b ∈ Br

such that x = f + b. Since T is D-Lipschitzian with a D-function φ, then

(2.2) ‖Tx− Tf‖ ≤ φ(‖x− f‖) ≤ φ(‖b‖) ≤ φ(r).

Hence,

(2.3) TM ⊆ TF + Bφ(r).

Accordingly,

(2.4) χ(TM) ≤ φ(r).

Letting r → χ(M) and using the continuity of φ we deduce that

(2.5) χ(TM) ≤ φ(χ(M)).

This proves the first assertion. Now we prove the second assertion. To this end, let M
be a bounded subset of X and r > w(M). Then there exists a weakly compact subset
W of X such that M ⊆W +Br . Since T is D-Lipschitzian with a D-function φ, then

(2.6) TM ⊆ TW + Bφ(r) ⊆ TWw +Bφ(r).

Note that TWw is weakly compact since W is weakly compact and T is ww-compact.
Thus,

(2.7) w(TM) ≤ φ(r).

Letting r → w(M) and using the continuity of φ we deduce that

(2.8) w(TM) ≤ φ(w(M)).

This achieves the proof.

Remark 2.2. Note that Lemma 2.1 is a sharpening of Lemma 2.8 in [2].

In what follows we will often consider a Banach Algebra X with the norm ‖.‖
satisfying the condition ‖xy‖ ≤ ‖x‖.‖y‖ for all x, y ∈ X.
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Lemma 2.2. Let (xn) be a sequence in a Banach algebra X such that xn ⇀ x

then axn ⇀ ax and xna ⇀ xa for any fixed a ∈ X.

Proof. Fix arbitrarily a ∈ X . Consider the left hand multiplication operator
La(x) = ax and the right hand multiplication operator Rb(x) = xb. Clearly La and
Ra are continuous linear operators. Taking into account the fact that a linear operator
between normed spaces is continuous if and only if it is weakly continuous, we deduce
the desired assertions.

Lemma 2.3. Let X be a Banach algebra. Then
(i) If K and K ′ are compact then KK ′ is also compact.
(ii) If K is weakly compact and K ′ is compact then KK ′ is weakly compact.

Proof. The first assertion (i) is a consequence of the fact that KK ′ = ψ(K×K ′)
where ψ is the continuous multiplication ψ : (x, y) → x.y. Now we prove the second
assertion (ii). To this end, take a sequence (xn) in K and a sequence (yn) in K ′.
Keeping in mind the compactness of K and the weak compactness of K ′ and by
extracting a subsequence if necessary, we may assume that (xn) converges strongly to
some x ∈ K and (yn) converges weakly to some y ∈ K ′. In view of Lemma 2.2 we
infer that

(2.9) x(yn − y) ⇀ θ.

Moreover, taking into account the fact that a weakly convergent sequence is norm
bounded [21] we get

(2.10) ‖(xn − x)yn‖ ≤ ‖xn − x‖‖yn‖ → 0.

Combining (2.9), (2.10) and the following equality

(2.11) xnyn − xy = (xn − x)yn + x(yn − y)

we conclude that xnyn ⇀ xy. The proof is complete.
In the sequel the concept defined below will play a crucial role in our considerations.

Definition 2.2. Let X be a Banach algebra. We say that X is a WC-Banach
algebra if the product KK ′ of arbitrary weakly compact subsets K,K ′ of X is weakly
compact.

Example 2.1. Assume that S is a Hausdorff compact space and E is a Banach
space. The following characterization of weak sequential convergence in the space
C(S, E) is well known (cf. [14, Theorem 9]: A bounded sequence (fn) ⊂ C(S, E)
converges weakly to f ∈ C(S, E) if and only if the sequence (fn(x)) converges weakly
(in E ) to f(x) for each x ∈ S.
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Thus, if we take E to be finite dimensional Banach space then C(S, E) is a WC-
Banach algebra. To prove this fact, let us take two arbirary weakly compact subsets K
and K ′ of C(S, E). Let (fn) and (gn) be two sequences in K and K ′, respectively.
By extracting subsequences, if necessary, we may assume that (fn) converges weakly
to some element f ∈ K and (gn) converges weakly to some element g ∈ K ′. Hence,
for an arbitrary x ∈ S, the sequence (fn(x)) converges weakly in E to f(x) while the
sequence (gn(x)) converges weakly (in E) to g(x). Since E is finite dimensional, the
weak convergence in E is equivalent to the strong convergence. This yields that

(fngn)(x) = fn(x)gn(x) → f(x)g(x).

The arbitrariness of x implies that fngn ⇀ fg. Thus the set KK ′ is weakly compact
and our assertion follows. By similar reasoning we may prove that if E is a WC-
Banach algebra then C(S, E) is also a WC-Banach algebra.
The following lemma will play a key role in our further study. In order to present this
lemma assume that X is a Banach algebra. Moreover, let χ be the Hausdorff measure
of noncompactness on X and let w be the De Blasi measure of weak noncompactness
on X .

Lemma 2.4. Let M and M ′ be bounded subsets of a Banach algebra X. Then we
have the following assertions:

(i) w(MM ′) ≤ ‖M ′‖w(M) + ‖M‖χ(M ′) +w(M)χ(M ′), where the symbol ‖H‖
denotes the norm of a set H (H ⊂ X) i.e. ‖H‖ = sup{‖x‖ : x ∈ H}.

(ii) If X is a WC-Banach algebra then

w(MM ′) ≤ ‖M ′‖w(M) + ‖M‖w(M ′) +w(M)w(M ′).

(iii) χ(MM ′) ≤ ‖M ′‖χ(M) + ‖M‖χ(M ′) + χ(M)χ(M ′).

Proof. For the proof of (i) let us take two bounded subsets M and M ′ of X. Next,
fix arbitrarily numbers r, t such r > w(M) and t > χ(M ′). Then there exist a weakly
compact set W and a finite set F in X such that

(2.12) M ⊆W +Br

and

(2.13) M ′ ⊆ F +Bt.

Further, take z ∈ MM ′. then we can find x ∈ M and y ∈ M ′ such that z = xy.

Keeping in mind (2.12) and (2.13) we infer that there are w ∈W, f ∈ F, u ∈ Br and
v ∈ Bt such that x = w + u and y = f + v. Hence we get

z = xy = (w+ u)(f + v) = wf +wv + uf + uv

= wf + (x− u)v + u(y − v) + uv

= wf + xv + uy − uv.
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This yields the inclusion

(2.14) MM ′ ⊂WF +MBt +BrM
′ +BrBt ⊂WF + B‖M‖t+‖M ′‖r+rt.

Now, taking into account Lemma 2.3 (ii) and the definition of the De Blasi measure
of weak noncompactness w, we obtain

(2.15) w(MM ′) ≤ ‖M‖t+ ‖M ′‖r + rt.

Next, letting r → w(M) and t → χ(S ′) we get

(2.16) w(MM ′) ≤ ‖M‖χ(M ′) + ‖M ′‖w(M) +w(M)χ(M ′).

To prove (ii) assume that M and M ′ are arbitrary bounded subsets of a WC-Banach
algebra X. Let r, t be fixed numbers with r > w(M) and t > w(M ′). Then we can
find two weakly compact subsets W1 and W2 of X such that

(2.17) M ⊆W1 + Br,

and

(2.18) M ′ ⊆W2 + Bt.

Now, take z ∈MM ′. Then z can be represented in the form z = xy with x ∈M and
y ∈ M ′. In view of (2.17) and (2.18) there exist w1 ∈ W1, w2 ∈ W2, u ∈ Br, and
v ∈ Bt such that x = w1 + u, y = w2 + v. Hence, similarly as in the proof of part (i),
we get

z = xy = (w1 + u)(w2 + v) = w1w2 + xv + uy − uv.

The above equality implies the following inclusion

MM ′ ⊂W1W2 +MBt + BrM
′ +BtBr ⊂W1W2 +B‖M‖t+‖M ′‖r+rt.

Thus, keeping in mind the fact that X is a WC-Banach algebra (cf. Definition
2.2), in view of the definition of the De Blasi measure of weak noncompactness w, we
obtain

w(MM ′) ≤ ‖M‖t+ ‖M ′‖r + rt.

Letting r → w(M) and t→ w(M ′), we get

w(MM ′) ≤ ‖M‖w(M ′) + ‖M ′‖w(M) +w(M)w(M ′).

The proof of the assertion (iii) is similar to (ii), so it is omitted.
On the basis of Lemma 2.4 we can now derive the following result concerning the

existence of fixed points for operators acting in a WC-Banach algebra and satisfying
some conditions expressed in terms of weak sequential continuity and the measure of
weak noncompactness w.
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Theorem 2.1. Assume that Ω is a nonempty, closed and convex subset of a WC-
Banach algebraX. Further, assume that P and T are operators acting weakly sequen-
tially continuously from Ω into X in such a way that PΩ and TΩ are bounded. Apart
from this we require that the operator S = PT (the product of P and T ) transforms
Ω into itself and is weakly sequentially continuous. If the operators P and T satisfy
the Darbo condition with respect to the De Blasi measure of weak noncompactness w,
with constants k1 and k2, respectively, then the operator S satisfies on Ω the Darbo
condition (with respect to w ) with the constant k1‖TΩ‖+k2‖PΩ‖+k1k2w(Ω). Par-
ticularly, if k1‖TΩ‖+ k2‖PΩ‖+ k1k2w(Ω) < 1, then S is a contraction with respect
to w and has at least one fixed point in the set Ω.

Proof. Take an arbitrary nonempty bounded subset M of Ω. Then, in view of our
assumptions and Lemma 2.4 (ii), we obtain

w(SM) ≤ w((PM)(TM))

≤ ‖PM‖w(TM) + ‖TM‖w(PM) +w(PM)w(TM)

≤ ‖PM‖k2w(M) + ‖TM‖k1w(M) + k1k2w(M)2

≤ [k1‖TΩ‖+ k2‖PΩ‖ + k1k2w(Ω)]w(M)

= kw(M),

where k = k1‖TΩ‖+ k2‖PΩ‖ + k1k2w(Ω).
Since k < 1, we have that S is a contraction with respect to the measure of weak

noncompactness w. On the other hand the operator S transforms Ω into itself and is
weakly sequentially continuous on Ω. Thus, keeping in mind a fixed point theorem of
Arino, Gautier and Penot [3] and its Darbo type generalization for the measure of weak
noncompactness w [4] we conclude that the operator S has at least one fixed point in
the set Ω. The proof is complete.

Observe that the assumption requiring that the operator S = PT is weakly sequen-
tially continuous on Ω can be omitted if we assume that the operation of multiplication
(x, y) → xy is weakly sequentially continuous in a Banach algebra X, i.e. the follow-
ing condition is satisfied :

(P)
if {xn}, {yn} are sequences in a Banach algebra X such that xn ⇀ x, yn ⇀ y,

for some x, y ∈ X, then xnyn ⇀ xy.

As an example of the Banach algebra which satisfies condition (P) may serve the
Banach algebra C[a, b] consisting of real functions being continuous on the interval
[a, b], with the standard maximum norm. Note also that condition (P) was used in [9].

Further, let us observe that condition (P) defined above implies the WC-Banach
algebra structure. Indeed, we have the following:
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Lemma 2.5. If X is a Banach algebra satisfying condition (P) then X is a WC-
Banach algebra.

Proof. Let K,K ′ be arbitrarily weakly compact subsets of X. Take an arbitrary
sequence (zn) ⊂ KK ′. Then, for any fixed n we can find xn ∈ K and yn ∈ K ′

such that zn = xnyn. Consider the sequences (xn) ⊂ K and (yn) ⊂ K ′. Since K is
weakly compact we can extract a subsequence (xkn) of the sequence (xn) which is
weakly convergent to some x ∈ K. Further, keeping in mind the weak compactness of
the set K ′ we can extract a subsequence (yln) of the sequence (ykn) which is weakly
convergent to some y ∈ K ′. Obviously, xln ⇀ x. In view of our assumption we deduce
that zln = xlnyln ⇀ xy. This shows that X is a WC-Banach algebra and completes
the proof.

In what follows we indicate a wide class of Banach algebras satisfying condition
(P).

Definition 2.3. We say that a Banach space X has the Dunford-Pettis Property
(DPP, in short) if for each Banach space Y every weakly compact linear operator
T : X → Y maps weakly convergent sequences into strongly convergent sequences.

Since every Banach algebra is a Banach space then we can also consider Banach
algebras with DPP. It can be shown that L1(μ) and C(K) have the DPP. We refer to
[17] for an excellent survey of DPP.

In order to formulate our result let us first recall some relevant definitions and
results. Namely, a homogeneous continuous polynomial on a Banach space X is a
mapping P having the form P (x) = T (x, x, . . . , x), where T : X×X × . . .×X → R

is a multilinear continuous map on X. Notice that continuous polynomials are usually
not continuous with respect to the weak topology. It was proved by Ryan [40] that in
spaces with DPP all multilinear forms are weakly sequentially continuous.

Now we formulate the above announced result.

Theorem 2.2. Let X be a commutative Banach algebra with DPP. Then X satisfies
condition (P). Particularly, X is a WC-Banach algebra.

Proof. Take an arbitrary functional ϕ ∈ X∗, where X∗ denotes the dual space of
X. Consider the mappingmϕ : X×X → R defined by the formula mϕ(x, y) = ϕ(xy).
Obviously, mϕ is a continuous bilinear map. Put Pϕ(x) = mϕ(x, x) = ϕ(x2). In view
of the above mentioned Ryan’s result we have that Pϕ is weakly sequentially continuous.
Further, let (xn)n and (yn)n be sequences in X such that xn ⇀ x and yn ⇀ y. Then,
from the equality

(2.19) xnyn =
1
4
((xn + yn)2 − (xn − yn)2)

we infer that

(2.20) ϕ(xnyn) =
1
4
(Pϕ(xn + yn) + Pϕ(xn − yn))
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Hence, taking into account the weak sequential continuity of Pϕ we obtain

(2.21) ϕ(xnyn) → 1
4
(Pϕ(x+ y) + Pϕ(x− y)) = ϕ(xy)

Obviously this means that

(2.22) xnyn ⇀ xy.

Thus we proved that X satisfies condition (P). Finally, applying Lemma 2.5 we com-
plete the proof.

On the basis of Theorem 2.1 together with Lemma 2.1 we obtain the following
weak version of [36, Theorem 1 and Theorem 2].

Theorem 2.3. Let Ω be a bounded subset of a Banach algebra X with property
(P), and suppose T : Ω → X is of the form Tx = x0 + (Ax)(Bx) where

(i) x0 ∈ Ω;
(ii) A : Ω → X is weakly sequentially continuous and D-lipschitzian with D-

function φA; and
(iii) B : Ω → X is weakly sequentially continuous and maps bounded sets onto

relatively weakly compact sets.

Suppose β ≡ supx∈Ω ‖Bx‖ <∞. If βφA(r) < r, whenever r > 0, then T is contrac-
tion with respect to w.

Theorem 2.4. Suppose that B is a weakly sequentially continuous, weakly compact
operator on a Banach algebraX with property (P) and suppose x0 ∈ X. If there exists
a closed, convex set Ω in X such that supx∈Ω ‖Bx‖ < 1 and such that x0 +xBx ∈ Ω
for each x ∈ Ω, then the equation

x = x0 + xBx

has a solution x ∈ Ω.

3. OPERATOR EQUATIONS IN BANACH ALGEBRAS

In this section we are going to prove the existence of solutions of some operator
equations considered in Banach algebras. We will use the ideas developed in the
previous sections. The results which we will prove generalize those obtained in [9],
among others.

We start with the following key lemma.

Lemma 3.6. Let Ω be a nonempty bounded closed subset of a Banach algebra
X and let A,C : X → X be D-Lipschitzian mappings with D- functions φA and φC

respectively. Assume that for each r > 0 we have ‖Ω‖φA(r) + φC(r) < r. Then
( I−C

A )−1 : Ω → X exists and is continuous.
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Proof. Let y ∈ Ω be fixed. The map τy which assigns to each x ∈ X the value
A(x).y + C(x) defines a nonlinear contraction with a contraction function ψ(r) =
‖Ω‖φA(r) + φC(r), r > 0. Indeed, for all x1, x2 ∈ X we have:

‖τy(x1) − τy(x2)‖ ≤ ‖Ax1 − Ax2‖‖y‖ + ‖Cx1 − Cx2‖
≤ ‖Ω‖φA(‖x1 − x2‖) + φC(‖x1 − x2‖).

Now the Boyd and Wong fixed point theorem [10] guarantees that there exists a unique
point x∗ ∈ X such that τy(x∗) = x∗, i.e. y = ( I−C

A )x∗. Thus, the operator N :=(
I−C

A

)−1 : Ω → X is well defined. Now we show that N : Ω → X is continuous. To
see this, let (xn) be a sequence in Ω converging to a point x. Since Ω is closed, then
x ∈ Ω. First notice that for each z ∈ Ω we have

(3.1) Nz = CNz + (ANz)z.

Hence,

‖Nxn −Nx‖ ≤ ‖CNxn −CNx‖ + ‖(ANxn)xn − (ANx)x‖
≤ ‖CNxn −CNx‖ + ‖ANx‖‖xn − x‖ + ‖ANxn −ANx‖‖xn‖
≤ φC(‖Nxn −Nx‖) + φA(‖Nxn −Nx‖)‖Ω‖+ ‖ANx‖‖xn − x‖.

Thus,

(3.2)
lim sup

n
‖Nxn −Nx‖

≤ φC(lim sup
n

‖Nxn −Nx‖) + φA(limsup
n

‖Nxn −Nx‖)‖Ω‖.

This shows that lim
n

‖Nxn − Nx‖ = 0 and consequently N is continuous on Ω.
This completes the proof.

Now we are in position to state the following result.

Theorem 3.1. Let X be a Banach algebra and let ψ be a measure of weak non-
compactness on X. Let Ω be a nonempty closed and convex subset of X and let
A,C : X → X and B : Ω → X be weakly sequentially continuous operators satisfy-
ing the following conditions:

(i) The operators A and C are D-Lipschitzian mappings with D- functions φA and
φC respectively.

(ii) The set B(Ω) is bounded and the operator
(

I−C
A

)−1
B is ψ-condensing on Ω.

(iii) The equality (x = AxBy + Cx) with y ∈ Ω implies x ∈ Ω.
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Then the operator equation x = AxBx+Cx has a solution in the set Ω provided that
QφA(r) + φC(r) < r for r > 0, where Q = ‖B(Ω)‖.

Remark 3.3. In Theorem 3.1, the set Ω need not be bounded.

Proof. In view of Lemma 3.6, the operator τ :=
(

I−C
A

)−1
B : Ω → X is well-

defined. Notice also by assumption (iii) we have τ(Ω) ⊂ Ω. Now, let x0 ∈ Ω and

F = {M : x0 ∈M ⊂ Ω,M is a closed convex set and τ(M) ⊂M}.
Clearly, F �= ∅ since Ω ∈ F . Put Λ = ∩M∈FM . Then x0 ∈ Λ ⊂ Ω, Λ is a closed
convex set and τ(Λ) ⊂ Λ. Notice that Conv{τ(Λ), x0} ⊂ Λ, where Conv(M) denotes
the closed convex hull of the set M . We thus have

τ(Conv{τ(Λ), x0}) ⊂ τ(Λ) ⊂ Conv{τ(Λ), x0},
which shows that Conv{τ(Λ), x0} ∈ F . It then follows that Conv{τ(Λ), x0} = Λ.
Using the properties of measures of weak noncompactness we get:

ψ(Λ) = ψ(Conv{τ(Λ), x0}) = ψ({τ(Λ), x0}) = ψ(τ(Λ)).

From our assumptions we get ψ(Λ) = 0, and therefore, Λ is a nonempty weakly
compact convex set. Now we show that τ : Λ → Λ is weakly sequentially continuous.
To see this, let (xn) be a sequence of Λ which converges weakly to some x ∈ Ω. Since,
τ(Λ) is relatively weakly compact then there is a subsequence (xnk

) of (xn) such that

(3.3) τxnk
⇀ z.

Taking into account that τ(xnk
) = Aτ(xnk

)Bxnk
+Cτ(xnk

), the weak sequential
continuity of A,B and C yields

(3.4) z = AzBx +Cz

Thus, z = τ(x).
Consequently,

(3.5) τxnk
⇀ z = τx

Now we show that

(3.6) τxn ⇀ τx.

Suppose the contrary, then there exists a weak neighborhood Nw of τ(x) and a subse-
quence (xnj) of (xn) such that τxnj /∈ Nw for all j ≥ 1. Since (xnj) converges weakly
to x, then arguing as before we may extract a subsequence (xnjk

) of (xnj) such that
τxnjk

⇀ τ(x). This is not possible, since τxnjk
/∈ Nw for all k ≥ 1. As a result, τ is

weakly sequentially continuous. Now by the Arino-Gautier-Penot fixed point theorem
we infer that there exists x ∈ Λ such that x = τ(x) = A(τ(x))B(x) + C(τ(x)) =
AxBx +Cx. This completes the proof.
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Taking C ≡ 0 in Theorem 3.1 we obtain the following result.

Theorem 3.2. Let X be a Banach algebra and let ψ be a measure of weak non-
compactness on X. Let Ω be a nonempty closed and convex subset of X and let
A : X → X and B : Ω → X be weakly sequentially continuous operators satisfying
the following conditions:

(i) The operator A is a D-Lipschitzian mapping with D- functions φA.

(ii) The set B(Ω) is bounded and the operator
(

I
A

)−1
B is ψ-condensing on Ω.

(iii) The equality (x = AxBy) with y ∈ Ω implies x ∈ Ω.

Then the operator equation x = AxBx has a solution in the set Ω provided QφA(r) <
r for r > 0, where Q = ‖B(Ω)‖.

Now, we prove the following useful result.

Theorem 3.3. Let Ω be a nonempty, closed and convex subset of a WC- Banach
algebra X and let A,C : X → X and B : Ω → X be weakly sequentially continuous
operators satisfying the following conditions:

(i) The operators A and C are D-Lipschitzian mappings with D- functions φA and
φC respectively.

(ii) The set B(Ω) is relatively weakly compact.
(iii) The equality (x = AxBy + Cx) with y ∈ Ω implies x ∈ Ω.

Then the operator equation x = AxBx + Cx has a solution in the set Ω provided
QφA(r) + φC(r) < r for r > 0, where Q = ‖B(Ω)‖.

Proof. According to Theorem 3.1 it suffices to show that τ :=
(

I−C
A

)−1
B maps

bounded sets into weakly compact sets. To see this, let M be a bounded subset of Ω.
It is easily seen that

(3.7) τ(M) ⊂ C(τ(M)) + A(τ(M))B(M).

Using Lemmas 2.1 and 2.4 together with the compactness of B(Ω) we infer that

w(τ(M)) ≤ w(C(τ(M)) +A(τ(M))B(M))
≤ w(C(τ(M))) + w(A(τ(M))B(M))
≤ φC(w(τ(M)) +QφA(τ(M)).

This shows that w(τ(M)) = 0. Thus, τ(M) is relatively weakly compact. The
result follows from Theorem 3.1.

The below given result presents a variant of Theorem 3.3 but, in fact, it is a corollary
of that theorem.
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Corollary 3.1. Let Ω be a nonempty, closed and convex subset of a WC- Banach
algebra X and let A,B, C : X → X be weakly sequentially continuous operators
such that:

(i) A is nonexpansive.
(ii) C is a D-Lipschitzian mapping with a D-function φC .

(iii) The set B(Ω) is relatively weakly compact.
(iv) The equality x = AxBy +Cx with y ∈ Ω implies x ∈ Ω.

Then the operator equation x = AxBx+Cx has a solution, whenever Qr+φC(r) < r
for r > 0, where Q = ‖B(Ω)‖.

As a spacial case of Corollary 3.1 we derive the following result.

Corollary 3.2. Let Ω be a nonempty, closed and convex subset of a WC- Banach
algebra X and let B,C : X → X be weakly sequentially continuous operators such
that:

(i) The set B(Ω) is relatively weakly compact.
(ii) C is a D-Lipschitzian mapping with a D-function φC .

(iii) The equality x = xBy +Cx with y ∈ Ω implies x ∈ Ω.

Then the operator equation x = xBx+Cx has a solution, whenever Qr+φC(r) < r

for r > 0, where Q = ‖B(Ω)‖.
As a special case of Corollary 3.2 we obtain the following weak version of [36,

Theorem 2].

Corollary 3.3. Suppose that B is a weakly sequentially continuous, weakly com-
pact operator on the WC-Banach algebra X, and suppose x0 ∈ X. If there exists a
closed, convex set Ω in X such that supx∈Ω ‖Bx‖ < 1 and such that the equality
(x = x0 + xBy) with y ∈ Ω implies x ∈ Ω, then the equation

x = x0 + xBx,

has a solution x ∈ Ω.

Our next result has a similar form as those given above but assumptions imposed
in it are different.

Theorem 3.4. Let X be a Banach algebra and let ψ be a measure of weak non-
compactness on X. Let Ω be a nonempty closed and convex subset of X and let
A,C : X → X and B : Ω → X be continuous operators satisfying the following
conditions:

(i) The operators A and C are ww-compact D-Lipschitzian mappings with D- func-
tions φA and φC respectively.
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(ii) B is ws-compact.

(iii) The set B(Ω) is bounded and the operator
(

I−C
A

)−1
B is ψ-condensing on Ω.

(iv) The equality (x = AxBy + Cx) with y ∈ Ω implies x ∈ Ω.

Then the operator equation x = AxBx + Cx has a solution in the set Ω provided
QφA(r) + φC(r) < r for r > 0, where Q = ‖B(Ω)‖.

Proof. In view of Lemma 3.6, the operator τ :=
(

I−C
A

)−1
B : Ω → X is well-

defined and continuous. Notice also since B is ws-compact then τ is ws-compact.
Next, by assumption (iii) we know that τ(Ω) ⊂ Ω. Now, let x0 ∈ Ω and

F = {M : x0 ∈M ⊂ Ω,M is a closed convex set and τ(M) ⊂M}.

Clearly, F �= ∅ since Ω ∈ F . Put Λ = ∩M∈FM . Then x0 ∈ Λ ⊂ Ω, Λ is a closed
convex set and τ(Λ) ⊂ Λ. Notice that Conv{τ(Λ), x0} ⊂ Λ, where Conv(M) denotes
the closed convex hull of the set M . We thus have

τ(Conv{τ(Λ), x0}) ⊂ τ(Λ) ⊂ Conv{τ(Λ), x0},

which shows that Conv{τ(Λ), x0} ∈ F . It then follows that Conv{τ(Λ), x0} = Λ.
Using the properties of measures of weak noncompactness we get:

ψ(Λ) = ψ(Conv{τ(Λ), x0}) = ψ({τ(Λ), x0}) = ψ(τ(Λ)).

In view of assumption (ii) , we obtain ψ(Λ) = 0, and therefore, Λ is a nonempty
weakly compact convex set. Since B is ws-compact, then B(Λ) is relatively compact.
Now Lemma 3.6 guarantees that τ(Λ) is compact. Invoking the Schauder fixed point
theorem we conclude immediately that there exists x ∈ Λ such that x = τ(x) =
A(τ(x))B(x) +C(τ(x)) = AxBx +Cx. The proof is complete.

Now we state the following result.

Theorem 3.5. Let Ω be a nonempty, closed and convex subset of a WC- Banach
algebra X and let A,B, C : X → X be continuous operators satisfying the following
conditions:

(i) The operators A and C are ww-compact D-Lipschitzian mappings with D- func-
tions φA and φC respectively.

(ii) B is ws-compact and B(Ω) is relatively weakly compact.
(iii) The equality x = AxBy +Cx with y ∈ Ω implies x ∈ Ω.

Then the operator equation x = AxBx+Cx has a solution provided Qr+φC(r) < r

for r > 0, where Q = ‖B(Ω)‖.
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Proof. The reasoning in Theorem 3.3 shows that τ :=
(

I−C
A

)−1
B maps bounded

sets into weakly compact sets. The result follows from Theorem 3.4.

4. APPLICATION

In this section we discuss the solvability of the quadratic integral equation

(4.1) x(t) = u(x(t)) + f(x(t))
∫ 1

0

k(t, s)g(s, x(s))ds, t ∈ [0, 1].

The integral in (4.1) is understood to be the Pettis integral and solutions to (4.1) will
be sought in E := C([0, 1], X), where X is a (real) reflexive Banach algebra and E
is endowed with its standard norm ‖x‖ = supt∈[0,1] ‖x(t)‖.

This equation is a general form of many integral equations, such as the Chan-
drasekhar integral equation arising in radiative transfer [12] and the Hammerstein in-
tegral equation [13, 22, 23].

We consider equation (4.1) under the following assumptions :

(i) u : X → X is weakly sequentially continuous and there exists a constant Cu

such that ‖u(r)− u(s)‖ ≤ Cu‖r − s‖ for all r, s ∈ X,

(ii) f : X → X is weakly sequentially continuous and there exists a constant Cf

such that ‖f(r)− f(s)‖ ≤ Cf‖r − s‖ for all r, s ∈ X,

(iii) for each continuous x : [0, 1] → X, g(., x(.)) is weakly measurable on [0, 1] and
for each t ∈ [0, 1], g(t, .) is weakly sequentially continuous,

(iv) for any r > 0, there exists a nonnegative constant hr with ‖g(s, x(s))‖ ≤ hr for
all t ∈ [0, 1] and all x ∈ E with ‖x‖ ≤ r,

(v) k : [0, 1]× [0, 1] → R is continuous with respect to the first variable, integrable
with respect to the second variable and there is a constant k∗ with

∫ 1
0 |k(t, s)|ds ≤

k∗ for all t ∈ [0, 1],

(vi) there is a r0 > 0 such that

Cu +Cfk
∗hr0 < 1,

and ‖u(0)‖+ ‖f(0)‖k∗hr0

1 −Cu − Cfk∗hr0

≤ r0.

Remark 4.1. It should be noted that if X is a WC-Banach algebra then E :=
C([0, 1], X) is also a WC-Banach algebra. In our considerations, X need not be a
WC-Banach algebra.
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Observe that the equation (4.1) may be written in the form

(4.2) x(t) = (Ux)(t) + (Fx(t))(Kx(t)),

where the operators F,G and K are defined on E := C([0, 1], X) by

(4.3) (Kx)(t) =
∫ 1

0

k(t, s)g(s, x(s))ds,

(4.4) (Ux)(t) = u(x(t)), (Fx)(t) = f(x(t)).

We emphasize that for all t ∈ [0, 1] and for all y ∈ E with ‖y‖ ≤ r0 ( the constant
r0 is defined in assumption (vi)) we have :

‖(Ky)(t)‖ ≤
∫ 1

0

|k(t, s)|‖g(s, y(s))‖ds

≤ hr0

∫ 1

0
|k(t, s)|ds

≤ k∗hr0

Thus,

(4.5) ‖(Ky)(t)‖ ≤ k∗hr0,

for all y ∈ E with ‖y‖ ≤ r0 and for all t ∈ [0, 1].
Consequently,

(4.6) ‖K(Br0)‖ = sup
‖y‖≤r0

‖Ky‖ ≤ k∗hr0.

We are now ready to state the main result of this section.

Theorem 4.1. Let X be a reflexive Banach algebra and suppose (i)-(vi) hold.
Then (4.1) has a solution in E = C([0, 1], X).

Proof. We shall point out that the assumptions of Theorem 3.1 are fulfilled. The
proof is divided into several steps.

Step 1. By assumptions (i) and (ii) we know that U and F maps E into itself.
Now, we show that K maps Br0 into E. First notice that for x ∈ Br0 we have
g(., x(.)) is weakly measurable on [0, 1] and ‖g(t, x(t))‖ ≤ hr0 for all t ∈ [0, 1].
Hence, φ(g(., x(.)) is Lebesgue integrable on [0, 1] for each φ ∈ E∗. Furthermore,
since, s→ k(t, s) is Lebesgue integrable, then φ(k(t, .)g(., x(.))) = k(t, .)φ(g(., x(.))
is Lebesgue integrable for each φ ∈ E∗. Thus, k(t, .)g(., x(.)) is Pettis integrable on
[0, 1]. This implies that K is well defined. Now, suppose x : [0, T ] → X is continuous
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with ‖x‖ ≤ r0. Then there exists a constant hr0 with ‖g(t, x(t))‖ ≤ hr0 for all
t ∈ [0, 1]. Let t, s ∈ [0, 1] with t > s. Without loss of generality we assume that
Kx(t)−Kx(s) �= 0. Then, from the Hahn-Banach theorem it follows that there exists
φ ∈ E∗ with ‖φ‖ = 1 and ‖Kx(t)−Kx(s)‖ = φ(Kx(t)−Kx(s)). Hence,

‖Kx(t)−Kx(s)‖ = φ

(∫ 1

0

(k(t, ρ)− k(s, ρ))g(ρ, x(ρ))dρ
)

=
∫ 1

0

(k(t, ρ)− k(s, ρ))φ(g(ρ, x(ρ)))dρ

≤ hr0

∫ 1

0

(k(t, ρ)− k(s, ρ))dρ.

By assumption (v) we infer that Kx is continuous.

Step 2. We show that the operators U, F andK are weakly sequentially continuous.
By assumptions (i) and (ii) we know that U and F are weakly sequentially continuous
on E. Now we show that K is weakly sequentially continuous on E. To see this, let
(xn) be a sequence in E which converges weakly to x ∈ E. Clearly, the sequence (xn)
is norm bounded. From our assumptions it follows that for all t ∈ [0, 1], g(t, xn(t))
converges weakly to g(t, x(t)). Thus, φ(g(t, xn(t))) converges strongly to φ(g(t, x(t)))
for all φ ∈ E∗. Applying the Lebesgue dominated convergence theorem for Pettis
integral [28], we get

φ

(∫ 1

0

k(t, s)g(s, xn(s))ds
)

=
∫ 1

0

k(t, s)φ(g(s, xn(s)))ds

→
∫ 1

0
k(t, s)φ(g(s, x(s)))ds.

This implies that (Kxn)(t) converges weakly to (Kx)(t) for all t ∈ [0, 1]. Thus,
Kxn converges weakly to Kx.

Step 3. We illuminate that the equality (x = FxKy + Ux) with y ∈ Br0 implies
x ∈ Br0 . Let x ∈ E with x = Ux + (Fx)(Ky) and ‖y‖ ≤ r0. Then for all t ∈ [0, 1]
we have

‖x(t)‖ ≤ ‖u(x(t))‖+ ‖f(x(t))‖‖Ky(t)‖
≤ ‖u(0)‖+ Cu‖x(t)‖+ (‖f(0)‖+Cf‖x(t)‖)(‖Ky(t)‖)
≤ ‖u(0)‖+ Cu‖x(t)‖+ k∗hr0‖f(0)‖+ k∗hr0Cf‖x(t)‖

In view of assumption (vi) we obtain the estimate :

‖x‖ ≤ ‖u(0)‖+ k∗hr0‖f(0)‖
1 − Cu − k∗hr0cf

≤ r0.
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Step 4. We prove that K(Br0) is equicontinuous. To see this, let x ∈ Br0 and
t, s ∈ [0, 1]. Then,

‖Kx(t)−Kx(s)‖ ≤
∫ 1

0
|k(t, ρ)− k(s, ρ)|‖g(ρ, x(ρ))‖dρ

≤ hr0

∫ 1

0
|k(t, ρ)− k(s, ρ)|dρ

This together with assumption (v) guarantees that K(Br0) is equicontinuous.

Step 5. We show that τ(Br0) :=
(
I − U

F

)−1

K(Br0) is relatively weakly com-

pact. To see this, notice first that for all x ∈ Br0 we have

(4.7) τ(x) = Uτ(x) + (Fτ(x))(Kx).

From the equicontinuity of K(Br0), it follows that for any ε > 0, there is a δ > 0 such
that |t− s| < δ implies

‖Kx(t)−Kx(s)‖ ≤
(

1 −Cu − k∗hr0Cf

‖f(0)‖+ Cfr0

)
ε, x ∈ Br0.

Hence for t, s ∈ [0, 1] with |t− s| < δ we have

‖τx(t)− τx(s)‖ = ‖Uτx(t) + (Fτx(t))(Kx(t))− Uτx(s)− (Fτx(s))(Kx(s))‖
≤ ‖Uτx(t) − Uτx(s)‖ + ‖Fτx(t)‖‖Kx(t) −Kx(s)‖

+‖Fτx(t) − Fτx(s)‖‖Kx(s)‖
≤ Cu‖τx(t) − τx(s)‖ + (‖f(0)‖+Cfr0)‖Kx(t)−Kx(s)‖

+k∗hr0Cf‖τx(t) − τx(s)‖
This implies

‖τx(t) − τx(s)‖ ≤
( ‖f(0)‖+Cfr0

1− Cu − k∗hr0Cf

)
‖Kx(t)−Kx(s)‖ ≤ ε.

Thus, τ(Br0) is equicontinuous. Let (τxn) be any sequence in τ(Br0). By reflex-
ivity, for each t ∈ [0, 1] the set {τxn(t) : n ∈ N} is relatively weakly compact. The
use of the weak version of the Arzela-Ascoli theorem [30] guarantees that τ(Br0) is
relatively weakly compact. This accomplishes the proof of step 5.

Now, invoking Theorem 3.1 we infer that there is a x ∈ E with x = Ux +
(Fx)(Kx) i.e., x is a solution to (4.1) in E. The proof is complete.
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Department of Mathematics
Rzeszów University of Technology
al. Powstanców Warszawy 8,
35-959 Rzeszów
Poland
E-mail: jbanas@prz.edu.pl

Mohamed-Aziz Taoudi
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