TAIWANESE JOURNAL OF MATHEMATICS Vol. 18, No. 3, pp. 809-815, June 2014 DOI: 10.11650/tjm.18.2014.3349 This paper is available online at http://journal.taiwanmathsoc.org.tw

ANALYSIS OF PENALTY PARAMETERS IN BINARY CONSTRAINED EXTREMUM PROBLEMS

Carla Antoni and Mario Pedrazzoli

Abstract. A given discrete constrained extremum problem can be associated with an equivalent continuous one, the equivalence being assured by the equality of their sets of solutions. When the equivalent problem is a penalized one, a crucial question is the size of the penalty parameter. The present paper concerns the case where the problem is a 0-1 extremum (linear) one.

1. INTRODUCTION AND NOTATION

Consider the constrained extremum problem

(1)
$$\min f(x) \quad \text{s.t.} \quad x \in K,$$

where f is a real-valued function on a compact set $K \subset \mathbb{R}^n$. A problem with the same set of solutions of (1) is said equivalent to (1). The replacement of (1) with an equivalent one can be profitable if, for example, (1) is a discrete problem and the equivalent problem is a continuous one.

An equivalent problem of (1) can be of the kind

(2)
$$\min f(x) \quad \text{s.t.} \quad x \in K^*,$$

where K^* is a compact supset of K; in this case (2) is called a relaxed problem of (1). Sometimes (2) can be solved more easily than (1) and, if a solution of (2) belongs to K, this point solves (1) too. If this does not happen, other methods can be adopted: among them, exact penalty methods.

A penalized problem minimizes a function $f + \mu \Phi$ on a compact K^* including K, Φ being a suitable penalty function and μ being a suitable positive real parameter, called penalty parameter; statements of exact penalty show the penalized problem

(3)
$$\min\left[f(x) + \mu\Phi(x)\right] \text{ s.t. } x \in K$$

Received May 3, 2013, accepted November 7, 2013.

Communicated by Franco Giannessi.

2010 Mathematics Subject Classification: 05B99, 65K05, 90Cxx, 90C05, 90C09, 90C10.

Key words and phrases: Penalty problem, Relaxed problem, Exact penalty, Penalty parameter, Penalty function.

has the same set of solutions of the given one (1). In this approaches, a first crucial question is to avoid to work with too large μ ; the best goal is to find the minimum μ_0 such that, for every μ greater than μ_0 , (1) and (3) are equivalent. If this goal cannot be gained easily, it is significant to find a bound $\bar{\mu}$ such that, for every μ greater than $\bar{\mu}$, the equivalence of the problems is assured; in this case, a possible bound less than $\bar{\mu}$ represents an improvement of the previous one. To this aim, in this paper, the parameter introduced in [4], for a zero-one problem is improved starting from results of [2].

The considered problem is the zero-one problem dealt in [4] by Kalantari and Rosen:

(4)
$$\min\left(-c^{t}x\right) \text{ s.t. } x \in R \cap Z,$$

where R is a polyhedron of \mathbb{R}^n , $Z = \{0,1\}^n$ is the set of the vertices of the set $X = \{x \in \mathbb{R}^n : 0 \le x_i \le 1\}$, c and x are in \mathbb{R}^n and c^t denotes the transpose of c; without loss of generality, c is supposed to have non-negative components.

The approach proposed in [4] starts from the relaxed problem

(5)
$$\min\left(-c^{t}x\right) \text{ s.t. } x \in R \cap X;$$

if a solution x_0 of (5) does not belong to Z, the problem

(6)
$$\max g(x) \text{ s.t. } x \in \tilde{F},$$

where $g(x) = \sum_{i=1}^{n} (x_i - 1/2)^2$, and \hat{F} denotes the set of the vertices of $R \cap X$ not in Z, is considered. Denoted by \bar{x} a solution of (6), the equivalence between (4) and

(7)
$$\min\left[-c^{t}x - \mu g(x)\right] \text{ s.t. } x \in R \cap X,$$

when $\mu > \mu_R$, is proved, being

$$\mu_R = \frac{c^t x_0}{n/4 - g(\bar{x})}.$$

In order to improve a result of [4], we refer to [2], where exact penalty results concern more general cases: the problem (4) satisfies the hypothesis of Theorem 3.1 of [2], then the equivalence between (4) and the following penalized extremum problem

(8)
$$\min\left[-c^{t}x + \mu\varphi(x)\right] \text{ s.t. } x \in R \cap X,$$

for a suitable function φ and parameter μ holds. More precisely, φ is the real-valued function defined by

(9)
$$\varphi(x) = \sum_{i=1}^{n} x_i (1 - x_i),$$

and μ is any real parameter greater than μ_G , where μ_G is the amount that will be described. Observe that, since $\varphi = n/4 - g$, the penalty problems (7) and (8) differ only for the constant $\mu \cdot n/4$.

In the sequel, the following notation is adopted.

For a subset A of \mathbb{R}^n , A^c denotes the complement of A with respect to X; for a point $x \in \mathbb{R}^n$, d(x, A) denotes the euclidean distance between x and the set A; for $y \in \mathbb{R}^n$ and $r \in \mathbb{R}_+$, $B(y, r) = \{x \in \mathbb{R}^n : d(x, y) < r\}$.

Let $\rho \in]0,1[$ and $\{z_i, i = 1, \ldots, k\} = R \cap Z$; put $X_\rho := (X \cap R) \setminus \left(\cup_{i=1}^k B(z_i, \rho) \right)$, and, finally, if

$$\lambda_{\rho} := \frac{\max_{x \in R \cap X} \left(-c^{t}x \right) - \min_{x \in R \cap X} \left(-c^{t}x \right)}{\min_{x \in X_{\rho}} \varphi(x)}.$$

define

$$\mu_G := \max\left(\frac{\parallel c \parallel}{1-\rho}, \lambda_\rho\right).$$

Theorem 3.1 of [2] states the equivalence between (4) and (8) for any $\mu > \mu_G$. Since μ_G depends from the radius ρ , the notation $\mu_{G,\rho}$ is used instead of μ_G .

Section 2 deals with cases in which $\mu_G \leq \mu_R$ and conditions such that $\mu_G < \mu_R$ are given.

2. IMPROVEMENT OF THE PENALTY PARAMETER

The starting point of the present investigation is the comparison between μ_R and λ_{ρ} . To this end, let us consider the following

Lemma 2.1. Let \bar{x} be a solution of (6) and $\rho \in]0,1[$. If

(10)
$$\min_{x \in X_{\rho}} \varphi(x) \ge \varphi(\bar{x}),$$

then

$$\lambda_{\rho} \leq \mu_R.$$

Proof. Since c has non negative components, then

$$\max_{x \in R \cap X} (-c^t x) - \min_{x \in R \cap X} (-c^t x) \le -\min_{x \in R \cap X} (-c^t x) = c^t x_0.$$

Since $\varphi(\bar{x}) > 0$ and $\varphi(\bar{x}) = n/4 - g(\bar{x})$, then (10) implies the thesis:

$$\lambda_{\rho} = \frac{(\max_{x \in R \cap X} (-c^t x)) - (\min_{x \in R \cap X} (-c^t x))}{\min_{x \in X_{\rho}} \varphi(x)} \le \frac{c^t x_0}{\varphi(\bar{x})} = \mu_R.$$

Lemma 2.2. Let \bar{x} a solution of (6); if

(11)
$$g(\bar{x}) \ge \frac{n-1}{4}$$

then a radius $\bar{\rho} \in [0, 1/2]$ is determined such that, for all $\rho \in [\bar{\rho}, 1]$, (10) holds.

Proof. (11) ensures that the intersection between the sphere

$$\Gamma = \{ x \in \mathbb{R}^n : g(x) = g(\bar{x}) \}$$

and any one-dimensional face of the hypercube X is non empty; whitout any loss of generality, consider the one dimensional face

$$F_1 = \{ x \in \mathbb{R}^n : x = (x_1, 0, \dots, 0), \ x_1 \in [0, 1] \},\$$

and put $\bar{\rho} = d(0, F_1 \cap \Gamma)$ where 0 denotes the origin of \mathbb{R}^n . Now, observe that for all $x \in \{x \in \mathbb{R}^n : g > g(\bar{x})\} \cap R \cap X$, there is a $z \in Z$ such that $x \in B(z, \bar{\rho})$. The inclusion $\hat{F} \subset \{x \in \mathbb{R}^n : g \leq g(\bar{x})\}$ and the convexity of $R \cap X$ implies $z \in Z \cap R$ and then $x \notin X_{\bar{\rho}}$. Conclusion:

(12)
$$X_{\bar{\rho}} \subseteq \{x \in \mathbb{R}^n : g(x) \le g(\bar{x})\}.$$

Since, for all $\rho \in [\bar{\rho}, 1[,$

$$X_{\rho} \subseteq X_{\bar{\rho}} \subseteq \{x \in \mathbb{R}^n : g(x) \le g(\bar{x})\} = \{x \in \mathbb{R}^n : \varphi(x) \ge \varphi(\bar{x})\},\$$

the thesis follows.

In the sequel,

$$\hat{\rho} := d(\bar{x}, R \cap Z), \quad \bar{\rho} := d(0, F_1 \cap \Gamma),$$

being $F_1 = \{x = (x_1, 0, ..., 0) \in \mathbb{R}^n, x_1 \in [0, 1]\}, \Gamma = \{x \in \mathbb{R}^n : g(x) = g(\bar{x})\}.$ Observe $\bar{\rho}$ is uniquely determined even if \bar{x} is not the unique solution of (6). The following result gives sufficient conditions ensuring it holds $\mu_{G,\bar{\rho}} \leq \mu_R$.

Theorem 2.1. Let \bar{x} be a solution of (6) satisfying (11) and let x_0 be a solution of (5). If

(13)
$$\frac{c^t x_0}{\parallel c \parallel} \ge \bar{\rho}$$

then $\mu_{G,\bar{\rho}} \leq \mu_R$.

813

Proof. Lemma 2.2 implies

(14)
$$\lambda_{\bar{\rho}} \leq \mu_R$$

Besides, since $\varphi(\bar{x}) = \bar{\rho}(1 - \bar{\rho})$, thanks to (13), it holds

(15)
$$\frac{\parallel c \parallel}{1 - \bar{\rho}} \le \frac{c^t x_0}{\bar{\rho}(1 - \bar{\rho})} = \mu_R$$

The thesis follows from (14) and (15).

Theorem 2.1 assures the existence of cases in which $\mu_{G,\rho} < \mu_R$, as showed in the following corollaries.

Corollary 2.1. Under the hypotheses of Theorem 2.1, let the inequality (13) be strict. If $0 \notin R \cap X$, then $\mu_{G,\bar{\rho}} < \mu_R$.

Proof. Since $\varphi(\bar{x}) = \bar{\rho}(1-\bar{\rho})$, the inequality $c^t x_0 / ||c|| > \bar{\rho}$ is equivalent to

(16)
$$\frac{\parallel c \parallel}{1 - \bar{\rho}} < \mu_R.$$

Moreover the hyphotesis $0 \notin R \cap X$ implies $\max_{x \in R \cap X} (-\langle c, x \rangle) < 0$, and Theorem 2.1 assures $\min_{x \in X_{\bar{\rho}}} \varphi(x) \ge \varphi(\bar{x})$. Then

(17)
$$\lambda_{\bar{\rho}} = \frac{\max_{x \in R \cap X} \left(-c^t x \right) - \min_{x \in R \cap X} \left(-c^t x \right)}{\min_{x \in X_{\bar{\rho}}} \varphi(x)} < \frac{c^t x_0}{\varphi(\bar{x})} = \mu_R.$$

(16) and (17) imply the thesis.

Corollary 2.2. Under the hypotheses of Theorem 2.1, let \bar{x} be the unique solution of (6). If $\hat{\rho} \leq \bar{\rho}$ and

(18)
$$\frac{\parallel c \parallel}{1 - \bar{\rho}} < \lambda_{\bar{\rho}},$$

then there is ρ^* such that

(19)
$$\forall \rho \in]\bar{\rho}, \rho^*[, \quad \mu_{G,\rho} < \mu_{G,\bar{\rho}}.$$

Proof. The strict inequality (18) implies there exists $\rho^* > \bar{\rho}$ such that,

(20)
$$\forall \rho \in]\bar{\rho}, \rho^*[, \quad \frac{\parallel c \parallel}{1 - \bar{\rho}} < \frac{\parallel c \parallel}{1 - \rho} < \frac{\parallel c \parallel}{1 - \rho^*} = \lambda_{\bar{\rho}}.$$

To have (19) it is enough to proove that,

Carla Antoni and Mario Pedrazzoli

(21)
$$\forall \rho \in]\bar{\rho}, \rho^*[, \quad \lambda_\rho < \lambda_{\bar{\rho}},$$

and this is assured if, $\forall \rho \in]\bar{\rho}, \rho^*[, \min_{X_\rho} \varphi(x) > \varphi(\bar{x})]$. Being X_ρ a compact set this is equivalent to have $X_\rho \subseteq \{\varphi > \varphi(\bar{x})\}$ that is

$$(22) X_{\rho} \subseteq \{g < g(\bar{x})\}$$

Ab absurdo, let $\tilde{x} \in X_{\rho} \cap \{g \geq g(\bar{x})\}$. Since $\rho > \bar{\rho}$, $X_{\rho} \subseteq X_{\bar{\rho}} \subseteq \{g \leq g(\bar{x})\}$, then $g(\tilde{x}) = g(\bar{x})$. Moreover $\tilde{x} \neq \bar{x}$: in fact, since $\rho > \hat{\rho}$ there is $\hat{z} \in Z \cap R$ such that $\bar{x} \in B(\hat{z}, \rho)$ and then $\bar{x} \notin X_{\rho}$. On the contrary, since $\tilde{x} \notin X_{\rho}$, there is $\tilde{z} \in Z \setminus R$ such that $\tilde{x} \in B(\tilde{z}, \rho)$. Now, put

$$A = B(\tilde{z}, \rho) \cap \{g > g(\bar{x})\}$$

and observe: \bar{x} is the unique solution of (6) so $A \cap \tilde{F} = \emptyset$; moreover $\hat{z} \in Z \setminus R$ and $\rho < 1$ imply $A \cap (R \cap Z) = \emptyset$. Finally, since $A \cap (conv(A^c)) = \emptyset$ it follows that $A \cap (R \cap X) = \emptyset$. This implies $\tilde{x} \in \hat{F}$, and this is absurd being \bar{x} is the unique solution of (6). So (22) follows; (20) and (21) imply the thesis.

The following result completes the study when $\hat{\rho} > \bar{\rho}$.

Corollary 2.3. Under the hypotheses of Theorem 2.1, let \bar{x} be the unique solution of (6). If $\bar{\rho} < \hat{\rho} < 1$ and

$$\frac{\parallel c \parallel}{1 - \hat{\rho}} < \lambda_{\hat{\rho}}$$

then there exists ρ^* such that, $\forall \rho \in]\hat{\rho}, \rho^*[, \mu_{G,\rho} < \mu_{G,\hat{\rho}}.$

Proof. The proof is the same of Corollary 2.2 where $\bar{\rho}$ is replaced with $\hat{\rho}$.

Remark 2.1. If \bar{x} is not the unique solution of (6), Corollary 2.2 and Corollary 2.3 can be generalized. If $\bar{x}^1, \ldots, \bar{x}^k$ are the solutions, it is enough to replace the amount $\hat{\rho}$ with the following one

$$\max \{ d(\bar{x}^j, R \cap Z), \ j = 1, \dots, k \}.$$

3. CONCLUDING REMARKS

The paper shows a class of problems for which the penalty parameter of [4] can be improved. In the present research the computational cost of the two methods is not analysed; indeed, none of them can be considered for solving a concrete (large-scale) problem. It is well known that no rigorous method can be used for solving efficiently such problems and that a concrete one requires an heuristic procedure. The present study aims at providing such a procedure with rigorous methods. It would be interesting to test computationally heuristic procedures utilizing the above approaches. Moreover, observe that the request

$$g(\bar{x}) \ge \frac{n-1}{4}$$

about the solution \bar{x} of (6), is verified if there is a point \tilde{x} such that

$$g(\tilde{x}) \ge \frac{n-1}{4}.$$

So Theorem 2.1 don't need solve (6).

Finally, note that, differently from what has been said in [4], the improvement of μ_R is possible even if the solution x_0 of (5) coincides with \bar{x} .

References

- 1. C. Antoni and F. Giannessi, On the equivalence, via relaxation-penalization, between vector generalized systems, *Acta Matematica Vietnamica*, **22(2)** (1997), 567-588.
- F. Giannessi and F. Niccolucci, Connections between nonlinear and integer programming problems, in: *Symposia Mathematica*, Academic Press, New York, 19, 1976, pp. 161-176.
- 3. F. Giannessi and F. Tardella, Connections between nonlinear programming and discrete optimization, in: *Handbook of Combinatorial Optimization*, D. Z. Du and P. M. Pardalos (eds.), Kluwer Academic Publishers, 1, 1998, pp. 149-188.
- 4. B. Kalantari and J. B. Rosen, Penalty for zero-one integer programming problems, *Mathematical Programming*, North Holland Publishing Company, 1982, pp. 229-232.
- 5. M. Ragavachari, On the connection between zero-one integer programming and concave programming under linear constraints, *Operation Research*, **17** (1969), 680-683.

Carla Antoni Naval Academy 72 Viale Italia Livorno, Italy E-mail: carla.antoni5@gmail.com

Mario Pedrazzoli Department of Mathematics University of Pisa Italy E-mail: pedrazzoli.m@alice.it 815