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ANALYSIS OF PENALTY PARAMETERS IN BINARY CONSTRAINED
EXTREMUM PROBLEMS

Carla Antoni and Mario Pedrazzoli

Abstract. A given discrete constrained extremum problem can be associated with
an equivalent continuous one, the equivalence being assured by the equality of
their sets of solutions. When the equivalent problem is a penalized one, a crucial
question is the size of the penalty parameter. The present paper concerns the case
where the problem is a 0-1 extremum (linear) one.

1. INTRODUCTION AND NOTATION

Consider the constrained extremum problem

min f(x) s.t. x ∈ K,(1)

where f is a real-valued function on a compact set K ⊂ R
n. A problem with the

same set of solutions of (1) is said equivalent to (1). The replacement of (1) with
an equivalent one can be profitable if, for example, (1) is a discrete problem and the
equivalent problem is a continuous one.

An equivalent problem of (1) can be of the kind

min f(x) s.t. x ∈ K∗,(2)

where K∗ is a compact supset of K; in this case (2) is called a relaxed problem of (1).
Sometimes (2) can be solved more easily than (1) and, if a solution of (2) belongs to
K, this point solves (1) too. If this does not happen, other methods can be adopted:
among them, exact penalty methods.

A penalized problem miminizes a funtion f +μΦ on a compact K∗ including K, Φ
being a suitable penalty function and μ being a suitable positive real parameter, called
penalty parameter; statements of exact penalty show the penalized problem

min
[
f(x) + μΦ(x)

]
s.t. x ∈ K∗(3)
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has the same set of solutions of the given one (1). In this approaches, a first crucial
question is to avoid to work with too large μ; the best goal is to find the minimum
μ0 such that, for every μ greater than μ0, (1) and (3) are equivalent. If this goal
cannot be gained easily, it is significant to find a bound μ̄ such that, for every μ greater
than μ̄, the equivalence of the problems is assured; in this case, a possible bound less
than μ̄ represents an improvement of the previous one. To this aim, in this paper, the
parameter introduced in [4], for a zero-one problem is improved starting from results
of [2].

The considered problem is the zero-one problem dealt in [4] by Kalantari and
Rosen:

min (−ctx) s.t. x ∈ R ∩ Z,(4)

where R is a polyhedron of R
n, Z = {0, 1}n is the set of the vertices of the set

X = {x ∈ R
n : 0 ≤ xi ≤ 1}, c and x are in R

n and ct denotes the transpose of c;
without loss of generality, c is supposed to have non-negative components.

The approach proposed in [4] starts from the relaxed problem

min (−ctx) s.t. x ∈ R ∩ X ;(5)

if a solution x0 of (5) does not belong to Z, the problem

max g(x) s.t. x ∈ F̂ ,(6)

where g(x) =
∑n

i=1(xi − 1/2)2, and F̂ denotes the set of the vertices of R ∩ X not
in Z, is considered. Denoted by x̄ a solution of (6), the equivalence between (4) and

min
[ − ctx − μg(x)

]
s.t. x ∈ R ∩ X,(7)

when μ > μR, is proved, being

μR =
ctx0

n/4 − g(x̄)
.

In order to improve a result of [4], we refer to [2], where exact penalty results
concern more general cases: the problem (4) satisfies the hypothesis of Theorem 3.1 of
[2], then the equivalence between (4) and the following penalized extremum problem

min
[ − ctx + μϕ(x)

]
s.t. x ∈ R ∩ X,(8)

for a suitable function ϕ and parameter μ holds. More precisely, ϕ is the real-valued
function defined by

ϕ(x) =
n∑

i=1

xi(1− xi),(9)



Analysis of Penalty Parameters in Binary Constrained Extremum Problems 811

and μ is any real parameter greater than μG, where μG is the amount that will be
described. Observe that, since ϕ = n/4 − g, the penalty problems (7) and (8) differ
only for the constant μ · n/4.

In the sequel, the following notation is adopted.
For a subset A of R

n, Ac denotes the complement of A with respect to X ; for a
point x ∈ R

n, d(x, A) denotes the euclidean distance between x and the set A; for
y ∈ R

n and r ∈ R+, B(y, r) = {x ∈ R
n : d(x, y) < r}.

Let ρ ∈]0, 1[ and {zi, i = 1, . . . , k} = R∩Z; put Xρ := (X ∩R) \
(
∪k

i=1 B(zi, ρ)
)
,

and, finally, if

λρ :=
maxx∈R∩X (−ctx)− minx∈R∩X (−ctx)

minx∈Xρ ϕ(x)
.

define
μG := max

( ‖ c ‖
1 − ρ

, λρ

)
.

Theorem 3.1 of [2] states the equivalence between (4) and (8) for any μ > μG.
Since μG depends from the radius ρ, the notation μG,ρ is used instead of μG.

Section 2 deals with cases in which μG ≤ μR and conditions such that μG < μR

are given.

2. IMPROVEMENT OF THE PENALTY PARAMETER

The starting point of the present investigation is the comparison between μR and
λρ. To this end, let us consider the following

Lemma 2.1. Let x̄ be a solution of (6) and ρ ∈]0, 1[. If

min
x∈Xρ

ϕ(x) ≥ ϕ(x̄),(10)

then
λρ ≤ μR.

Proof. Since c has non negative components, then

max
x∈R∩X

(−ctx)− min
x∈R∩X

(−ctx) ≤ − min
x∈R∩X

(−ctx) = ctx0.

Since ϕ(x̄) > 0 and ϕ(x̄) = n/4 − g(x̄), then (10) implies the thesis:

λρ =
(maxx∈R∩X(−ctx))− (minx∈R∩X(−ctx))

minx∈Xρ ϕ(x)
≤ ctx0

ϕ(x̄)
= μR.
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Lemma 2.2. Let x̄ a solution of (6); if

g(x̄) ≥ n − 1
4

(11)

then a radius ρ̄ ∈]0, 1/2] is determined such that, for all ρ ∈ [ρ̄, 1[, (10) holds.

Proof. (11) ensures that the intersection between the sphère

Γ = {x ∈ R
n : g(x) = g(x̄)}

and any one-dimensional face of the hypercube X is non empty; whitout any loss of
generality, consider the one dimensional face

F1 = {x ∈ R
n : x = (x1, 0, . . . , 0), x1 ∈ [0, 1]},

and put ρ̄ = d(0, F1 ∩ Γ) where 0 denotes the origin of R
n. Now, observe that for all

x ∈ {x ∈ R
n : g > g(x̄)} ∩ R ∩ X , there is a z ∈ Z such that x ∈ B(z, ρ̄). The

inclusion F̂ ⊂ {x ∈ R
n : g ≤ g(x̄)} and the convexity of R ∩ X implies z ∈ Z ∩ R

and then x /∈ Xρ̄. Conclusion:

Xρ̄ ⊆ {x ∈ R
n : g(x) ≤ g(x̄)}.(12)

Since, for all ρ ∈ [ρ̄, 1[,

Xρ ⊆ Xρ̄ ⊆ {x ∈ R
n : g(x) ≤ g(x̄)} = {x ∈ R

n : ϕ(x) ≥ ϕ(x̄)},

the thesis follows.

In the sequel,
ρ̂ := d(x̄, R ∩ Z), ρ̄ := d(0, F1 ∩ Γ),

being F1 = {x = (x1, 0, . . . , 0) ∈ R
n, x1 ∈ [0, 1]}, Γ = {x ∈ R

n : g(x) = g(x̄)}.
Observe ρ̄ is uniquely determined even if x̄ is not the unique solution of (6).
The following result gives sufficient conditions ensuring it holds μG,ρ̄ ≤ μR.

Theorem 2.1. Let x̄ be a solution of (6) satisfying (11) and let x0 be a solution
of (5). If

ctx0

‖ c ‖ ≥ ρ̄,(13)

then μG,ρ̄ ≤ μR .
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Proof. Lemma 2.2 implies

λρ̄ ≤ μR.(14)

Besides, since ϕ(x̄) = ρ̄(1 − ρ̄), thanks to (13), it holds

‖ c ‖
1 − ρ̄

≤ ctx0

ρ̄(1− ρ̄)
= μR.(15)

The thesis follows from (14) and (15).

Theorem 2.1 assures the existence of cases in which μG,ρ < μR, as showed in the
following corollaries.

Corollary 2.1. Under the hypotheses of Theorem 2.1, let the inequality (13) be
strict. If 0 /∈ R ∩ X , then μG,ρ̄ < μR.

Proof. Since ϕ(x̄) = ρ̄(1 − ρ̄), the inequality ctx0/ ‖ c ‖ > ρ̄ is equivalent to

‖ c ‖
1 − ρ̄

< μR.(16)

Moreover the hyphotesis 0 /∈ R ∩ X implies maxx∈R∩X(−〈c, x〉) < 0, and Theorem
2.1 assures minx∈Xρ̄ ϕ(x) ≥ ϕ(x̄). Then

λρ̄ =
maxx∈R∩X (−ctx) − minx∈R∩X (−ctx)

minx∈Xρ̄ ϕ(x)
<

ctx0

ϕ(x̄)
= μR.(17)

(16) and (17) imply the thesis.

Corollary 2.2. Under the hypotheses of Theorem 2.1, let x̄ be the unique solution
of (6). If ρ̂ ≤ ρ̄ and

(18)
‖ c ‖
1 − ρ̄

< λρ̄,

then there is ρ∗ such that

(19) ∀ρ ∈]ρ̄, ρ∗[, μG,ρ < μG,ρ̄.

Proof. The strict inequality (18) implies there exists ρ∗ > ρ̄ such that,

(20) ∀ρ ∈]ρ̄, ρ∗[,
‖ c ‖
1− ρ̄

<
‖ c ‖
1 − ρ

<
‖ c ‖

1 − ρ∗
= λρ̄.

To have (19) it is enough to proove that,
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(21) ∀ρ ∈]ρ̄, ρ∗[, λρ < λρ̄,

and this is assured if, ∀ρ ∈]ρ̄, ρ∗[, minXρ ϕ(x) > ϕ(x̄). Being Xρ a compact set this
is equivalent to have Xρ ⊆ {ϕ > ϕ(x̄)} that is

(22) Xρ ⊆ {g < g(x̄)}
Ab absurdo, let x̃ ∈ Xρ ∩ {g ≥ g(x̄)}. Since ρ > ρ̄, Xρ ⊆ Xρ̄ ⊆ {g ≤ g(x̄)}, then
g(x̃) = g(x̄). Moreover x̃ = x̄: in fact, since ρ > ρ̂ there is ẑ ∈ Z ∩ R such that
x̄ ∈ B(ẑ, ρ) and then x̄ /∈ Xρ. On the contrary, since x̃ /∈ Xρ, there is z̃ ∈ Z \R such
that x̃ ∈ B(z̃, ρ). Now, put

A = B(z̃, ρ) ∩ {g > g(x̄)}
and observe: x̄ is the unique solution of (6) so A ∩ F̃ = ∅; moreover ẑ ∈ Z \ R and
ρ < 1 imply A ∩ (R ∩ Z) = ∅. Finally, since A ∩ (conv(Ac)) = ∅ it follows that
A∩(R∩X) = ∅. This implies x̃ ∈ F̂ , and this is absurd being x̄ is the unique solution
of (6). So (22) follows; (20) and (21) imply the thesis.

The following result completes the study when ρ̂ > ρ̄.

Corollary 2.3. Under the hypotheses of Theorem 2.1, let x̄ be the unique solution
of (6). If ρ̄ < ρ̂ < 1 and

‖ c ‖
1 − ρ̂

< λρ̂

then there exists ρ∗ such that, ∀ρ ∈]ρ̂, ρ∗[, μG,ρ < μG,ρ̂.

Proof. The proof is the same of Corollary 2.2 where ρ̄ is replaced with ρ̂.

Remark 2.1. If x̄ is not the unique solution of (6), Corollary 2.2 and Corollary 2.3
can be generalized. If x̄1, . . . , x̄k are the solutions, it is enough to replace the amount
ρ̂ with the following one

max {d(x̄j, R ∩ Z), j = 1, . . . , k}.

3. CONCLUDING REMARKS

The paper shows a class of problems for which the penalty parameter of [4] can
be improved. In the present research the computational cost of the two methods is not
analysed; indeed, none of them can be considered for solving a concrete (large-scale)
problem. It is well known that no rigorous method can be used for solving efficiently
such problems and that a concrete one requires an heuristic procedure. The present
study aims at providing such a procedure with rigorous methods. It would be interesting
to test computationally heuristic procedures utilizing the above approaches.
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Moreover, observe that the request

g(x̄) ≥ n − 1
4

about the solution x̄ of (6), is verified if there is a point x̃ such that

g(x̃) ≥ n − 1
4

.

So Theorem 2.1 don’t need solve (6).
Finally, note that, differently from what has been said in [4], the improvement of

μR is possible even if the solution x0 of (5) coincides with x̄.
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