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JACOBI PROCESSES DRIVEN BY FRACTIONAL BROWNIAN MOTION

Nguyen Tien Dung

Abstract. In this paper we study a Jacobi equation driven by fractional Brownian
motion with Hurst index H ∈ (1

2 , 1). We first prove the existence and uniqueness
of the solution. Then we investigate Malliavin differentiability and smoothness
of the density of the solution. Finally, we point out that the solution can be
approximated by semimartingales.

1. INTRODUCTION

It is known that the classical Jacobi process is defined as the solution of the scalar
stochastic differential equation

(1.1) dXt = (a − bXt)dt + σ
√

Xt(1 − Xt)dWt,

where a, b, σ are positive constants with a < b and Wt is a standard Brownian motion,
and plays an important role in various applications. In population biology the Jacobi
process is well known as Wright-Fisher diffusion with migration studied by Karlin
and Taylor (1981) [9]. In the finance context, the Jacobi process have been used by
Delbaen and Shirakawa (2002) [1] to model interest rates, by De Jong et al. (2001)
[8], and by Larsen and Sørensen (2007) [10] to model the exchange rates in a target
zone. The Jacobi processes have also been studied by Gouriéroux and Jasiak (2006)
[5], they introduced a multidimensional version and pointed out several applications.

The Jacobi process is a Markov process. However, in the last decades, many
observations show that an asset price or an interest rate is not always a Markov process
since it has long-range aftereffects. And in fact, many studies have pointed out that the
dynamics driven by fractional Brownian motion (fBm) are a suitable choice to model
such objects. We refer the reader to [3] for a short survey on applications of fBm in
finance.
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Let (Ω,F , P ) be a complete probability space with a filtration {Ft, t ≥ 0} satisfy-
ing the usual conditions, that is, it is right continuous and increasing while F0 contains
all P -null sets. On this probability space, a fBm with Hurst index H ∈ (0, 1) is a
centered Gaussian process WH = {WH(t), t ≥ 0} with covariance function:

R(t, s) =
1
2
(|t|2H + |s|2H − |t − s|2H).

Moreover, fBm with H > 1
2 has the following Volterra representation

(1.2) WH
t =

t∫
0

K(t, s)dWs,

where Wt is a standard Brownian motion and the kernel K(t, s), t ≥ s, is given by

K(t, s) = cH

t∫
s

uH− 1
2

sH− 1
2

(u − s)H− 3
2 du,

where cH is a standardized constant depending only on H.
Naturally, it would be desirable to study the fractional Jacobi processes, that is, to

replace Brownian motion in the equation (1.1) by a fBm:

(1.3) dXt = (a − bXt)dt + σ
√

Xt(1 − Xt)dWH
t , t ∈ [0, T ],

where WH
t is fBm with H > 1

2 . Recently, there are many papers that are devoted to
the problems of the existence and uniqueness of the solution of stochastic differential
equations driven by fBm (see, for instance, [4, 7, 12, 13] and the references therein).
Unfortunately, since the volatility coefficient of (1.3), σ

√
x(1− x), is only 1

2 -Hölder
continuous, we cannot apply these known results to (1.3). On the other hand, unlike
the equation (1.1) we cannot also apply the Yamada-Watanabe condition [14] to (1.3)
because fBm is neither a Markov process nor a semimartingale, except for H = 1

2 .

Because of the complexity of the fractional stochastic calculus, the literature con-
cerning fractional stochastic differential equations with non-Lipschitz, especially 1

2 -
Hölder continuous, volatility coefficient is rare. And the aim of this paper is to study
the fractional Jacobi equation (1.3). More specifically, we obtain the following results

(1) The existence and uniqueness of the solution.
(2) The solution belongs to (0, 1) for any initial value X0 ∈ [0, 1]. Moreover, if

X0 ∈ (0, 1) then there exists ε > 0 such that Xt ∈ [ε, 1− ε] for any t ∈ [0, T ].

(3) Malliavin differentiability of the solution and smoothness of the density with
respect to Lebesgue measure on R.

(4) The solution can be approximated by semimartingales.
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In order to make this equation having a sense, let us define its solution. A strong
solution of (1.3) is a stochastic process X with sample paths in the space C[0, T ] of
continuous functions from [0, T ] to the interval [0, 1] and has a form for all t ∈ [0, T ]

Xt = X0 +

t∫
0

(a − bXs)ds + σ

t∫
0

√
Xs(1− Xs)dWH

s ,

the initial condition X0 ∈ [0, 1] is a constant, the integral
t∫
0

√
Xs(1− Xs)dWH

s should

be interpreted as a pathwise Riemann-Stieltjes integral. We refer the reader to the paper
of Zähle [15] for a detailed presentation of this integral. Here, we will just recall some
basic concepts.

Fix a parameter 0 < λ < 1
2 , denote by W 1−λ,∞[0, T ] the space of measurable

function g : [0, T ] → R such that

‖g‖1−λ,∞ := sup
0≤s<t≤T

( |g(t)− g(s)|
(t − s)1−λ

+

t∫
s

|g(y)− g(s)|
(y − s)2−λ

dy
)

< +∞,

and by Wλ,1[0, T ] the space of measurable function f : [0, T ] → R such that

‖f‖λ,1 :=

T∫
0

|f(s)|
sλ

ds +

T∫
0

t∫
0

|f(t)− f(s)|
(t − s)λ+1

dsdt < ∞ .

For the functions f ∈ Wλ,1[0, T ], g ∈ W 1−λ,∞[0, T ], Zähle introduced the generalized
Stieltjes integral

T∫
0

f(t)dg(t) = (−1)λ

T∫
0

Dλ
0+f(t)D1−λ

T− g(t)dt

defined in terms of the fractional derivative operators

Dλ
0+f(t) =

1
Γ(1 − λ)

(
f(t)
tλ

+ λ

t∫
0

f(t) − f(y)
(t − y)λ+1

dy

)
,

Dλ
T−g(t) =

(−1)λ

Γ(1 − λ)

(
g(t)− g(T )
(T − t)λ

+ λ

T∫
t

g(t)− g(y)
(y − t)λ+1

dy

)
.

Denote by Cλ[0, T ] the space of Hölder continuous functions of order λ. We have the
following change-of-variable formula.

Proposition 1.1. If h ∈ Cμ[0, T ] and F ∈ C1(R) is a real-valued function such
that F ′(h) ∈ Cλ[0, T ] for some μ + λ > 1, then, for any t ∈ [0, T ]

F (h(t)) = F (h(0)) +

t∫
0

F ′(h(s))dh(s).
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Since WH has Hölder continuous sample paths of exponent lesser than H, it belongs
to W 1−λ,∞[0, T ] if H > 1

2 and λ > 1 − H. Hence, the fractional stochastic integral
t∫
0

f(s)dWH
s , t ∈ [0, T ] is well defined for any function f ∈ Wλ,1[0, T ] for some λ

such that 1 − H < λ < 1
2 .

2. THE MAIN RESULTS

To get desired results, we will not directly do the proof for the equation (1.3), but
for a coordinate transformation thereof. We consider the process Vt = arcsin(2Xt−1)
which by the change-of-variable formula satisfies

(2.1) dVt =
2a − b − b sinVt

cosVt
dt + σdWH

t .

Thus this transformation allows us to shift the nonlinearity from the volatility coefficient
into the drift coefficient. Then the results can be more easily proved.

The equation (2.1) belongs to the class of singular stochastic differential equations.
For this class, we would like to mention a work made by Hu et al. [6]. They have
studied the following equation

dVt = V0 +

t∫
0

f(s, Vs)ds + WH
t , t ≥ 0,

where the drift f(t, x) is nonnegative, it has a singularity at x = 0 and satisfies some
suitable conditions.

Since the drift of the equation (2.1) is not always nonnegative and has two singu-
larity points at x = ±π

2 , we cannot apply Hu et al.’s results to our case. However,
their ideas can be effectively used in the proposition below.

Proposition 2.1. Assume that 0 < a < b. Then the equation (2.1) admits a unique
solution on [0,∞) for any initial value V0 ∈ [−π

2 , π
2 ]. Moreover, Vt ∈ (−π

2 , π
2 ) a.s.

for any t > 0.

Proof. If V0 ∈ (−π
2 , π

2 ), the function g(x) := 2a−b−b sinx
cosx is Lipschitz continuous

on a neighborhood of V0. Hence, there exists a local solution Vt on the interval [0, τ),
where τ is the stopping time such that τ = inf{t > 0 : |Vt| = π

2 }. Assume that τ < ∞.

Case 1. Vτ = π
2 . For all t ∈ [0, τ) we have π

2 − Vt > 0 and

π

2
= Vτ = Vt +

τ∫
t

g(Vs)ds + σ(WH
τ − WH

t ),

or equivalently
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(2.2)
π

2
− Vt −

τ∫
t

g(Vs)ds + σ(WH
t − WH

τ ) = 0.

We observe that lim
x→π

2
−

−2a+b+b sin x
cosx (π

2 − x) = 2b− 2a. Hence, there exists ε > 0 such

that −2a + b + b sinx

cos x
>

b − a
π
2 − x

∀ x ∈ (
π

2
− ε,

π

2
).

Since Vt is continuous and Vτ = π
2 , there exists t0 such that Vt ∈ (π

2−ε, π
2 ) ∀ t ∈ [t0, τ)

which implies that

(2.3) −g(Vt) >
b − a
π
2 − Vt

> 0 ∀ t ∈ [t0, τ).

Recall that the paths of fBm are β-Hölder continuous for any β < H. Thus, if we fix
β ∈ ( 1

2 , H) then there exists a finite random variable Cβ(ω) such that σ|WH
τ −WH

t | ≤
Cβ(ω)(τ − t)β . Combining (2.2) and (2.3) gives us

π

2
− Vt < Cβ(ω)(τ − t)β ∀ t ∈ [t0, τ),

and

−
τ∫

t

g(Vs)ds < Cβ(ω)(τ − t)β ∀ t ∈ [t0, τ).

As a consequence, it follows from (2.3) that

Cβ(ω)(τ − t)β >−
τ∫

t

g(Vs)ds >

τ∫
t

b−a
π
2 −Vs

ds >
b−a

(1−β)Cβ(ω)
(τ−t)1−β ∀ t ∈ [t0, τ).

Therefore
(1 − β)Cβ(ω)2 > (b − a)(τ − t)1−2β ∀ t ∈ [t0, τ)

which is a contradiction because the right hand side of the above inequality tends to
∞ as t → τ. We conclude that τ = ∞.

Case 2. Vτ = −π
2 . For all t ∈ [0, τ) we also have Vt + π

2 > 0 and

Vt +
π

2
+

τ∫
t

g(Vs)ds + σ(WH
τ − WH

t ) = 0.

Similarly, there exists t0 such that

g(Vt) >
a

π
2 + Vt

> 0 ∀ t ∈ [t0, τ).

Once again, we get a contradiction and conclude that τ = ∞.
Thus we already proved the existence of global solution to (2.1) with V0 ∈ (−π

2 , π
2 ).

If V0 = π
2 , for each n ≥ 1 we denote by V n

t the solution to (2.1) with the initial
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condition V n
0 = π

2 − 1
n . Obviously, {V n

t }n≥1 is a increasing sequence and |V n
t | < π

2 .

Hence, it has a limit, denoted by Vt. By the monotone convergence theorem Vt satisfies

Vt =
π

2
+

t∫
0

g(Vs)ds + σWH
t , t ≥ 0

Hence, g(Vt) < ∞ for almost all t ≥ 0, and this implies that |Vt| < π
2 for almost

all t ≥ 0. By the previous arguments, if |Vt| < π
2 , then |Vs| < π

2 for all s > t. As a
consequence, |Vt| < π

2 for all t ≥ 0.
The case of V0 = −π

2 can be proved similarly.
In order to prove the pathwise uniqueness we assume that V �

t and V ∗
t are two

solutions with V �
0 = V ∗

0 . We have

d(V �
t − V ∗

t ) = [g(V �
t ) − g(V ∗

t )]dt

and hence

(V �
t − V ∗

t )2 = 2

t∫
0

(V �
s − V ∗

s )[g(V �
s ) − g(V ∗

s )]ds.

Noting that g′(x) = (2a−b) sinx−b
cos2 x

< 0 ∀ x ∈ (−π
2 , π

2 ). These, together with Lagrange’s
theorem, imply

(V �
t − V ∗

t )2 ≤ 0 ∀ t ≥ 0.

The Proposition is proved.

Theorem 2.1. Assume that 0 < a < b and the initial condition X0 ∈ [0, 1].
Then the Jacobi equation (1.3) has a unique solution in CH−

[0, T ] =
⋂

β<H

Cβ [0, T ].

Moreover, this solution belongs to (0, 1) and is Malliavin differentiable with

(2.4) DW
s Xt = σ

√
Xt(1 − Xt)

t∫
s

∂1K(v, s)e

t∫
v

(2a−b)Xu−a
2Xu(1−Xu)

du
dv , t ≥ s,

where ∂1K(t, s) = ∂
∂tK(t, s).

Before giving a proof of the above theorem, let us recall some elements of Malliavin
calculus with respect to Brownian motion W (we refer the reader to [11] for more
details about this topic). The complete probability space (Ω,F , P ) is now associated
to a Brownian motion W which is used to present fBm WH as in (1.2).

For h ∈ L2([0, T ], R), we denote by W (h) the Wiener integral

W (h) =

T∫
0

h(t)dWt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of those classes of random
variables of the form
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(2.5) F = f(W (h1), ...,W (hn)),

where n ∈ N, f ∈ C∞
b (Rn, L2([0, T ], R)), h1, ..., hn ∈ L2([0, T ], R). If F has the form

(2.5), we define its derivative as the process DW F := {DW
t F, t ∈ [0, T ]} given by

DW
t F =

n∑
k=1

∂f

∂xk
(W (h1), ..., W (hn))hk(t).

More generally, for each k ≥ 1 we can define the iterated derivative operator on a
cylindrical random variable by setting

DW,k
t1,...,tk

F = DW
t1 ...DW

tk
F.

For any 1 ≤ p < ∞, we shall denote by D
1,p
W the closure of S with respect to the norm

‖F‖1,p :=
[
E|F |p] 1

p + E

[ T∫
0

|DW
u F |pdu

] 1
p

.

Proof of the Theorem 2.1. We first prove the existence of the solution. It is easy to
see that the solution Vt of (2.1) is β-Hölder continuous on [0, T ] for some β ∈ ( 1

2 , H).
Consequently, by applying Proposition 1.1 to h(t) = Vt and F (h) = sinh+1

2 we obtain
that Xt := sinVt+1

2 ∈ CH−
[0, T ] is a solution to (1.3) for any initial condition X0 ∈

[0, 1]. Obviously, Xt ∈ (0, 1) because Vt ∈ (−π
2 , π

2 ). In order to show that this solution
is unique in CH−

[0, T ], let us consider Yt is another solution in CH−
[0, T ] with the

same initial condition Y0 = X0. The following arguments are the same as in an example
given in [15, Section 5]. If Y0 ∈ (0, 1) then there exist constants 0 < c < C < 1 such
that c < Yt < C for 0 < t ≤ ε with suÂciently small ε > 0. For these t we can apply
Proposition 1.1 to h(t) = Yt, t ∈ [0, ε] and to F (h) = arcsin(2h − 1), h ∈ (c, C) and
obtain Ut := arcsin(2Yt − 1) is a solution of the equation (2.1) on [0, ε]. Since the
solution of (2.1) is unique, we can infer that Yt = Xt for t ∈ [0, ε]. In the same way we
can show that for any t > 0 with Yt = Xt there exists a right-sided neighborhood where
the functions coincide. So we can conclude that Yt = Xt on [0, T ]. If Y0 ∈ {0, 1}, we
also get the same conclusion by using a generalized change-of-variable formula which
was presented in [16, Theorem 3.1].

We now are in a position to prove the solution Xt is Malliavin differentiable. To
do this, it enough to show that Vt is Malliavin differentiable.

We first consider the case, where |V0| < π
2 . Because the function g(x) is not

differentiable at x = ±π
2 , we need to approximate it by a continuously differentiable

function on R. For each n ≥ 1, let χn(x) be a continuously differentiable function
satisfying χn(x) ≤ 1 ∀ x and

χn(x) =

{
0, |x| > π

2 − 1
n

1, |x| ≤ π
2 − 2

n .
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Put gn(x) := g(x)χn(x) with gn(x) = 0 at x such that cos x = 0. We have gn(x) is
bounded and continuously differentiable satisfying

g′n(x) =

{
0, |x| > π

2 − 1
n

g′(x), |x| ≤ π
2 − 2

n .

Consider the ”approximation” equation

(2.6) dV
(n)
t = gn(V (n)

t )dt + σdWH
t

with the initial condition V
(n)
0 = V0.

Define a stopping time τn = inf{t > 0 : |Vt| > π
2 − 1

n}. Clearly, {τn}n≥1 is an
increasing sequence. Since |Vt| < π

2 , ∀ t ≥ 0, this implies that lim
n→∞ τn = ∞.

By the definition of the function χn(x) we have

V
(n)
t = Vτ n

2
∧t , ∀ t ≥ 0.

Therefore, for each t ≥ 0 we have

lim
n→∞V

(n)
t = lim

n→∞ Vτ n
2
∧t = Vt a.s.

By the bounded convergence theorem we have V
(n)
t converges in L2(Ω) to Vt as n

tends to ∞.
Since gn(x) is a continuously differentiable function on R, we can apply the chain

rule of Malliavin derivative (see, [11, Theorem 2.2.1 ]) to (2.6) and obtain

dDW
s V

(n)
t

dt
= g′n(V (n)

t )DW
s V

(n)
t + σ∂1K(t, s) , t ≥ s,

subject to the boundary condition DW
s V

(n)
s = K(s, s) = 0. Solving the above equation

gives us

DW
s V

(n)
t = σ

t∫
s

∂1K(v, s)e

t∫
v

g′n(V
(n)
u )du

dv , t ≥ s.

Obviously, DW
s V

(n)
t converges to σ

t∫
s

∂1K(v, s)e

t∫
v

g′(Vu)du
dv. Moreover, DW

s V
(n)
t ≤

σK(t, s). Once again, from the bounded convergence theorem we conclude that DW
s V

(n)
t

converges in L2(Ω) to σ
t∫
s

∂1K(v, s)e

t∫
v

g′(Vu)du
dv. Then by closability of Malliavin

derivative we have

DW
s Vt = σ

t∫
s

∂1K(v, s)e

t∫
v

g′(Vu)du
dv , t ≥ s.

Thus Vt is Malliavin differentiable for any the initial value V0 ∈ (−π
2 , π

2 ).
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We now consider V0 = π
2 . As in Proposition 2.1, we denote by V n

t , n ≥ 1 the
solution to (2.1) with the initial condition V n

0 = π
2 − 1

n . Since V n
0 < π

2 , this implies
that V n

t is Malliavin differentiable and furthermore, we have

DW
s V n

t = σ

t∫
s

∂1K(v, s)e

t∫
v

g′(V n
u )du

dv , t ≥ s.

By the almost sure convergence of V n
t to the solution Vt of (2.1) combined with the

fact |V n
t | < π

2 ∀ n ≥ 1, we obtain V n
t → Vt in L2(Ω) as n → ∞. Noting that

g′(x) < 0 ∀ x ∈ (−π
2 , π

2 ). Then by using the bounded convergence theorem and then
the closability of Malliavin derivative we can conclude for the case of V0 = π

2 that

DW
s Vt = σ

t∫
s

∂1K(v, s)e

t∫
v

g′(Vu)du
dv.

The case of V0 = −π
2 is proved similarly.

We now turn our attention to Malliavin differentiability of Xt. But this is obvi-
ous because Xt = sinVt+1

2 . The expression (2.4) follows from the relation DW
s Xt =

1
2 cosVtD

W
s Vt.

The Theorem is proved.

Corollary 2.1. Under the assumptions of Theorem 2.1. If σ > 0, then for any
t ∈ (0, T ] the law of Xt is absolutely continuous with respect to the Lebesgue measure
on R.

Proof. Follows directly from from the expression (2.4) and Theorem 2.1.3 in
[11].

Next, we discuss the smoothness of the density of the solution. We will need the
following technical lemma.

Lemma 2.1. Suppose that |V0| < π
2 , then there exists ε > 0 such that the solution

Vt of the equation (2.1) satisfies |Vt| ≤ π
2 − ε for all t ≥ 0.

Proof. It is obvious that there exists ε1 > 0 such that |V0| < π
2 − ε1. Moreover,

by the definition of the function g(x) there exists ε2 > 0 such that

−g(x) > 0 ∀ x ∈ (
π

2
− ε2,

π

2
) and g(x) > 0 ∀ x ∈ (−π

2
,−π

2
+ ε2).

Let ε = min(ε1, ε2), we will show that |Vt| ≤ π
2 − ε a.s. for all t ≥ 0.

Denote τ1 = inf{t > 0 : |Vt| = π
2 − ε}. If τ1 = ∞, then the proof is complete.

When τ1 < ∞ we have |Vτ1| = π
2 − ε. Without loss of generality, we can assume that

Vτ1 = π
2 − ε.

We first show that Vt ≤ π
2 − ε a.s. for all t ≥ τ1. Indeed, suppose that there exists

t1 > τ1 such that Vt1 > π
2 − ε a.s. Because Vt is continuous and Vt1 > Vτ1, there
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exist t2 < t3 such that Vt is increasing on (t2, t3) ⊂ (τ1, t1). Thus π
2 − ε < Vt2 ≤

Vt ≤ Vt3 < π
2 for all t ∈ (t2, t3). This implies that −g(Vs) > 0 for all s ∈ (t2, t3).

Moreover, we have

Vt3 − Vt2 −
t3∫

t2

g(Vs)ds = σ(WH
t3 − WH

t2 ),

which gives us a contradiction because

0 = σE(WH
t3 − WH

t2 ) = E

(
Vt3 − Vt2 −

t3∫
t2

g(Vs)ds

)
> 0.

The remaining of the proof is to show that Vt ≥ −π
2 +ε a.s. for all t ≥ τ1. Denote

τ2 = inf{t > 0 : Vt = −π
2 + ε} > τ1. If τ2 < ∞, following the same lines as the

above arguments we obtain that Vt ≥ −π
2 + ε a.s. for all t ≥ τ2.

The Lemma is proved.

Theorem 2.2. Assume that 0 < a < b and σ > 0. If the initial condition X0 ∈
(0, 1), then, for any t ∈ (0, T ] the solution Xt of the Jacobi equation (1.3) has an
infinitely differentiable density with respect to Lebesgue measure on R.

Proof. Fix t ∈ (0, T ], to apply the Malliavin criterion for the existence of a smooth
density, we have to check:

(i) Xt ∈ D∞ =
⋂
i≥1

⋂
p≥1

D
i,p
W ,

(ii)
( t∫

0

|DW
s Xt|2ds

)−1 ∈ ⋂
p≥1

Lp(Ω).

Since X0 ∈ (0, 1), it follows from Lemma 2.1 that there exists ε > 0 such that
Xt ∈ [ε, 1 − ε] ⊂ (0, 1) for all t ∈ [0, T ]. As a consequence, it is easy to check by
using the formula (2.4) that Xt ∈ D∞.

In order to prove the condition (ii) it is enough to check that for any p ≥ 1 there
exists θ0 > 0 such that

P

( t∫
0

|DW
s Xt|2ds ≤ θ

)
≤ θp, for all 0 < θ < θ0.

For convenience of statement, let us put m(x) = (2a−b)x−a
2x(1−x) , x ∈ (0, 1). By using the

integration by parts formula we have

DW
s Xt = σ

√
Xt(1− Xt)

(
K(t, s) +

t∫
s

K(v, s)m(Xv)e

t∫
v

m(Xu)du
dv

)
.
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Since Xt ∈ [ε, 1− ε], we can infer that

σ2Xt(1 − Xt) ≥ σ2ε(1 − ε) := nε > 0.

Hence,

|DW
s Xt|2 ≥ nε

(
K(t, s) +

t∫
s

K(v, s)m(Xv)e

t∫
v

m(Xu)du
dv

)2

.

Let α, β > 0, we can write

P

( t∫
0

|DW
s Xt|2ds ≤ θ

)
≤ P

( t−θα∫
t−2θα

|DW
s Xt|2ds ≤ θ

)
≤ P1,θ + P2,θ,

with

P1,θ = P

(
nε

t−θα∫
t−2θα

(
K(t, s) +

t∫
s

K(v, s)m(Xv)e

t∫
v

m(Xu)du
dv

)2

ds ≤ θ,

sup
t−2θα<s<t−θα

t∫
s

K(v, s)|m(Xv)|e
t∫

v
m(Xu)du

dv ≤ θβ

)
,

P2,θ = P

(
sup

t−2θα<s<t−θα

t∫
s

K(v, s)|m(Xv)|e
t∫
v

m(Xu)du
dv > θβ

)
.

To estimate P1,θ we noting that K(t, s) ≥ cH

H− 1
2

(t − s)H− 1
2 , t ≥ s. Then when

β > (H − 1
2 )α we obtain

P1,θ ≤ P

(
nε

t−θα∫
t−2θα

(
cH

H − 1
2

θ(H− 1
2
)α − θβ

)2

ds ≤ θ

)

= P

(
nε

(
cH

H − 1
2

θ(H− 1
2
)α − θβ

)2

θα ≤ θ

)
.

Choosing α such that α < 1
2H , it is clear that P1,θ = 0.

We now use Chebyshev’s inequality to get for any q > 1

P2,θ ≤ 1
θqβ

E

(
sup

t−θα<s<t−θα

∣∣∣∣
t∫

s

K(v, s)m(Xv)e

t∫
v

m(Xu)du
dv

∣∣∣∣
q)

≤ mq
ε

θqβ
sup

t−2θα<s<t−θα

∣∣∣∣
t∫

s

K(v, s)dv

∣∣∣∣
q

,
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where mε = sup
ε≤x≤1−ε

|m(x)| < ∞. On the set {(s, v) : t− 2θα < s < t− θα, s < v <

t} we have

K(v, s) = cH

v∫
s

uH− 1
2

sH− 1
2

(u− s)H− 3
2 du ≤ cH

H − 1
2

tH− 1
2

(t − 2θα)H− 1
2

(v − s)H− 1
2 .

Therefore we have

P2,θ ≤ mq
ε

θqβ

[
cH

(H − 1
2 )(H + 1

2 )
tH− 1

2

(t − 2θα)H− 1
2

]q

(2θ)q(H+ 1
2
)α

=
[

cHmε

(H − 1
2)(H + 1

2)
tH− 1

2

(t − 2θα)H− 1
2

2(H+ 1
2
)α

]q

θq(H+ 1
2
)α−qβ

≤
[

2H− 1
2 cHmε

(H − 1
2)(H + 1

2)
2

1
2
+ 1

4H

]q

θq(H+ 1
2
)α−qβ

for all θ ≤ θ0, where θ0 > 0 such that θα
0 < t

4 .

So, choosing β such that (H−1
2 )α<β<(H+1

2 )α<
H+1

2
2H , the proof is complete.

We end this paper with a interesting result which says that our non-semimartingale
dynamical system (1.3) can be approximated by semimartingales. Before doing this,
let us recall the semimartingale approximation of fBm: For every δ > 0 we define

WH,δ
t :=

t∫
0

K(t + δ, s)dWs, t ∈ [0, T ].

It is well known from [2] that WH,δ
t is a semimartingale with the following decompo-

sition

(2.7) WH,δ
t =

t∫
0

ϕδ
sds +

t∫
0

K(s + δ, s)dWs,

where ϕδ
s =

s∫
0

∂1K(s + δ, u)dWu. Moreover, W
H,δ
t converges in Lp(Ω), p ≥ 1 uni-

formly in t ∈ [0, T ] to WH
t as δ → 0 :

(2.8) E|WH,δ
t − WH

t |p ≤ cpδ
pH .

Theorem 2.3. Assume that 0 < a < b. Then the solution Xt of the Jacobi equation
(1.3) with the initial condition X0 ∈ (0, 1) can be approximated in Lp(Ω), p ≥ 1 by
semimartingales.
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Proof. We first consider the equation

(2.9) dV δ
t =

2a − b − b sinV δ
t

cos V δ
t

dt + σdWH,δ
t , V δ

0 = V0.

We have |V0| < π
2 because 0 < X0 < 1. Consequently, a similar proof to one of

Lemma 2.1 results in |V δ
t | ≤ π

2 − ε for all t.

On the interval [−π
2 +ε, π

2 −ε], the function g(x) = 2a−b−b sin x
cosx is Lipchitz and its

derivative is bounded by a positive constant Mε. Let Vt be the solution of (2.1), then
from (2.8) and by using Gronwall’s lemma we can check that

E|V δ
t − Vt|p ≤ 2p−1cpδ

pHe2p−1Mp
ε t, ∀ t ∈ [0, T ].

As a consequence, we have the following convergence uniformly in t ∈ [0, T ]

Xδ
t :=

sin V δ
t + 1
2

→ Xt =
sin Vt + 1

2
in Lp(Ω) as δ → 0.

From the decomposition (2.7) we see that the equation (2.9) is an Itô stochastic differ-
ential equation. By using Itô formula we get

dXδ
t =

(
a +

1
4
σ2K2(t + δ, t) − (b +

1
2
σ2K2(t + δ, t))Xδ

t + σϕδ
t

√
Xδ

t (1−Xδ
t )

)
dt

+σK2(t + δ, t)
√

Xδ
t (1−Xδ

t )dWt,

which implies that Xδ
t is a semimartingale.

The Theorem is proved.
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