ANALYSIS OF PENALTY PARAMETERS IN BINARY CONSTRAINED EXTREMUM PROBLEMS

Carla Antoni and Mario Pedrazzoli

Abstract

A given discrete constrained extremum problem can be associated with an equivalent continuous one, the equivalence being assured by the equality of their sets of solutions. When the equivalent problem is a penalized one, a crucial question is the size of the penalty parameter. The present paper concerns the case where the problem is a $0-1$ extremum (linear) one.

1. Introduction and Notation

Consider the constrained extremum problem

$$
\begin{equation*}
\min f(x) \text { s.t. } x \in K \tag{1}
\end{equation*}
$$

where f is a real-valued function on a compact set $K \subset \mathbb{R}^{n}$. A problem with the same set of solutions of (1) is said equivalent to (1). The replacement of (1) with an equivalent one can be profitable if, for example, (1) is a discrete problem and the equivalent problem is a continuous one.

An equivalent problem of (1) can be of the kind

$$
\begin{equation*}
\min f(x) \text { s.t. } x \in K^{*}, \tag{2}
\end{equation*}
$$

where K^{*} is a compact supset of K; in this case (2) is called a relaxed problem of (1). Sometimes (2) can be solved more easily than (1) and, if a solution of (2) belongs to K, this point solves (1) too. If this does not happen, other methods can be adopted: among them, exact penalty methods.

A penalized problem miminizes a funtion $f+\mu \Phi$ on a compact K^{*} including K, Φ being a suitable penalty function and μ being a suitable positive real parameter, called penalty parameter; statements of exact penalty show the penalized problem

$$
\begin{equation*}
\min [f(x)+\mu \Phi(x)] \text { s.t. } x \in K^{*} \tag{3}
\end{equation*}
$$

[^0]has the same set of solutions of the given one (1). In this approaches, a first crucial question is to avoid to work with too large μ; the best goal is to find the minimum μ_{0} such that, for every μ greater than μ_{0}, (1) and (3) are equivalent. If this goal cannot be gained easily, it is significant to find a bound $\bar{\mu}$ such that, for every μ greater than $\bar{\mu}$, the equivalence of the problems is assured; in this case, a possible bound less than $\bar{\mu}$ represents an improvement of the previous one. To this aim, in this paper, the parameter introduced in [4], for a zero-one problem is improved starting from results of [2].

The considered problem is the zero-one problem dealt in [4] by Kalantari and Rosen:

$$
\begin{equation*}
\min \left(-c^{t} x\right) \text { s.t. } x \in R \cap Z \tag{4}
\end{equation*}
$$

where R is a polyhedron of $\mathbb{R}^{n}, Z=\{0,1\}^{n}$ is the set of the vertices of the set $X=\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq 1\right\}, c$ and x are in \mathbb{R}^{n} and c^{t} denotes the transpose of c; without loss of generality, c is supposed to have non-negative components.

The approach proposed in [4] starts from the relaxed problem

$$
\begin{equation*}
\min \left(-c^{t} x\right) \text { s.t. } x \in R \cap X \tag{5}
\end{equation*}
$$

if a solution x_{0} of (5) does not belong to Z, the problem

$$
\begin{equation*}
\max g(x) \text { s.t. } x \in \hat{F} \tag{6}
\end{equation*}
$$

where $g(x)=\sum_{i=1}^{n}\left(x_{i}-1 / 2\right)^{2}$, and \hat{F} denotes the set of the vertices of $R \cap X$ not in Z, is considered. Denoted by \bar{x} a solution of (6), the equivalence between (4) and

$$
\begin{equation*}
\min \left[-c^{t} x-\mu g(x)\right] \text { s.t. } x \in R \cap X \tag{7}
\end{equation*}
$$

when $\mu>\mu_{R}$, is proved, being

$$
\mu_{R}=\frac{c^{t} x_{0}}{n / 4-g(\bar{x})}
$$

In order to improve a result of [4], we refer to [2], where exact penalty results concern more general cases: the problem (4) satisfies the hypothesis of Theorem 3.1 of [2], then the equivalence between (4) and the following penalized extremum problem

$$
\begin{equation*}
\min \left[-c^{t} x+\mu \varphi(x)\right] \text { s.t. } x \in R \cap X \tag{8}
\end{equation*}
$$

for a suitable function φ and parameter μ holds. More precisely, φ is the real-valued function defined by

$$
\begin{equation*}
\varphi(x)=\sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \tag{9}
\end{equation*}
$$

and μ is any real parameter greater than μ_{G}, where μ_{G} is the amount that will be described. Observe that, since $\varphi=n / 4-g$, the penalty problems (7) and (8) differ only for the constant $\mu \cdot n / 4$.

In the sequel, the following notation is adopted.
For a subset A of \mathbb{R}^{n}, A^{c} denotes the complement of A with respect to X; for a point $x \in \mathbb{R}^{n}, d(x, A)$ denotes the euclidean distance between x and the set A; for $y \in \mathbb{R}^{n}$ and $r \in \mathbb{R}_{+}, B(y, r)=\left\{x \in \mathbb{R}^{n}: d(x, y)<r\right\}$.

Let $\rho \in] 0,1\left[\right.$ and $\left\{z_{i}, i=1, \ldots, k\right\}=R \cap Z$; put $X_{\rho}:=(X \cap R) \backslash\left(\cup_{i=1}^{k} B\left(z_{i}, \rho\right)\right)$, and, finally, if

$$
\lambda_{\rho}:=\frac{\max _{x \in R \cap X}\left(-c^{t} x\right)-\min _{x \in R \cap X}\left(-c^{t} x\right)}{\min _{x \in X_{\rho}} \varphi(x)} .
$$

define

$$
\mu_{G}:=\max \left(\frac{\|c\|}{1-\rho}, \lambda_{\rho}\right) .
$$

Theorem 3.1 of [2] states the equivalence between (4) and (8) for any $\mu>\mu_{G}$. Since μ_{G} depends from the radius ρ, the notation $\mu_{G, \rho}$ is used instead of μ_{G}.

Section 2 deals with cases in which $\mu_{G} \leq \mu_{R}$ and conditions such that $\mu_{G}<\mu_{R}$ are given.

2. Improvement of the Penalty Parameter

The starting point of the present investigation is the comparison between μ_{R} and λ_{ρ}. To this end, let us consider the following

Lemma 2.1. Let \bar{x} be a solution of (6) and $\rho \in] 0,1[$. If

$$
\begin{equation*}
\min _{x \in X_{\rho}} \varphi(x) \geq \varphi(\bar{x}), \tag{10}
\end{equation*}
$$

then

$$
\lambda_{\rho} \leq \mu_{R}
$$

Proof. Since c has non negative components, then

$$
\max _{x \in R \cap X}\left(-c^{t} x\right)-\min _{x \in R \cap X}\left(-c^{t} x\right) \leq-\min _{x \in R \cap X}\left(-c^{t} x\right)=c^{t} x_{0}
$$

Since $\varphi(\bar{x})>0$ and $\varphi(\bar{x})=n / 4-g(\bar{x})$, then (10) implies the thesis:

$$
\lambda_{\rho}=\frac{\left(\max _{x \in R \cap X}\left(-c^{t} x\right)\right)-\left(\min _{x \in R \cap X}\left(-c^{t} x\right)\right)}{\min _{x \in X \rho} \varphi(x)} \leq \frac{c^{t} x_{0}}{\varphi(\bar{x})}=\mu_{R} .
$$

Lemma 2.2. Let \bar{x} a solution of (6); if

$$
\begin{equation*}
g(\bar{x}) \geq \frac{n-1}{4} \tag{11}
\end{equation*}
$$

then a radius $\bar{\rho} \in] 0,1 / 2]$ is determined such that, for all $\rho \in[\bar{\rho}, 1[$, (10) holds.

Proof. (11) ensures that the intersection between the sphère

$$
\Gamma=\left\{x \in \mathbb{R}^{n}: g(x)=g(\bar{x})\right\}
$$

and any one-dimensional face of the hypercube X is non empty; whitout any loss of generality, consider the one dimensional face

$$
F_{1}=\left\{x \in \mathbb{R}^{n}: x=\left(x_{1}, 0, \ldots, 0\right), x_{1} \in[0,1]\right\}
$$

and put $\bar{\rho}=d\left(0, F_{1} \cap \Gamma\right)$ where 0 denotes the origin of \mathbb{R}^{n}. Now, observe that for all $x \in\left\{x \in \mathbb{R}^{n}: g>g(\bar{x})\right\} \cap R \cap X$, there is a $z \in Z$ such that $x \in B(z, \bar{\rho})$. The inclusion $\hat{F} \subset\left\{x \in \mathbb{R}^{n}: g \leq g(\bar{x})\right\}$ and the convexity of $R \cap X$ implies $z \in Z \cap R$ and then $x \notin X_{\bar{\rho}}$. Conclusion:

$$
\begin{equation*}
X_{\bar{\rho}} \subseteq\left\{x \in \mathbb{R}^{n}: g(x) \leq g(\bar{x})\right\} \tag{12}
\end{equation*}
$$

Since, for all $\rho \in[\bar{\rho}, 1[$,

$$
X_{\rho} \subseteq X_{\bar{\rho}} \subseteq\left\{x \in \mathbb{R}^{n}: g(x) \leq g(\bar{x})\right\}=\left\{x \in \mathbb{R}^{n}: \varphi(x) \geq \varphi(\bar{x})\right\}
$$

the thesis follows.
In the sequel,

$$
\hat{\rho}:=d(\bar{x}, R \cap Z), \quad \bar{\rho}:=d\left(0, F_{1} \cap \Gamma\right)
$$

being $F_{1}=\left\{x=\left(x_{1}, 0, \ldots, 0\right) \in \mathbb{R}^{n}, x_{1} \in[0,1]\right\}, \Gamma=\left\{x \in \mathbb{R}^{n}: g(x)=g(\bar{x})\right\}$.
Observe $\bar{\rho}$ is uniquely determined even if \bar{x} is not the unique solution of (6).
The following result gives sufficient conditions ensuring it holds $\mu_{G, \bar{\rho}} \leq \mu_{R}$.
Theorem 2.1. Let \bar{x} be a solution of (6) satisfying (11) and let x_{0} be a solution of (5). If

$$
\begin{equation*}
\frac{c^{t} x_{0}}{\|c\|} \geq \bar{\rho} \tag{13}
\end{equation*}
$$

then $\mu_{G, \bar{\rho}} \leq \mu_{R}$.

Proof. Lemma 2.2 implies

$$
\begin{equation*}
\lambda_{\bar{\rho}} \leq \mu_{R} \tag{14}
\end{equation*}
$$

Besides, since $\varphi(\bar{x})=\bar{\rho}(1-\bar{\rho})$, thanks to (13), it holds

$$
\begin{equation*}
\frac{\|c\|}{1-\bar{\rho}} \leq \frac{c^{t} x_{0}}{\bar{\rho}(1-\bar{\rho})}=\mu_{R} . \tag{15}
\end{equation*}
$$

The thesis follows from (14) and (15).
Theorem 2.1 assures the existence of cases in which $\mu_{G, \rho}<\mu_{R}$, as showed in the following corollaries.

Corollary 2.1. Under the hypotheses of Theorem 2.1, let the inequality (13) be strict. If $0 \notin R \cap X$, then $\mu_{G, \bar{\rho}}<\mu_{R}$.

Proof. Since $\varphi(\bar{x})=\bar{\rho}(1-\bar{\rho})$, the inequality $c^{t} x_{0} /\|c\|>\bar{\rho}$ is equivalent to

$$
\begin{equation*}
\frac{\|c\|}{1-\bar{\rho}}<\mu_{R} . \tag{16}
\end{equation*}
$$

Moreover the hyphotesis $0 \notin R \cap X$ implies $\max _{x \in R \cap X}(-\langle c, x\rangle)<0$, and Theorem 2.1 assures $\min _{x \in X_{\bar{\rho}}} \varphi(x) \geq \varphi(\bar{x})$. Then

$$
\begin{equation*}
\lambda_{\bar{\rho}}=\frac{\max _{x \in R \cap X}\left(-c^{t} x\right)-\min _{x \in R \cap X}\left(-c^{t} x\right)}{\min _{x \in X_{\bar{\rho}}} \varphi(x)}<\frac{c^{t} x_{0}}{\varphi(\bar{x})}=\mu_{R} . \tag{17}
\end{equation*}
$$

(16) and (17) imply the thesis.

Corollary 2.2. Under the hypotheses of Theorem 2.1, let \bar{x} be the unique solution of (6). If $\hat{\rho} \leq \bar{\rho}$ and

$$
\begin{equation*}
\frac{\|c\|}{1-\bar{\rho}}<\lambda_{\bar{\rho}} \tag{18}
\end{equation*}
$$

then there is ρ^{*} such that

$$
\begin{equation*}
\forall \rho \in] \bar{\rho}, \rho^{*}\left[, \quad \mu_{G, \rho}<\mu_{G, \bar{\rho}} .\right. \tag{19}
\end{equation*}
$$

Proof. The strict inequality (18) implies there exists $\rho^{*}>\bar{\rho}$ such that,

$$
\begin{equation*}
\forall \rho \in] \bar{\rho}, \rho^{*}\left[, \quad \frac{\|c\|}{1-\bar{\rho}}<\frac{\|c\|}{1-\rho}<\frac{\|c\|}{1-\rho^{*}}=\lambda_{\bar{\rho}} .\right. \tag{20}
\end{equation*}
$$

To have (19) it is enough to proove that,

$$
\begin{equation*}
\forall \rho \in] \bar{\rho}, \rho^{*}\left[, \quad \lambda_{\rho}<\lambda_{\bar{\rho}}\right. \tag{21}
\end{equation*}
$$

and this is assured if, $\forall \rho \in] \bar{\rho}, \rho^{*}\left[, \min _{X_{\rho}} \varphi(x)>\varphi(\bar{x})\right.$. Being X_{ρ} a compact set this is equivalent to have $X_{\rho} \subseteq\{\varphi>\varphi(\bar{x})\}$ that is

$$
\begin{equation*}
X_{\rho} \subseteq\{g<g(\bar{x})\} \tag{22}
\end{equation*}
$$

Ab absurdo, let $\tilde{x} \in X_{\rho} \cap\{g \geq g(\bar{x})\}$. Since $\rho>\bar{\rho}, X_{\rho} \subseteq X_{\bar{\rho}} \subseteq\{g \leq g(\bar{x})\}$, then $g(\tilde{x})=g(\bar{x})$. Moreover $\tilde{x} \neq \bar{x}$: in fact, since $\rho>\hat{\rho}$ there is $\hat{z} \in Z \cap R$ such that $\bar{x} \in B(\hat{z}, \rho)$ and then $\bar{x} \notin X_{\rho}$. On the contrary, since $\tilde{x} \notin X_{\rho}$, there is $\tilde{z} \in Z \backslash R$ such that $\tilde{x} \in B(\tilde{z}, \rho)$. Now, put

$$
A=B(\tilde{z}, \rho) \cap\{g>g(\bar{x})\}
$$

and observe: \bar{x} is the unique solution of (6) so $A \cap \tilde{F}=\emptyset$; moreover $\hat{z} \in Z \backslash R$ and $\rho<1$ imply $A \cap(R \cap Z)=\emptyset$. Finally, since $A \cap\left(\operatorname{conv}\left(A^{c}\right)\right)=\emptyset$ it follows that $A \cap(R \cap X)=\emptyset$. This implies $\tilde{x} \in \hat{F}$, and this is absurd being \bar{x} is the unique solution of (6). So (22) follows; (20) and (21) imply the thesis.

The following result completes the study when $\hat{\rho}>\bar{\rho}$.
Corollary 2.3. Under the hypotheses of Theorem 2.1, let \bar{x} be the unique solution of (6). If $\bar{\rho}<\hat{\rho}<1$ and

$$
\frac{\|c\|}{1-\hat{\rho}}<\lambda_{\hat{\rho}}
$$

then there exists ρ^{*} such that, $\left.\forall \rho \in\right] \hat{\rho}, \rho^{*}\left[, \mu_{G, \rho}<\mu_{G, \hat{\rho}}\right.$.
Proof. The proof is the same of Corollary 2.2 where $\bar{\rho}$ is replaced with $\hat{\rho}$.
Remark 2.1. If \bar{x} is not the unique solution of (6), Corollary 2.2 and Corollary 2.3 can be generalized. If $\bar{x}^{1}, \ldots, \bar{x}^{k}$ are the solutions, it is enough to replace the amount $\hat{\rho}$ with the following one

$$
\max \left\{d\left(\bar{x}^{j}, R \cap Z\right), j=1, \ldots, k\right\}
$$

3. Concluding Remarks

The paper shows a class of problems for which the penalty parameter of [4] can be improved. In the present research the computational cost of the two methods is not analysed; indeed, none of them can be considered for solving a concrete (large-scale) problem. It is well known that no rigorous method can be used for solving efficiently such problems and that a concrete one requires an heuristic procedure. The present study aims at providing such a procedure with rigorous methods. It would be interesting to test computationally heuristic procedures utilizing the above approaches.

Moreover, observe that the request

$$
g(\bar{x}) \geq \frac{n-1}{4}
$$

about the solution \bar{x} of (6), is verified if there is a point \tilde{x} such that

$$
g(\tilde{x}) \geq \frac{n-1}{4}
$$

So Theorem 2.1 don't need solve (6).
Finally, note that, differently from what has been said in [4], the improvement of μ_{R} is possible even if the solution x_{0} of (5) coincides with \bar{x}.

References

1. C. Antoni and F. Giannessi, On the equivalence, via relaxation-penalization, between vector generalized systems, Acta Matematica Vietnamica, 22(2) (1997), 567-588.
2. F. Giannessi and F. Niccolucci, Connections between nonlinear and integer programming problems, in: Symposia Mathematica, Academic Press, New York, 19, 1976, pp. 161176.
3. F. Giannessi and F. Tardella, Connections between nonlinear programming and discrete optimization, in: Handbook of Combinatorial Optimization, D. Z. Du and P. M. Pardalos (eds.), Kluwer Academic Publishers, 1, 1998, pp. 149-188.
4. B. Kalantari and J. B. Rosen, Penalty for zero-one integer programming problems, Mathematical Programming, North Holland Publishing Company, 1982, pp. 229-232.
5. M. Ragavachari, On the connection between zero-one integer programming and concave programming under linear constraints, Operation Research, 17 (1969), 680-683.
```
Carla Antoni
Naval Academy
72 Viale Italia
Livorno, Italy
E-mail: carla.antoni5@gmail.com
Mario Pedrazzoli
Department of Mathematics
University of Pisa
Italy
E-mail: pedrazzoli.m@alice.it
```


[^0]: Received May 3, 2013, accepted November 7, 2013.
 Communicated by Franco Giannessi.
 2010 Mathematics Subject Classification: 05B99, 65K05, 90Cxx, 90C05, 90C09, 90C10.
 Key words and phrases: Penalty problem, Relaxed problem, Exact penalty, Penalty parameter, Penalty function.

