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LOCAL AND GLOBAL OPTIMALITY CONDITIONS FOR DC INFINITE
OPTIMIZATION PROBLEMS

D. H. Fang1 and X. P. Zhao*

Abstract. We consider the optimality conditions for the DC (difference of two
convex functions) optimization problem with the objective and constraint func-
tions given as DC functions. Adopting convexification technique, the local and
global KKT type conditions for this optimization problem are defined. By using
properties of the subdifferentials of the involved functions, some sufficient and/or
necessary conditions for these two types of optimality conditions are provided.

1. INTRODUCTION

Let X be a locally convex Hausdorff topological vector space, C be a nonempty
convex subset of X , T be an arbitrary (possibly infinite) index set and h, ht : X →
R := R ∪ {+∞}, for each t ∈ T , be proper functions. Consider the following
optimization problem

(1.1)
Minimize h(x),
s. t. ht(x) ≤ 0, t ∈ T,

x ∈ C.

Since many problems in optimization and approximation theory such as linear semi-
infinite optimization and the best approximation with restricted ranges can be recast
into the form (1.1), more and more papers treating this kind of problems have appeared
during the last decades, see for example [2, 3, 9, 10, 12, 13, 15, 18, 19, 20, 21, 22, 23]
and the references therein.
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Usually for the optimality conditions for problem (1.1), one seeks conditions en-
suring the following equivalence:

(1.2)
[h(x0) = min

x∈A
h(x)]

⇐⇒ [∃λ=(λt)t∈T ∈ R
(T )
+ , s.t. 0∈∂h(x0)+NC(x0)+

∑
t∈T (x0)

λt∂ht(x0)
]
,

where A := {x ∈ C : ht(x) ≤ 0, ∀ t ∈ T} is the solution set of the system (1.1),
x0 ∈ domh ∩ A and T (x0) := {t ∈ T : ht(x0) = 0}. We say that the family
{δC ; ht : t ∈ T} satisfies the KKT condition if (1.2) holds for each point in domh∩A.
Since the backward direction of the equivalence in (1.2) is easy to verify, the family
{δC ; ht : t ∈ T} satisfies the KKT condition if and only if the forward direction of
(1.2) holds at each point in domh ∩ A. KKT type conditions are fundamental and
important in both convex optimization and nonconvex optimization, and the literature
on these areas is very rich, see for example [2, 3, 4, 5, 10, 22].

Recently, the DC (difference of two convex functions) optimization problem, that
is, the involved functions h and/or ht, t ∈ T , in problem (1.1) are DC functions,
has received much attention and been extensively studied by many authors, see, e.g.,
[1, 4, 5, 6, 7, 8, 11, 14, 27]. The reason is, as pointed out in [4], that DC programming
problems are of high importance from both optimization theory and applications points
of view. Moreover, by assuming that h := f − g is the difference of two proper lower
semicontinuous (l.s.c., for short) convex functions, each ht with t ∈ T is a proper l.s.c.
convex function and that C is a closed convex set, Dinh, Mordukhovich and Nghia
[4] derived the necessary optimality conditions for local solutions to (1.1) as well as
necessary and sufficient optimality conditions for global solutions to (1.1) under the
following closedness qualification condition (CQC) introduced there:

epi f∗ + epi δ∗C + cone

(⋃
t∈T

epi f∗
t

)
is weak∗ closed.

But to the best of our knowledge, not many results are known to provide characteriza-
tions for the KKT conditions for the DC optimization problem with both the objective
and constraint functions be DC functions. Taking inspiration from this, we study in
the present paper the KKT conditions for this kind of DC optimization problem and
we do not impose any topological assumption on the set C and the involved func-
tions. Let h := f − g and ht := ft − gt, for each t ∈ T , be DC functions, where
f, g, ft, gt : X → R, for each t ∈ T , are proper convex functions. Define the primal
problem by

(1.3) (P )
Minimization f(x) − g(x),
s. t. ft(x) − gt(x) ≤ 0, t ∈ T,

x ∈ C.
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Our interest here is the investigation of the sufficient and/or necessary conditions for
the optimality conditions for problem (1.3). Let A denote the solution set of the system
(1.3), that is

(1.4) A := {x ∈ C : ft(x)− gt(x) ≤ 0, ∀ t ∈ T}.
To avoid the triviality in our study for (P ), we assume throughout the paper that
dom(f−g)∩A �=∅. Let x0 be a global minimizer of problem (1.3). In the case when
g and gt are subdifferentiable at x0, the standard convexification technique can be
applied. In fact, in this case, x0 is also a global minimizer of the following problem

(1.5) (P(u∗,v∗))
Minimize f(x) − 〈u∗, x〉+ g∗(u∗),
s. t. ft(x) − 〈v∗t , x〉+ g∗t (v∗t ) ≤ 0, t ∈ T,

x ∈ C,

where u∗ ∈ ∂g(x0) and v∗ = (v∗t )t∈T ∈ ∏t∈T ∂gt(x0). Let ∂H(x0) := ∂g(x0) ×∏
t∈T ∂gt(x0). Note that for each (u∗, v∗) ∈ ∂H(x0), the problem (P(u∗,v∗)) is a

convex optimization problem. Then, we can define the global KKT condition for
problem (P(u∗,v∗)) (applied {h, ht : t ∈ T} to the system {f − u∗ + g∗(u∗), ft − v∗t +
g∗t (v∗t ) : t ∈ T} in (1.2)) as follows:

(1.6)

x0 is a global minimizer of problem (P(u∗,v∗))

⇐⇒ [∃λ = (λt) ∈ R
(T )
+ , s.t.u∗ +

∑
t∈Tv∗(x0)

λtv
∗
t ∈ ∂f(x0)

+NC(x0) +
∑

t∈Tv∗(x0)
λt∂ft(x0)],

where Tv∗(x0) := {t ∈ T : ft(x0) − 〈v∗t , x0〉 + g∗t (v∗t ) = 0}. Moreover, it is easy to
verify that for each (u∗, v∗) ∈ ∂H(x0),

T (x0) := {t ∈ T : ft(x0) − gt(x0) = 0} = Tv∗(x0).

This reformulation motivates us to define the following (convexification) global KKT
condition at x0 ∈ dom(f − g) ∩ A for problem (1.3):

x0 is a global minimizer of problem (1.3)

⇐⇒ [∀(u∗, v∗) ∈ ∂H(x0), ∃λ = (λt) ∈ R
(T )
+ , s.t.

u∗ +
∑

t∈T (x0)
λtv

∗
t ∈ ∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0)].

Similarly, we define the local KKT condition at x0 ∈ dom(f − g) ∩ A for problem
(1.3) as the following implication:

x0 is a local minimizer of problem (1.3)

=⇒ [∀(u∗, v∗) ∈ ∂H(x0), ∃λ = (λt) ∈ R
(T )
+ , s.t.

u∗ +
∑

t∈T (x0)
λtv

∗
t ∈ ∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0)].



820 D. H. Fang and X. P. Zhao

Constraint qualifications involving subdifferentials have been studied and exten-
sively used, see, e.g., [3, 5, 12, 17, 22]. The aim in the present paper is to use these
constraint qualifications (or their variations) to provide some sufficient conditions for
the local KKT condition and complete characterizations for the global KKT condition
for the DC programming problem (1.3). Most of results obtained in this paper seem
new and are proper extensions of the results in [4, 5] for the case when gt = 0 and
those in [10] for the special case when g = gt = 0, t ∈ T .

The paper is organized as follows. The next section contains the necessary notation
and preliminary results. Some sufficient conditions for the local KKT condition for
problem (1.3) are provided in Section 3 and an equivalent condition for the global KKT
condition for problem (1.3) is given in Section 4.

2. NOTATION AND PRELIMINARY RESULTS

The notation used in the present paper is standard (cf. [28]). In particular, we
assume throughout the whole paper that X is a real locally convex space and let X∗

denote the dual space of X . For x ∈ X and x∗ ∈ X∗, we write 〈x∗, x〉 for the value
of x∗ at x, that is, 〈x∗, x〉 := x∗(x). Let Z be a set in X , the closure of Z is denoted
by clZ. The dual X∗ is endowed with the weak∗-topology. Thus if W ⊆ X∗, then
clW denotes the weak∗-closure of W . For the whole paper, we endow X∗ × R with
the product topology of w∗(X∗, X) and the usual Euclidean topology.

The normal cone of Z at z0 ∈ Z is denoted by NZ(z0) and is defined by

NZ(z0) := {x∗ ∈ X∗ : 〈x∗, z − z0〉 ≤ 0 for all z ∈ Z}.
Following [16], we use R

(T ) to denote the space of real tuples λ = (λt)t∈T with only
finitely many λt �= 0, and let R

(T )
+ denote the nonnegative cone in R

(T ), that is

R
(T )
+ := {(λt)t∈T ∈ R

(T ) : λt ≥ 0 for each t ∈ T}.
The indicator function δZ of a nonempty set Z is defined by

δZ(x) :=
{

0, x ∈ Z,

+∞, otherwise.

Let f : X → R̄ be a proper function. The effective domain, conjugate function and
epigraph of f are denoted by domf , f∗ and epi f respectively; they are defined by

domf := {x ∈ X : f(x) < +∞},
f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗,

and
epi f := {(x, r) ∈ X × R : f(x) ≤ r}.
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The subdifferential of f at x ∈ domf is defined by

(2.1) ∂f(x) := {x∗ ∈ X∗ : f(x) + 〈x∗, y − x〉 ≤ f(y) for each y ∈ X}.

By [28, Theorems 2.3.1 and 2.4.2 (iii)], the Young-Fenchel inequality below holds

(2.2) f(x) + f∗(x∗) ≥ 〈x∗, x〉 for each pair (x, x∗) ∈ X × X∗

and the Young equality holds

(2.3) f(x) + f∗(x∗) = 〈x∗, x〉 if and only if x∗ ∈ ∂f(x).

In particular,

(2.4) NZ(x) = ∂δZ(x) for each x ∈ Z.

Furthermore, if g : X → R is a proper convex function such that dom f ∩ dom g �= ∅,
then

(2.5) ∂f(a) + ∂g(a) ⊆ ∂(f + g)(a) for each a ∈ dom f ∩ dom g.

Let φ : X → [−∞, +∞] be an extended real-valued function. Recall from [25], one
also can see [24, page 90], that the Fréchet subdifferential of φ at a point x0 with
|φ(x0)| < ∞, is defined by

(2.6) ∂̂φ(x0) := {x∗ ∈ X∗ : lim inf
x→x0

φ(x)− φ(x0) − 〈x∗, x− x0〉
‖x − x0‖ ≥ 0}.

Then it follows from the definition that

(2.7) ∂φ(x0) ⊆ ∂̂φ(x0) for each x0 with |φ(x0)| < ∞.

Particularly, in the case when φ is a convex function, then for each x0 ∈ domφ, ∂̂φ(x0)
coincides with the subdifferential ∂φ(x0) in the sense of convex analysis. Moreover,
by the definition, we have the following implication

(2.8) x0 is a local minimizer of φ =⇒ 0 ∈ ∂̂φ(x0).

Let ϕ : X → [−∞, +∞] be another extended real-valued function. Assume that both
φ and ϕ are finite at some point x0 and that ∂̂ϕ(x0) �= ∅. Then, by [25, Theorem 3.1],

(2.9) ∂̂(φ − ϕ)(x0) ⊆
⋂

u∗∈∂ϕ̂(x0)

(∂̂φ(x0)− u∗).
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Given a set Ω ⊂ X and a point x0 ∈ Ω, the Fréchet normal cone N̂Ω(x0) to Ω at x0

is defined by

(2.10) N̂Ω(x0) := {x∗ ∈ X∗ : lim sup
x

Ω−→x0

〈x∗, x− x0〉
‖x − x0‖ ≤ 0},

where x
Ω−→ x0 means x → x0 with {x} ⊆ Ω. Clearly, by definition, one can easily

observe that
N̂Ω(x0) = ∂̂δΩ(x0) for each x0 ∈ Ω.

For two sets Ω1, Ω2 in X with Ω2 ⊆ Ω1, the following property is well known and
easy to verify

(2.11) N̂Ω1(x) ⊆ N̂Ω2(x) for each x ∈ Ω2.

Moreover, in the case when Ω is a convex subset, then for each x0 ∈ Ω, N̂Ω(x0) agrees
with the normal cone NΩ(x0) in the sense of convex analysis.

3. LOCAL OPTIMALITY CONDITION

Unless explicitly stated otherwise, let f, g, T,C, {ft, gt : t ∈ T} and A be as in
Section 1; namely, T is an index set, C ⊆ X is a convex set, f, g, ft, gt, t ∈ T, are
proper convex functions on X such that f − g and ft − gt, t ∈ T, are proper, and A is
the solution set of the following system:

(3.1) x ∈ C; ft(x)− gt(x) ≤ 0 for each t ∈ T.

To avoid the triviality, we always assume that dom (f − g) ∩ A �= ∅. Throughout the
whole paper, following [28, page 39], we adapt the convention that (+∞) + (−∞) =
(+∞) − (+∞) = +∞ and 0 · (∞) = 0. Then, we have that

(3.2) ∅ �= dom f ⊆ dom g and ∅ �= dom ft ⊆ dom gt for each t ∈ T.

For simplicity, we denote

(3.3) ∂H(x) := ∂g(x)×
∏
t∈T

∂gt(x) for each x ∈ X,

where
∏

t∈T ∂gt(x) := {(v∗t )t∈T : v∗t ∈ ∂gt(x) ∀ t ∈ T}. For the whole paper, any
elements λ ∈ R

(T )
+ and v∗ ∈ ∏t∈T ∂gt(x) are understood as λ = (λt)t∈T ∈ R

(T )
+ and

v∗ = (v∗t )t∈T ∈ ∏t∈T ∂gt(x), respectively. Given x0 ∈ X , let T (x0) be the active
index set at x0, that is,

T (x0) := {t ∈ T : ft(x0) − gt(x0) = 0}.
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Definition 3.1. Let x0 ∈ dom(f − g) ∩ A. Consider the following statements:
(i) x0 is a local minimizer of problem (1.3).
(ii) ∀(u∗, v∗) ∈ ∂H(x0), ∃λ = (λt) ∈ R

(T )
+ such that

(3.4) u∗ +
∑

t∈T (x0)

λtv
∗
t ∈ ∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0).

The family {f, g, δC; ft, gt : t ∈ T} is said to satisfy the local KKT condition at x0

if (i) ⇒ (ii). We say that the family {f, g, δC; ft, gt : t ∈ T} satisfies the local KKT
condition if it satisfies the local KKT condition at each point in dom(f − g) ∩ A.

In this section, we give some sufficient conditions to ensure the local optimality
condition for DC infinite optimization problem (1.3). For this, we introduce the fol-
lowing definition. For a family of subsets {St : t ∈ T} of X , we adapt the convention
that

⋂
t∈∅ St = X .

Definition 3.2. Let x0 ∈ dom(f − g)∩A. The family {f, g, δC; ft, gt : t ∈ T} is
said to have the Fréchet-(BCQ) (F -(BCQ) in brief) at x0 if

(3.5)

∂̂ (f − g + δA)(x0)

⊆
⋂

(u∗ ,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂f(x0)+NC(x0)+

∑
t∈T (x0)

λt(∂ft(x0)−v∗t ) − u∗).
Moreover, we say the family {f, g, δC; ft, gt : t ∈ T} has the F -(BCQ) if it has the
F -(BCQ) at each point x ∈ dom (f − g) ∩ A.

Remark 3.1. Note that in the special case when g = gt = 0, t ∈ T , then f −g+δA

is a convex function and ∂g(x) = ∂gt(x) = {0} for each x ∈ domf ∩ A and t ∈ T .
Thus, (3.5) reduces to

(3.6) ∂(f + δA)(x0) ⊆ ∂f(x0) + NC(x0) + cone(
⋃

t∈T (x0)

∂ft(x0)).

This constraint qualification was called the (BCQ)f at x0 for the family {δC ; ft : t ∈
T}. If (3.6) holds for each x ∈ domf ∩ A, then the family {δC ; ft : t ∈ T} is said
to have the (BCQ)f , which was introduced in [10] to study the optimality condition
(of KKT type) for the problem of the form (1.1) with the system {h, ht : t ∈ T} be
replaced by {f, ft : t ∈ T}.

Proposition 3.1. Suppose that gt = 0 for each t ∈ T . If the family {δC ; ft : t ∈ T}
has the (BCQ)f , then the family {f, g, δC; ft, gt : t ∈ T} has the F -(BCQ).
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Proof. Let x0 ∈ dom(f − g)∩A. By assumption, (3.6) holds. By definition, we
need to show

(3.7) ∂̂ (f−g+δA)(x0) ⊆
⋂

u∗∈∂g(x0)

⋃
λ∈R

(T )
+

(∂f(x0)+NC(x0)+
∑

t∈T (x0)

λt∂ft(x0)−u∗)

as ∂gt(x0) = {0} for each t ∈ T . Note that if ∂g(x0) = ∅ or ∂̂(f − g + δA)(x0) = ∅,
then (3.7) holds automatically. Below we assume that ∂g(x0) �= ∅ and ∂̂(f − g +
δA)(x0) �= ∅. Take p ∈ ∂̂(f − g + δA)(x0). Then, by (2.9) and note that f + δA and
g are convex, one has

p ∈
⋂

u∗∈∂g(x0)

(∂(f + δA)(x0) − u∗).

This, together with (3.6), implies that

p ∈
⋂

u∗∈∂g(x0)

⋃
λ∈R

(T )
+

(∂f(x0) + NC(x0) +
∑

t∈T (x0)

λt∂ft(x0)− u∗).

Thus, (3.7) holds as p ∈ ∂̂(f − g + δA)(x0) is arbitrary. The proof is complete.

Theorem 3.1. Let x0 ∈ dom(f − g) ∩ A. If the family {f, g, δC; ft, gt : t ∈ T}
has the F -(BCQ) at x0, then it satisfies the local KKT condition at x0.

Proof. Suppose that the family {f, g, δC; ft, gt : t ∈ T} has the F -(BCQ) at x0.
Then, (3.5) holds. Let x0 be a local minimizer of problem (1.3). Then, by (2.8),

0 ∈ ∂̂(f − g + δA)(x0).

Combining this with (3.5) yields that

0 ∈
⋂

(u∗,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt(∂ft(x0) − v∗t ) − u∗),
which means that for each (u∗, v∗) ∈ ∂H(x0) there exists λ = (λt)t∈T ∈ R

(T )
+ such

that
u∗ +

∑
t∈T (x0)

λtv
∗
t ∈ ∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0).

Hence, the proof is complete.

Below we aim to the study the local KKT condition via convexification techniques.
We first give some notation. For each u∗ ∈ domg∗ and v∗ = (v∗t )t∈T ∈∏t∈T domg∗t ,
we define the convex function Fu∗

: X → R by

(3.8) Fu∗
(x) := f(x) − 〈u∗, x〉+ g∗(u∗), ∀x ∈ X,
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and the convex function family {F v∗
t : t ∈ T} with each F v∗

t : X → R is defined by

(3.9) F v∗
t (x) := ft(x) − 〈v∗t , x〉+ g∗t (v

∗
t ), ∀x ∈ X.

Then, by [28, Theorem 2.4.2 (vi)], we have that

∂Fu∗
(x) = ∂f(x) − u∗, ∀x ∈ domf

and for each t ∈ T ,

(3.10) ∂F v∗
t (x) = ∂ft(x) − v∗t , ∀x ∈ domft.

Furthermore, we use Av∗ to denote the solution set of the following inequality system:

(3.11) x ∈ C, F v∗
t (x) ≤ 0, t ∈ T.

Note that by (2.2), one has

(3.12) f − g ≤ Fu∗
and ft − gt ≤ F v∗

t for each t ∈ T.

Hence, we obtain that

(3.13) Av∗ ⊆ A.

Moreover, for each x0 ∈ X , let Tv∗(x0) denote the active index set of the system (3.11)
at x0, that is,

(3.14) Tv∗(x0) := {t ∈ T : F v∗
t (x0) = 0}.

Since for each v∗ ∈∏t∈T ∂gt(x0),

(3.15) F v∗
t (x0) = ft(x0)− gt(x0) for each t ∈ T

(see (2.3)), it follows that

(3.16) Tv∗(x0) = T (x0).

Theorem 3.2. Let x0 ∈ dom(f−g)∩A. Suppose that, for each v∗ ∈∏t∈T ∂gt(x0),
the family {δC ; F v∗

t : t ∈ T} has the (BCQ)f at x0. Then the family {f, g, δC; ft, gt :
t ∈ T} satisfies the local KKT condition at x0.

Proof. Let x0 be a local minimizer of (1.3). Take (u∗, v∗) ∈ ∂H(x0). Then,
one can observe from (3.12), (3.13) and (3.15) that x0 is also a local minimizer of the
following optimization problem:
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(3.17) Minimize Fu∗
(x)

s.t. x ∈ Av∗ .

Note that Fu∗ is a convex function and that Av∗ is a convex subset of X . It follows
that x0 is also a global minimizer of problem (3.17). Then, by the first order optimality
condition (see [28, Theorem 2.5.7]), one has that

(3.18) 0 ∈ ∂(Fu∗
+ δAv∗ )(x0) = ∂(f + δAv∗ )(x0) − u∗.

Moreover, by assumption that the family {δC ; F v∗
t : t ∈ T} has the (BCQ)f at x0

and also note (3.16), we have

∂(f + δAv∗ )(x0) ⊆ ∂f(x0) + NC(x0) + cone(
⋃

t∈T (x0)

∂F v∗
t (x0)).

Combining this with (3.18) and note (3.10), one can obtain that

u∗ ∈ ∂f(x0) + NC(x0) + cone(
⋃

t∈T (x0)

(∂ft(x0) − v∗t )).

This means that there exists λ ∈ R
(T )
+ such that

u∗ ∈ ∂f(x0) + NC(x0) +
∑

t∈T (x0)

λt(∂ft(x0)− v∗t ),

which is equivalent to that

u∗ +
∑

t∈T (x0)

λtv
∗
t ∈ ∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0).

Therefore, by the arbitraryness of (u∗, v∗) ∈ ∂H(x0), the result is seen to hold and the
proof is complete.

The following corollary follows directly from Theorem 3.2 or from Proposition 3.1
and Theorem 3.1.

Corollary 3.1. Let x0 ∈ dom(f − g) ∩ A. Suppose that gt = 0 for each t ∈ T
and that the family {δC ; ft : t ∈ T} has the (BCQ)f at x0. If x0 is a local minimizer
of problem (1.3), then the following inclusion holds:

(3.19) ∂g(x0) ⊆ ∂f(x0) + NC(x0) +
⋃

λ∈R
(T )
+

∑
t∈T (x0)

λt∂ft(x0).

Remark 3.2. In the special case when f, g, ft, t ∈ T are l.s.c., C is closed and
gt = 0 for each t ∈ T , Dinh, Mordukhovich and Nghia [4] introduced the following
closedness qualification condition (CQC):
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epi f∗ + epi δ∗C + cone

(⋃
t∈T

epi f∗
t

)
is weak∗ closed

to establish the necessary optimality condition (3.19) for the DC infinite program (1.3).
By [9, Corollary 3.4], if f, ft, t ∈ T are l.s.c. and C is closed, then (CQC) is equivalent
to the following conical (EHP )f for the family {δC ; ft : t ∈ T}:

epi(f + δA)∗ = epi f∗ + epi δ∗C + cone

(⋃
t∈T

epi f∗
t

)
,

which was introduced in [9, Definition 3.1]. Moreover, by [10, Proposition 3.1], we
know that the conical (EHP )f is stronger than (BCQ)f . Consequently, in the case
when f, g, ft, t ∈ T are l.s.c. and C is closed, if we replace the (BCQ)f by (CQC),
then the necessary optimality condition in Corollary 3.1 still holds. Thus, Corollary
3.1 extends the result [4, Theorem 5.2] to the case when the involved functions are not
necessarily l.s.c. and the involved set is not necessarily closed.

Recall from [10, Definition 3.1] that the family {δC ; ft : t ∈ T} is said to have the
(BCQ) at some point x0 ∈ Ã := {x ∈ C : ft(x) ≤ 0, t ∈ T} if

NÃ(x0) = NC(x0) + cone(
⋃

t∈T̃ (x0)

∂ft(x0)),

where T̃ (x0) = {t ∈ T : ft(x0) = 0}, and we say that the family {δC ; ft : t ∈ T} has
the (BCQ) if it has the (BCQ) at each point in Ã. Moreover, for a proper function
h : X → R and a nonempty subset Ω of X , following [25], we say that h is Fréchet
decomposable on Ω at x0 ∈ Ω if

(3.20) ∂̂(h + δΩ)(x0) ⊆ ∂̂h(x0) + N̂Ω(x0).

It happens, for example, when h is Fréchet differentiable at x0 ∈ Ω, or when h is a
proper convex function and Ω is a convex set such that h is continuous at some point
in domh ∩ Ω (cf. [24, Theorem 3.16] and [10, Lemma 2.1]).

Corollary 3.2. Let x0 ∈ dom(f−g)∩A. Suppose that, for each v∗ ∈∏t∈T ∂gt(x0),
the family {δC ; F v∗

t : t ∈ T} has the (BCQ) at x0 and that f is Fréchet decompos-
able on Av∗ at x0. Then the family {f, g, δC; ft, gt : t ∈ T} satisfies the local KKT
condition at x0.

Proof. Let v∗ = (v∗t )t∈T ∈ ∏t∈T ∂gt(x0). By Theorem 3.2, it suffices to show
that the family {δC ; F v∗

t : t ∈ T} has the (BCQ)f at x0, that is

(3.21) ∂(f + δAv∗ )(x0) ⊆ ∂f(x0) + NC(x0) + cone(
⋃

t∈Tv∗(x0)

∂F v∗
t (x0)).
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Since f is Fréchet decomposable on Av∗ at x0, also note that f + δAv∗ is a convex
function and Av∗ is a convex set, it follows that

(3.22) ∂(f + δAv∗ )(x0) ⊆ ∂f(x0) + NAv∗ (x0).

Moreover, by the assumption that the family {δC ; F v∗
t : t ∈ T} has the (BCQ) at

x0, we have

(3.23) NAv∗ (x0) = NC(x0) + cone(
⋃

t∈Tv∗(x0)

∂F v∗
t (x0)).

Thus, (3.21) follows immediately from (3.22) and (3.23), which completes the
proof.

Proposition 3.2. Let x0 ∈ dom(f−g)∩A. Suppose that f is Fréchet decomposable
on A at x0 and that for each v∗ = (v∗t ) ∈

∏
t∈T ∂gt(x0), the family {δC ; F v∗

t : t ∈ T}
has the (BCQ) at x0. Then the family {f, g, δC; ft, gt : t ∈ T} satisfies the local KKT
condition at x0.

Proof. Let x0 be a local minimizer of problem (1.3). Then, by (2.8), (2.9) and
the given assumption that f is Fréchet decomposable on A at x0, one has

(3.24)

0 ∈ ∂̂(f − g + δA)(x0) ⊆
⋂

u∗∈∂g(x0)

(∂̂(f + δA)(x0) − u∗)

⊆
⋂

u∗∈∂g(x0)

(∂f(x0) + N̂A(x0) − u∗)

(note that f is convex). We will show that

(3.25) N̂A(x0) ⊆ NC(x0) +
⋂

v∗∈∏t∈T ∂gt(x0)

⎛
⎜⎝ ⋃

λ∈R
(T )
+

( ∑
t∈T (x0)

λt(∂ft(x0) − v∗t )
)⎞⎟⎠ .

Granting this and (3.24) imply that

0 ∈
⋂

(u∗,v∗)∈∂H(x0)

⎛
⎜⎝∂f(x0) + NC(x0) +

⋃
λ∈R

(T )
+

( ∑
t∈T (x0)

λt(∂ft(x0) − v∗t )
)− u∗

⎞
⎟⎠ ,

which is equivalent to (3.4); and hence the family {f, g, δC; ft, gt : t ∈ T} satisfies
the local KKT condition at x0. It remains to show (3.25). Take x∗ ∈ N̂A(x0) and
v∗ ∈∏t∈T ∂gt(x0). Note (3.15), we have x0 ∈ Av∗ . Then, by (3.13) and (2.11),

(3.26) x∗ ∈ N̂Av∗ (x0) = NAv∗ (x0),
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where the equality holds because Av∗ is a convex subset of X . Thus, by the given
assumption that the family {δC ; F v∗

t : t ∈ T} has the (BCQ) at x0, we have that

(3.27)

x∗ ∈ NAv∗(x0) = NC(x0) +
⋃

λ∈R
(T )
+

( ∑
t∈Tv∗(x0)

λt∂F v∗
t (x0)

)

= NC(x0) +
⋃

λ∈R
(T )
+

( ∑
t∈T (x0)

λt(∂ft(x0) − v∗t )
)
,

where the second equality holds thanks to (3.10) and (3.16). Thus, (3.25) is proved as
x∗ ∈ N̂A(x0) and v∗ ∈∏t∈T ∂gt(x0) are arbitrary, which completes the proof.

The following proposition gives a sufficient condition ensuring the local KKT
condition in the case when T is a finite index set. Before it, we first give some
notation. Let conth denote the set of all points at which h is continuous, that is,

conth = {x ∈ X : h is continuous at x}.
Given v∗ ∈∏t∈T ∂gt(x0), we write

(3.28) TL := {t ∈ T : F v∗
t is an affine function} and TN := T \ TL.

Proposition 3.3. Let T = {1, 2, · · · , m} be a finite index set and let x0 ∈ dom(f−
g) ∩ A. Suppose that

(3.29)
⋂

t∈T (x0)

(cont ft) ∩ (cont f) ∩ C �= ∅,

and that for each v∗ ∈∏t∈T ∂gt(x0), there exists x̄ ∈ riC such that

(3.30)

{
F v∗

t (x̄) ≤ 0, t ∈ TL,

F v∗
t (x̄) < 0, t ∈ TN .

If C ∩ (∩t∈Tdom ft) is finite dimensional, then the family {f, g, δC; ft, gt : t ∈ T}
satisfies the local KKT condition at x0.

Proof. Suppose that C ∩ (∩t∈Tdom ft) is finite dimensional. To prove this
proposition, by Theorem 3.2, we need only to show that for each v∗ ∈∏t∈T ∂gt(x0),
the family {δC ; F v∗

t : t ∈ T} has the (BCQ)f at x0, i.e., the following inclusion
holds:

(3.31) ∂(f + δAv∗ )(x0) ⊆ ∂f(x0) + NC(x0) + cone(
⋃

t∈Tv∗(x0)

∂F v∗
t (x0)).

Let v∗ ∈∏t∈T ∂gt(x0). Consider the following convex optimization problem:

(P ) inf
x∈Av∗

f(x)
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and its corresponding Lagrangian dual problem:
Maximize infx∈C{f(x) +

∑
t∈T λtF

v∗
t (x)}

s.t. λ ∈ R
(T )
+ .

Let v(P ) denote the optimal objective value of problem (P ). If v(P ) = −∞, then
∂(f + δAv∗ )(x0) = ∅, and hence (3.31) holds automatically. Below we assume that
v(P ) ∈ R. Let Y0 denote the subspace spanned by C ∩ (∩t∈Tdom ft). Then Y0 is
finite dimensional and Av∗ is a convex subset of Y0. Moreover, by the assumption,
there exists x̄ ∈ riC such that (3.30) holds. Thus, [26, Theorem 28.2] is applicable in
Y0 to get that

inf
x∈Av∗

{f(x)−〈p, x〉} = max
λ∈R

(T )
+

inf
x∈C

{f(x)−〈p, x〉+
∑
t∈T

λtF
v∗
t (x)} for each p ∈ X∗.

Then, by [9, Theorem 5.2] and [10, Proposition 3.1], one has that

(3.32) ∂(f + δAv∗ )(x0) =
⋃

λ∈R
(T )
+

∂(f + δC +
∑

t∈Tv∗(x0)

λtF
v∗
t )(x0).

Note that for each t ∈ T , contF v∗
t = cont ft. Thus, by (3.16) and (3.29),⋂

t∈Tv∗(x0)

(contF v∗
t ) ∩ (contf) ∩ C �= ∅.

Then, by [28, Theorem 2.4.2 (vi) and Theorem 2.8.7 (iii)], we can obtain that for each
λ ∈ R

(T )
+ ,

∂
(
f + δC +

∑
t∈Tv∗(x0)

λtF
v∗
t

)
(x0) = ∂f(x0) + NC(x0) +

∑
t∈Tv∗(x0)

λt∂F v∗
t (x0).

This, together with (3.32), implies that (3.31) holds. The proof is complete.

4. GLOBAL OPTIMALITY CONDITION

Throughout this section, the notations f, g, C, {ft, gt : t ∈ T}, A and T are as
explained at the beginning of Section 3. The main aim of this section is to study the
global optimality condition for DC infinite optimization problem (1.3).

Definition 4.3. Let x0 ∈ dom(f − g) ∩ A. Consider the following statements:
(i) x0 is a global minimizer of problem (1.3).
(ii) ∀(u∗, v∗) ∈ ∂H(x0), ∃λ = (λt) ∈ R

(T )
+ such that

(4.1) u∗ +
∑

t∈T (x0)

λtv
∗
t ∈ ∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0).

The family {f, g, δC; ft, gt : t ∈ T} is said to satisfy the global KKT condition at x0

if (i) ⇔ (ii). We say that the family {f, g, δC; ft, gt : t ∈ T} satisfies the global KKT
condition if it satisfies the global KKT condition at each point in dom(f − g) ∩ A.
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In view of the first order optimality condition (see [28, Theorem 2.5.7]), the family
{f, g, δC; ft, gt : t ∈ T} satisfies the global KKT condition at x0 ∈ dom(f − g) ∩ A
if and only if the following equivalence holds:

(4.2)

0 ∈ ∂(f − g + δA)(x0) ⇐⇒ 0 ∈
⋂

(u∗,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂f(x0)

+NC(x0)+
∑

t∈T (x0)

λt(∂ft(x0)−v∗t ) − u∗).
Definition 4.4. Let x0 ∈ dom(f − g)∩A. The family {f, g, δC; ft, gt : t ∈ T} is

said to have
(i) the (BCQ) at x0 if

(4.3)

∂ (f − g + δA)(x0)

=
⋂

(u∗,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂f(x0)+NC(x0)+

∑
t∈T (x0)

λt(∂ft(x0)−v∗t )− u∗);

(ii) the (BCQ) if it has the (BCQ) at each point in dom (f − g) ∩ A.

Remark 4.3. In the special case when g = gt = 0, t ∈ T , the (BCQ) for the family
{f, g, δC; ft, gt : t ∈ T} reduces to the (BCQ)f for the family {δC ; ft : t ∈ T}.

Proposition 4.4. Let gt = 0 for each t ∈ T and let x0 ∈ dom(f −g)∩A. Suppose
that the family {δC ; ft : t ∈ T} has the (BCQ)f at x0. Then

(4.4)

∂ (f − g + δA)(x0)

⊆
⋂

u∗∈∂g(x0)

⋃
λ∈R

(T )
+

(
∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0)− u∗).

Proof. If ∂g(x0) = ∅, then (4.4) holds automatically. Below we assume
that ∂g(x0) �= ∅. Take p ∈ ∂(f − g + δA)(x0). Then, by (2.7), we have that
p ∈ ∂̂(f − g + δA)(x0) and hence, by Proposition 3.1,

p ∈
⋂

u∗∈∂g(x0)

⋃
λ∈R

(T )
+

(
∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0) − u∗).
Therefore, (4.4) holds as p is arbitrary. The proof is complete.

Theorem 4.1. Let x0 ∈ dom(f − g)∩A. Then the family {f, g, δC; ft, gt : t ∈ T}
has the (BCQ) at x0 if and only if for each p ∈ X∗, the family {f + p, g, δC; ft, gt :
t ∈ T} satisfies the global KKT condition at x0.
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Proof. For each p ∈ X∗, the family {f + p, g, δC; ft, gt : t ∈ T} satisfies the
global KKT condition at x0 if and only if for each p ∈ X∗,

0 ∈ ∂(f + p − g + δA)(x0) ⇐⇒ 0 ∈
⋂

(u∗,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂(f + p)(x0)

+NC(x0) +
∑

t∈T (x0)

λt(∂ft(x0) − v∗t ) − u∗),
or, equivalently, for each p ∈ X∗,

0− p ∈ ∂(f − g + δA)(x0) ⇐⇒ −p ∈
⋂

(u∗,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂f(x0)

+NC(x0) +
∑

t∈T (x0)

λt(∂ft(x0) − v∗t ) − u∗),
which is the same with

∂(f − g + δA)(x0)

=
⋂

(u∗ ,v∗)∈∂H(x0)

⋃
λ∈R

(T )
+

(
∂f(x0) + NC(x0) +

∑
t∈T (x0)

λt(∂ft(x0) − v∗t ) − u∗).
Hence, the result is seen to hold.

Corollary 4.3. If the family {f, g, δC; ft, gt : t ∈ T} has the (BCQ), then it
satisfies the global KKT condition.

Note Remark 4.3, the following corollary is a direct consequence of Theorem 4.1,
which was given in [10, Theorem 4.1].

Corollary 4.4. Let g = gt = 0, t ∈ T and let x0 ∈ domf ∩ A. Then the family
{δC ; ft : t ∈ T} has the (BCQ)f at x0 if and only if the following equivalence holds
for each p ∈ X∗:

[f(x0) + 〈p, x0〉 = minx∈A(f(x) + 〈p, x〉)]
⇐⇒ [∃λ ∈ R

(T )
+ , s.t. 0 ∈ ∂(f + p)(x0) + NC(x0) +

∑
t∈T (x0)

λt∂ft(x0)].
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