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INVERSE PROBLEM FOR A CLASS OF DIRAC OPERATOR

Kh. R. Mamedov* and Ö. Akçay

Abstract. In this paper, we consider a problem for the first order canonical Dirac
differential equations system with piecewise continuous coefficient and spectral
parameter dependent in boundary condition. The asymptotic behavior of eigenval-
ues, eigenfunctions and normalizing numbers of this system is investigated. The
completeness theorem is proved. The spectral expansion formula with respect to
eigenvector functions or equivalently Parseval equality is obtained. Weyl solu-
tion and Weyl function for the problem are constructed. Uniqueness theorem for
inverse problem by the Weyl function and by the spectral data are proved.

1. INTRODUCTION

Let us consider canonical Dirac differential equation

(1.1) BY ′ + Ω(x)Y = λρ(x)Y, 0 < x < π

with boundary conditions

(1.2)
U(Y ) := y1(0) = 0,

V (Y ) := λ(b1y2(π) + b2y1(π)) + a1y1(π) + a2y2(π) = 0,

where

B =
(

0 1
−1 0

)
, Ω (x) =

(
p (x) q (x)
q (x) −p (x)

)
, Y =

(
y1 (x)
y2 (x)

)
,

p (x) , q (x) are real measurable functions, p(x) ∈ L2(0, π), q(x) ∈ L2(0, π), λ is a
spectral parameter, a1, a2, b1 and b2 are real numbers,

ρ (x) =
{

1, 0 ≤ x ≤ a,
α, a < x ≤ π
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and 1 �= α > 0. Let us define k := a2b2 − a1b1 > 0.
In the finite interval, the inverse problem for Dirac operator is widely developed,

for example [2, 4, 6, 9, 10, 13, 15, 20]. Inverse problems in the periodic case for Dirac
operator was analyzed in [16]. Using the Weyl-Titchmarsh m-function reconstruction of
potential of the Dirac operator was examined in [3]. Extensive review of the literature
on inverse problem in finite interval is discussed in [1]. Inverse problem according
to different spectral data of Dirac operator and Sturm-Liouville operator was given in
detail in [5, 7, 8, 12, 14]. In this study as different from other studies, it is used new
integral representation (not operator transformation) for the solution of the equation
(1.1) (detail in [11]).

In physical events, Dirac differential equations system is frequently encountered.
Therefore the applications of this system is widespread, such as [17, 18, 19]. This
paper is organized as follows: In section 2, the eigenvalues, the eigenfunctions and
normalizing numbers of the problem (1.1), (1.2) are examined. In section 3, the resol-
vent operator is constructed, completeness theorem is proved and the expansion formula
with respect to eigenfunctions is obtained by using contour integration. In section 4,
Weyl solution and Weyl function for the problem are given, uniquness theorem for
the inverse problem by the Weyl function and by the spectral data are proved by the
following the way of [5].

Assume that ∫ π

0
‖Ω(x)‖dx < +∞

is satisfied for Euclidean norm of matrix function Ω(x). Then the integral representation
of the solution of equation (1.1) satisfying the initial condition Y (0) = I, (I is unite
matrix) can be represented (see [11])

E(x, λ) = e−λBμ(x) +
∫ μ(x)

−μ(x)
K(x, t)e−λBtdt,

where

μ (x) =
{
x, 0 ≤ x ≤ a,
αx − αa + a, a < x ≤ π

and for a kernel K(x, t) the inequality∫ μ(x)

−μ(x)
‖K(x, t)‖dt ≤ eσ(x) − 1,

where

σ (x) =
∫ x

0
‖Ω(s)‖ ds
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is hold. Moreover, if Ω(x) is differentiable, then K(x, t) satisfy the following relations

BKx + Ω(x)K + ρ (x)KtB = 0,

ρ (x) [BK(x, μ (x))] = −Ω (x) ,

BK (x,−μ (x)) = 0.

In the Hilbert space Hρ = L2,ρ(0, π; C
2) ⊕ C an inner product is defined by

(1.3)
〈
Ŷ , Ẑ

〉
:=

∫ π

0

{
y1(x)z1(x) + y2(x)z2(x)

}
ρ(x)dx+

1
k
y3z3,

where

Ŷ =

⎛⎝ y1(x)
y2(x)
y3

⎞⎠ ∈ Hρ, Ẑ =

⎛⎝ z1(x)
z2(x)
z3

⎞⎠ ∈ Hρ.

Let us define
L(Ŷ ) :=

(
l(Y )

−a1y1(π)− a2y2(π)

)
with

D(L) =
{
Ŷ | Ŷ = (y1(x), y2(x), y3)

T ∈ Hρ, y1(x), y2(x) ∈ AC[0, π],

y3 = b1y2(π) + b2y1(π), l(Y ) ∈ L2,ρ(0, π; C
2), y1(0) = 0

}
where

l(Y ) =
1

ρ(x)

(
y
′
2 + p(x)y1 + q(x)y2

−y′
1 + q(x)y1 − p(x)y2

)
.

The boundary value problem (1.1), (1.2) is equivalent to the equation LŶ = λŶ .

Lemma 1. The vector-valued eigenfunctions Y (x, λ1) and Z(x, λ2) corresponding
different eigenvalues λ1 �= λ2 are orthogonal.

Proof. Since Y (x, λ1) and Z(x, λ2) are eigenfunctions of the problem (1.1), (1.2),
we get

y
′
2(x, λ1) + p(x)y1(x, λ1) + q(x)y2(x, λ1) = λ1ρ(x)y1(x, λ1),

−y′
1(x, λ1) + q(x)y1(x, λ1) − p(x)y2(x, λ1) = λ1ρ(x)y2(x, λ1),

z
′
2(x, λ2) + p(x)z1(x, λ2) + q(x)z2(x, λ2) = λ2ρ(x)z1(x, λ2),

−z′
1(x, λ2) + q(x)z1(x, λ2)− p(x)z2(x, λ2) = λ2ρ(x)y2(x, λ2).

Multplying these equalities by z1(x, λ2), z2(x, λ2), −y1(x, λ1), −y2(x, λ1) respectively
and adding together
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d

dx
{z1(x, λ2)y2(x, λ1) − y1(x, λ1)z2(x, λ2)}

= (λ1 − λ2) ρ(x) {y1(x, λ1)z1(x, λ2) + y2(x, λ1)z2(x, λ2)}
is found. Integrating it from 0 to π and using the conditions (1.2), we have

(λ1 − λ2)
{∫ π

0
[y1(x, λ1)z1(x, λ2) + y2(x, λ1)z2(x, λ2)] ρ(x)dx

+
1
k

[b1y2(π, λ1) + b2y1(π, λ1)] [b1z2(π, λ2) + b2z1(π, λ2)]
}

= 0.

Since λ1 �= λ2,∫ π

0
[y1(x, λ1)z1(x, λ2) + y2(x, λ1)z2(x, λ2)] ρ(x)dx+

1
k
y3z3 = 0.

Corollary 2. The eigenvalues of the boundary value problem (1.1), (1.2) are real.

Let S(x, λ) and ψ(x, λ) be solutions of (1.1), (1.2) boundary value problem satis-
fying the initial conditions

S(0, λ) =
(

0
−1

)
and ψ(π, λ) =

(
λb1 + a2

−λb2 − a1

)
.

Clearly,

(1.4)
U(S) := S1(0, λ) = 0,

V (ψ) := λ (b1ψ2(π, λ)+ b2ψ1(π, λ)) + a1ψ1(π, λ) + a2ψ2(π, λ) = 0.

Let Y (x, λ) and Z(x, λ) be vector solutions of the equations system (1.1). The
expression

W [Y (x, λ), Z(x, λ)] = y2(x, λ)z1(x, λ)− y1(x, λ)z2(x, λ)

is called Wronskian of the vector solutions Y (x, λ) and Z(x, λ). Denote

(1.5) Δ(λ) = W [S(x, λ), ψ(x, λ)].

The function Δ(λ) is called characteristic function of the problem (1.1),(1.2) and
substituting x = 0 and x = π into (1.5), we get

(1.6) Δ(λ) = V (S) = −U(ψ)

or

Δ(λ) = λ (b1S2(π, λ) + b2S1(π, λ))+ a1S1(π, λ) + a2S2(π, λ) = −ψ1(0, λ).
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Lemma 3. The zeros λn of characteristic function coincide with the eigenvalues
of the boundary value problem (1.1), (1.2). The function S(x, λn) and ψ(x, λn) are
eigenfunctions and there exist a sequence βn such that

ψ(x, λn) = βnS(x, λn), βn �= 0.

Proof. Let λ0 be a zero of Δ(λ). Then, because of (1.4)-(1.6), ψ(x, λ0) =
β0S(x, λ0) and the function ψ(x, λ0) and S(x, λ0) satisfy the boundary condition
(1.2). Thus, λ0 is eigenvalue and ψ(x, λ0), S(x, λ0) are corresponding eigenfunctions.
On the other hand, let λ0 be an eigenvalue of the problem (1.1 ), (1.2) and Y0(x) =(
y0
1(x)
y0
2(x)

)
�= 0 be a corresponding eigenfunction. Then Y0(x) satisfies the boundary

condition (1.2). Without loss of generality, we put y0
1(π) = λb1 + a2. Then y0

2(π) =
−λb2 − a1 and consequently Y0(x) ≡ ψ(x, λ0). Hence from (1.6), Δ(λ0) = 0 and for
each eigenvalue there exist only one eigenfunction.

2. THE SPECTRAL PROPERTIES

Lemma 4. The eigenvalues {λn}∞n=−∞ of the boundary value problem (1.1), (1.2)
are in the form

λn = λ0
n + εn,

where λ0
n =

(
nπ + arctan b1

b2

)
1

μ(π) and {εn} ∈ l2.

Proof. Using S(x, λ) = E(x, λ)
(

0
−1

)
, we obtain the integral representation

of the solution S(x, λ) in the form

(2.1) S(x, λ) =
(

sinλμ(x)
− cos λμ (x)

)
+
∫ μ(x)

0
A(x, t)

(
sinλt

− cosλt

)
dt,

where

μ(x) =
{

x, 0 ≤ x ≤ a,

αx− αa + a, a < x ≤ π,

Aij(x, .) ∈ L2(0, π), i, j = 1, 2 and

A11(x, t) = K11(x, t) +K11(x,−t), A12(x, t) = K12(x, t)−K12(x,−t),

A21(x, t) = K21(x, t) +K21(x,−t), A22(x, t) = K22(x, t)−K22(x,−t).
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From (2.1), it follows that

Δ(λ) = λ (b2 sinλμ (π)− b1 cos λμ (π)) + a1 sinλμ (π) − a2 cos λμ (π) +

+λ
∫ μ(π)

0

[b2A11(π, t) + b1A21(π, t)] sinλtdt−

−λ
∫ μ(π)

0
[b2A12(π, t) + b1A22(π, t)] cos λtdt+

+
∫ μ(π)

0

[a1A11(π, t) + a2A21(π, t)] sinλtdt−

−
∫ μ(π)

0
[a1A12(π, t) + a2A22(π, t)] cosλtdt.

Since the zeros of Δ(λ) are the eigenvalues,

(2.2)

b2 sinλμ (π) −b1 cos λμ (π) +
a1 sinλμ (π)

λ
− a2 cos λμ (π)

λ

+
∫ μ(π)

0
[b2A11(π, t) + b1A21(π, t)] sinλtdt

−
∫ μ(π)

0

[b2A12(π, t) + b1A22(π, t)] cosλtdt

+
1
λ

∫ μ(π)

0
[a1A11(π, t) + a2A21(π, t)] sinλtdt

−1
λ

∫ μ(π)

0
[a1A12(π, t) + a2A22(π, t)] cos λtdt = 0

is valid. Denote by

b2 sinλμ (π) − b1 cosλμ (π) := χ(λ),

Δ̃(λ) :=
Δ(λ)
λ

and

Gδ :=
{
λ :

∣∣∣∣λ−
(
nπ + arctan

b1
b2

)
1

μ (π)

∣∣∣∣ ≥ δ, n = 0,±1± 2...
}
,

where δ is a sufficiently small positive number. For λ ∈ Gδ,

|χ(λ)| ≥ Cδexp (|Imλ|μ(π))
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is valid, where Cδ is a positive number (see [5]). Taking into account the following
contour

Γn :=
{
λ : |λ| =

(
nπ + arctan

b1
b2

)
1

μ (π)
+

π

2μ(π)
, n = 0,±1,±2, ...

}
,

for sufficiently large values n, we get∣∣∣Δ̃(λ)− χ(λ)
∣∣∣ ≤ Cδexp (|Imλ|μ(π)) , λ ∈ Γn.

Thus ∣∣∣Δ̃(λ)− χ(λ)
∣∣∣ ≤ |χ(λ)| .

Applying the Rouche theorem, it is obtained that the number of zeros of the function{
Δ̃(λ)− χ(λ)

}
+ χ(λ) = Δ̃(λ) inside the contour Γn coincides with the number of

zeros of function χ(λ). Moreover, using the Rouche theorem, there exist only one zero
λn of the function Δ̃(λ) in the circle

γn(δ) =
{
λ :

∣∣∣∣λ−
(
nπ + arctan

b1
b2

)
1

μ (π)

∣∣∣∣ < δ

}
is concluded. Hence, the eigenvalues of the boundary value problem (1.1),(1.2) are
obtained as follows

(2.3) λn =
(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn, lim

n→±∞ εn = 0.

Substituting (2.3) into (2.2), using χ(λn) = χ̇(λ0
n)εn + o(εn) and the relations (see

[14, p. 66]),∫ μ(π)

0
[b2A11(π, t) + b1A21(π, t)] sin

[(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn

]
tdt ∈ l2,

∫ μ(π)

0
[b2A12(π, t) + b1A22(π, t)] cos

[(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn

]
tdt ∈ l2,

we have {εn} ∈ l2.

Lemma 5. Eigenvector functions of boundary value problem (1.1), (1.2) can be
expressed in the following form

(2.4) S(x, λn) =

⎛⎜⎝ sin
[(
nπ + arctan b1

b2

)
μ(x)
μ(π)

]
− cos

[(
nπ + arctan b1

b2

)
μ(x)
μ(π)

]
⎞⎟⎠ +

(
vn(x)
zn(x)

)
,

vn(x) ∈ l2 and zn(x) ∈ l2, for all x ∈ [0, π].
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Proof. Putting the eigenvalues (2.3) in the representation (2.1), we get

S1(x, λn) = sin
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
+ vn(x),

S2(x, λn) = − cos
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
+ zn(x),

where

vn(x) = sin
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
{cos εnμ(x) − 1}

+ cos
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
sin εnμ (x)

+
∫ x

0
A11(x, t) sin

[(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn

]
tdt

−
∫ x

0
A12(x, t) cos

[(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn

]
tdt,

zn(x) = − cos
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
{cos εnμ(x) − 1}

+ sin
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
sin εnμ (x)

+
∫ x

0
A21(x, t)sin

[(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn

]
tdt

−
∫ x

0
A22(x, t)cos

[(
nπ + arctan

b1
b2

)
1

μ (π)
+ εn

]
tdt.

Since εn ∈ l2, then vn and zn ∈ l2 are obtained.

Lemma 6. Normalizing numbers of problem (1.1),(1.2) are as follows:

(2.5) αn = μ(π) + τn, τn ∈ l2.

Proof. For normalizing number of (1.1), (1.2), we have

αn =
∫ π

0

{
|S1(x, λn)|2 + |S2(x, λn)|2

}
ρ(x)dx+

1
k
|b1S2(π, λn) + b2S1(π, λn)|2 .

From this equality,

αn =
∫ π

0
sin2

[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
ρ(x)dx

+
∫ π

0

cos2
[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
ρ(x)dx+ τn

= μ(π) + τn,
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where

τn = 2
∫ π

0

{
sin

[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
vn(x)

}
ρ(x)dx

−2
∫ π

0

{
cos

[(
nπ + arctan

b1
b2

)
μ (x)
μ (π)

]
zn(x)

}
ρ(x)dx

+
∫ π

0

[
v2
n(x) + z2

n(x)
]
ρ(x)dx+

1
k
|b1zn(π) + b2vn(π)|2 .

Furthermore, using vn(x) ∈ l2 and zn(x) ∈ l2, τn ∈ l2 is found.

Lemma 7. The eigenvalues of boundary value problem (1.1), (1.2) are simple.

Proof. Since S(x, λ) and ψ(x, λ) are solutions of this problem,

ψ
′
2(x, λ) + p(x)ψ1(x, λ) + q(x)ψ2(x, λ) = λρ(x)ψ1(x, λ),

−ψ′
1(x, λ) + q(x)ψ1(x, λ)− p(x)ψ2(x, λ) = λρ(x)ψ2(x, λ),

S
′
2(x, λn) + p(x)S1(x, λn) + q(x)S2(x, λn) = λnρ(x)S1(x, λn),

−S ′
1(x, λn) + q(x)S1(x, λn) − p(x)S2(x, λn) = λnρ(x)S2(x, λn)

are valid. Multiplying the equations by S
′
1(x, λn), S

′
2(x, λn),−ψ′

1(x, λ),−ψ′
2(x, λ)

and adding them together, we get

d

dx
{S1(x, λn)ψ2(x, λ)− ψ1(x, λ)S2(x, λn)}

= (λ− λn) ρ(x) {S1(x, λn)ψ1(x, λ) + S2(x, λn)ψ2(x, λ)} .
Integrating it from 0 to π and using the condition (1.2),∫ π

0
{S1(x, λn)ψ1(x, λ) + S2(x, λn)ψ2(x, λ)}ρ(x)dx+

+
1
k

[b1S2(π, λn) + b2S1(π, λn)] [b1ψ2(π, λ) + b2ψ1(π, λ)] =
Δ(λ)
λ− λn

is found. From Lemma 3, since ψ(x, λn) = βnS(x, λn), as λ→ λn, we obtain

βnαn = Δ̇(λn),

where βn = −ψ2(0, λn). Thus, it follows that Δ̇(λn) �= 0.

3. SPECTRAL EXPANSION FORMULA

If λ is not a spectrum point of operator L, then the resolvent Rλ = (L − λI)−1

exists. Now we find this expression of the operator Rλ.
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Lemma 8. The resolvent Rλ is the integral operator with the kernel which has the
following form

(3.1) Rλ(x, t) = − 1
Δ(λ)

{
ψ(x, λ)S̃(t, λ), t ≤ x,

S(x, λ)ψ̃(t, λ), t ≥ x,

here S̃(t, λ) denotes the transposed vector function of S(t, λ).

Proof. Let F (x) =
(
f(x)
f3

)
∈ D(L) and f(x) =

(
f1(x)
f2(x)

)
. To construct the

resolvent operator of L, we need to solve the initial value problem

(3.2) BY ′ + Ω(x)Y = λρ(x)Y + ρ(x)f(x),

(3.3)
y1(0) = 0,

λ(b1y2(π) + b2y1(π)) + a1y1(π) + a2y2(π) = −f3.
By applying the method of variation of parameters, we want to find the solution of
problem (3.2), (3.3) which has a form

(3.4) Y (x, λ) = c1(x, λ)S(x, λ)+ c2(x, λ)ψ(x, λ),

where S(x, λ), ψ(x, λ) are solutions of homogeneous problem. Then we get the
equations system

(3.5)
c′1(x, λ)ψ̃(x, λ)BS(x, λ) = ψ̃(x, λ)f(x)ρ(x),

c′2(x, λ)S̃(x, λ)Bψ(x, λ) = S̃(x, λ)f(x)ρ(x).

Using the system (3.5), we get

(3.6) c1(x, λ) = c1(π, λ)− 1
Δ(λ)

∫ π

x
ψ̃(t, λ)f(t)ρ(t)dt,

(3.7) c2(x, λ) = c2(0, λ)− 1
Δ(λ)

∫ x

0
S̃(t, λ)f(t)ρ(t)dt.

Substituting (3.6) and (3.7) into (3.4), we obtain

Y (x, λ) =
∫ π

0
Rλ(x, t)f(t)ρ(t)dt+ c2(0, λ)ψ(x, λ)+ c1(π, λ)S(x, λ),

where

Rλ(x, t) = − 1
Δ(λ)

{
ψ(x, λ)S̃(t, λ), t ≤ x,

S(x, λ)ψ̃(t, λ), t ≥ x.
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Taking the condition (3.3), we get

c2(0, λ) = 0, c1(π, λ) = − f3
Δ(λ)

.

Thus

(3.8) Y (x, λ) =
∫ π

0
Rλ(x, t)f(t)ρ(t)dt− f3

Δ(λ)
S(x, λ).

Theorem 9. The eigenvector functions {S(x, λn)}∞n=−∞ of boundary value prob-
lem (1.1), (1.2) form a complete system in L2,ρ(0, π; C2)⊕ C.

Proof. According to Lemma 3

(3.9) ψ(x, λn) =
Δ̇(λn)
αn

S(x, λn),

using (3.1) and (3.8) we get

(3.10) Res
λ=λn

Y (x, λ) = − 1
αn
S(x, λn)

∫ π

0

S̃(t, λn)f(t)ρ(t)dt− f3

Δ̇(λn)
S(x, λn).

We assume that

(3.11)
〈F (x), S(x, λn)〉

=
∫ π

0
S̃(t, λn)f(t)ρ(t)dt+

f3
k

(b1S2 (π, λ) + b2S1 (π, λ)) = 0,

where F (x) =
(
f(x)
f3

)
∈ L2,ρ(0, π; C

2)⊕ C. From (3.9), we have

(3.12) S1(π, λn) =
λb1 + a2

βn
and S2(π, λn) =

−λb2 − a1

βn
.

The formula (3.10) can be rewritten as follows

Res
λ=λn

Y (x, λ) = − 1
αn
S(x, λn)

{∫ π

0
S̃(t, λn)f(t)ρ(t)dt+

f3
βn

}
.

Using (3.11) and (3.12), we obtain Res
λ=λn

Y (x, λ) = 0. Consequently Y (x, λ) is entire

function with respect to λ for each fixed x ∈ [0, π] . Taking into account

Δ(λ) ≥ |λ|Cδ exp(|Imλμ(π)|)
and the following equalities being valid according to [14, Lemma 1.3.1]

(3.13) lim
|λ|→∞

max
0≤x≤π

exp(− |Imλμ(x)|)
∣∣∣∣∫ x

0

S̃(t, λ)f(t)ρ(t)dt
∣∣∣∣= 0,
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(3.14) lim
|λ|→∞

max
0≤x≤π

1
|λ| exp(− |Imλ (μ(π)− μ(x))|)

∣∣∣∣∫ π

x
ψ̃(t, λ)f(t)ρ(t)dt

∣∣∣∣= 0,

we find
lim

|λ|→∞
max

0≤x≤π
|Y (x, λ)| = 0.

Hence Y (x, λ) ≡ 0 is obtained. It follows from (3.2) and (3.3) that F (x) = 0 a.e. on
(0, π).

Theorem 10. Let f(x) be an absolutely continuous vector function on [0, π] and

f1(0) = 0, f(π) =
(

λb1 + a2

−λb2 − a1

)
. Then the expansion formula

(3.15)
f(x) =

∞∑
n=−∞

cnS(x, λn),

f3 =
∞∑

n=−∞
cn (b1S2(π, λn) + b2S1(π, λn))

is valid, where
cn =

1
αn

〈f(x), S(x, λn)〉 .
The series converges uniformly with respect to x ∈ [0, π]. Moreover, the Parseval
equality holds:

(3.16) ‖f‖2 =
∞∑

n=−∞
αn |cn|2 .

Proof. Since S(x, λ) and ψ(x, λ) are solution of the problem (1.1), (1.2),

Y (x, λ) = − 1
λΔ(λ)

ψ(x, λ)
∫ x

0

{
− ∂

∂t
S̃(t, λ)B + S̃(t, λ)Ω(t)

}
f(t)dt

− 1
λΔ(λ)

S(x, λ)
∫ π

x

{
− ∂

∂t
ψ̃(t, λ)B+ ψ̃(t, λ)Ω(t)

}
f(t)dt

− f3
Δ(λ)

S(x, λ)

can be written. Integrating by parts and using the expression Wronskian

(3.17) Y (x, λ) = −1
λ
f(x) − 1

λ
Z(x, λ)− f3

Δ(λ)
S(x, λ)

is obtained, where

Z(x, λ) =
1

Δ(λ)

{
ψ(x, λ)

∫ x

0
S̃(t, λ)Bf ′(t)dt+ S(x, λ)

∫ π

x
ψ̃(t, λ)Bf ′(t)dt

}
.
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By applying (3.13) and (3.14), we have

(3.18) lim
|λ|→∞

max
0≤x≤π

|Z(x, λ)| = 0, λ ∈ Gδ.

Now, we integrate of Y (x, λ) with respect to λ over the contour ΓN with oriented
counter clockwise as follows:

In(x) =
1

2πi

∮
ΓN

Y (x, λ)dλ,

where
ΓN =

{
λ : |λ| =

(
Nπ + arctan

b1
b2

)
1

μ (π)
+

π

2μ(π)

}
,

N is suffeciently large naturel number. Using Residue theorem, we get

In(x) =
N∑

n=−N

Res
λ=λn

Y (x, λ)

= −
N∑

n=−N

1
αn
S(x, λn)

∫ π

0

S̃(t, λn)f(t)ρ(t)dt−
N∑

n=−N

f3

Δ̇(λn)
S(x, λn).

On the other hand, considering the equation (3.17)

(3.19) f(x) =
N∑

n=−N

cnS(x, λn) + εN (x)

is found, where

εN (x) = − 1
2πi

∮
ΓN

1
λ
Z(x, λ)dλ

and
cn =

1
αn

∫ π

0
S̃(t, λn)f(t)ρ(t)dt.

It follows from (3.18) that,

lim
|λ|→∞

max
0≤x≤π

|εN (x)| = 0.

Thus, by going over in (3.19) to the limit as N → ∞ the expansion formula (3.15) with
respect to eigenfunction is obtained. Since the system of {S(x, λn)}∞n=−∞ is complete
and orthogonal in L2,ρ(0, π; C

2)⊕ C, Parseval equality (3.16) is valid. The extending
the Parseval equation to arbitrary vector valued functions of class L2,ρ(0, π; C2) is done
by the usual methods.
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4. WEYL SOLUTION, WEYL FUNCTION

Let the function Φ(x, λ) be the solutions of the system (1.1), satisfying the condi-
tions

Φ1(0, λ) = 1,

λ (b1Φ2(π, λ) + b2Φ1(π, λ))+ a1Φ1(π, λ) + a2Φ2(π, λ) = 0.

The function Φ(x, λ) is called Weyl solution of the problem (1.1),(1.2). Denote by

C(x, λ) the solution of system (1.1), satisfying the initial condition C(0, λ) =
(

1
0

)
.

The solution ψ(x, λ) can be written the following form

(4.1) ψ(x, λ) = −ψ2(0, λ)S(x, λ)− Δ(λ)C(x, λ).

We define that

(4.2) M(λ) =
ψ2(0, λ)
Δ(λ)

.

It is obvious that

(4.3) Φ(x, λ) = C(x, λ) +M(λ)S(x, λ).

The function M(λ) = −Φ2(0, λ) is called the Weyl function of the problem (1.1),(1.2).
The Weyl solution and Weyl function are meromorphic functions having simple poles
at points λn eigenvalues of problem (1.1), (1.2). It is obtained from (4.2) and (4.3)
that

(4.4) Φ(x, λ) = −ψ(x, λ)
Δ(λ)

.

The solution ψ(x, λ) has the representation as

(4.5)

ψ(x, λ)

= ψ0(x, λ)+
∫ α(π−x)

0
Ã(x, t)

(
(λb1+a2) cosλt−(λb2+a1) sinλt

− (λb1+a2) sinλt−(λb2+a1) cosλt

)
dt,

where

ψ0(x, λ) =

(
(λb1 + a2) cos λα (π − x) − (λb2 + a1) sinλα (π − x)

− (λb1 + a2) sinλα (π − x) − (λb2 + a1) cosλα (π − x)

)

and Ãi,j(x, .) ∈ L2(0, π), i, j = 1, 2.
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We define (10), (20) boundary value problem in the case of Ω(x) ≡ 0 in the
boundary value problem (1.1),(1.2). Thus the boundary value problem (10), (20) has
the characteristic function

Δ0(λ) = λ (b2 sinλμ (π) − b1 cosλμ (π)) + a1 sinλμ (π)− a2 cosλμ (π) ,

Weyl function

(4.6) M0(λ) = −ψ0,2(0, λ)
ψ0,1(0, λ)

=
(λb1 + a2) sinλαπ + (λb2 + a1) cos λαπ
(λb1 + a2) cosλαπ − (λb2 + a1) sinλαπ

,

normalizing numbers α0
n and eigenvalues λ0

n.

Theorem 11. The expression

(4.7) M(λ) = −

⎡⎢⎣ 1
α0(λ− λ0)

+
∞∑

n=−∞
n�=0

(
1

α0
nλ

0
n

+
1

αn(λ− λn)
)

⎤⎥⎦
holds.

Proof. It follows from (4.5) that

ψ(0, λ) =

(
ψ0,1(0, λ)
ψ0,2(0, λ)

)
+

(
f1(λ)
f2(λ)

)
,

where

f1(λ) =
∫ μ(π)

0

Ã11(0, t) [(λb1 + a2) cosλt− (λb2 + a1) sinλt] dt−

−
∫ μ(π)

0
Ã12(0, t) [(λb1 + a2) sinλt+ (λb2 + a1) cosλt] dt,

f2(λ) =
∫ μ(π)

0

Ã21(0, t) [(λb1 + a2) cosλt− (λb2 + a1) sinλt] dt−

−
∫ μ(π)

0
Ã22(0, t) [(λb1 + a2) sinλt+ (λb2 + a1) cosλt] dt.

From (4.2) and (4.6), we have

M(λ)−M0(λ) = M0(λ)
f1

Δ(λ)
+

f2
Δ(λ)

.

Moreover, applying Lemma 1.3.1 in [14], we have

lim
|λ|→∞

e−|Imλ|μ(π) |fi(λ)| = 0, i = 1, 2, λ ∈ Gδ.
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Thus using this expression and the estimate |Δ(λ)| > Cδ |λ| exp(|Imλ|μ(π))

(4.8) lim
|λ|→∞

|M(λ)−M0(λ)| = 0

is obtained. The vector functions S(x, λn)
(
S0(x, λ0

n)
)

and ψ(x, λn)
(
ψ0(x, λ0

n)
)

are eigenvector functions of the boundary value problem (1.1), (1.2), ((1.10), (1.20)).
Accordingly there exists constants βn(β0

n) such that

ψ(x, λn) = βnS(x, λn) (ψ0(x, λ0
n) = β0

nS0(x, λ0
n)).

It follows from these equalities that

βn = −ψ2(0, λn) (β0
n = −ψ0,2(0, λn)).

Moreover
αnβn = Δ̇(λn) (α0

nβ
0
n = Δ̇0(λ0

n)).

Applying these relations, we find

(4.9)
Res
λ=λn

M(λ) =
ψ2(0, λn)
Δ̇(λn)

= − 1
αn

Res
λ=λn

M0(λ) =
ψ0,2(0, λ0

n)
Δ̇0(λ0

n)
= − 1

α0
n

.

We consider the following contour integral

IN (λ) =
1

2πi

∫
ΓN (λ)

M(ξ)−M0(ξ)
ξ − λ

dξ, ξ ∈ intΓN ,

where
ΓN =

{
λ : |λ| =

(
Nπ + arctan

b1
b2

)
1

μ (π)
+

π

2μ(π)

}
.

Using (4.8), we have
lim

N→∞
IN (λ) = 0.

On the other hand, applying the residue calculus and the residues (4.9), we get

IN(λ) = M(λ)−M0(λ) +
∑

λn∈intΓN

(
1

α0
n(λ0

n − λ)
− 1
αn(λn − λ)

)
.

Thus, as N → ∞

(4.10) M(λ) = M0(λ)−
∞∑

n=−∞

(
1

αn(λ− λn)
− 1
α0

n(λ− λ0
n)

)
is found. We can write for the function M0(λ) the following expansion
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M0(λ) = − 1
λμ(π)

−
∞∑

n=−∞
n�=0

(
1

α0
n(λ− λ0

n)
+

1
α0

nλ
0
n

)
.

Substituting the last formula into (4.10),

M(λ) = −

⎡⎢⎣ 1
α0(λ− λ0)

+
∞∑

n=−∞
n�=0

(
1

α0
nλ

0
n

+
1

αn(λ− λn)
)

⎤⎥⎦
is obtained.

Now we seek inverse problem of the reconstruction of the problem (1.1), (1.2) by
Weyl function and spectral data {λn, αn}∞n=−∞ . Using the Weyl function, uniquness
theorem for the problem is proved. We assume that the problem L̃ with the potential
Ω̃(x) has the same form with L.

Theorem 12. If M(λ) = M̃(λ), then L = L̃. Namely, the boundary value problem
(1.1), (1.2) is uniquely determined by the Weyl function.

Proof. We describe the matrix P (x, λ) = [Pij(x, λ)]i,j=1,2 with the formula

(4.11) P (x, λ)
(
S̃1 Φ̃1

S̃2 Φ̃2

)
=
(
S1 Φ1

S2 Φ2

)
.

The Wronskian of the solutions

S̃(x, λ) =
(
S̃1(x, λ)
S̃2(x, λ)

)
, Φ̃(x, λ) =

(
Φ̃1(x, λ)
Φ̃2(x, λ)

)
is as follows

(4.12) W [S̃(x, λ), Φ̃(x, λ)] = S̃1(x, λ)Φ̃2(x, λ)− S̃2(x, λ)Φ̃1(x, λ) = 1.

Multiplying both sides of (4.11) from right by the matrix(
Φ̃2(x, λ) −Φ̃1(x, λ)

−S̃2(x, λ) S̃1(x, λ)

)
,

we get

(4.13)

P11(x, λ) = S1(x, λ)Φ̃2(x, λ)− Φ1(x, λ)S̃2(x, λ),

P12(x, λ) = Φ1(x, λ)S̃1(x, λ)− S1(x, λ)Φ̃1(x, λ),

P21(x, λ) = S2(x, λ)Φ̃2(x, λ)− Φ2(x, λ)S̃2(x, λ),

P22(x, λ) = Φ2(x, λ)S̃1(x, λ)− S2(x, λ)Φ̃1(x, λ)
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and

(4.14)

S1(x, λ) = P11(x, λ)S̃1(x, λ) + P12(x, λ)S̃2(x, λ),

S2(x, λ) = P21(x, λ)S̃1(x, λ) + P22(x, λ)S̃2(x, λ),

Φ1(x, λ) = P11(x, λ)Φ̃1(x, λ) + P12(x, λ)Φ̃2(x, λ),

Φ2(x, λ) = P21(x, λ)Φ̃1(x, λ) + P22(x, λ)Φ̃2(x, λ).

Taking into account (4.4), (4.12) and (4.13),

P11(x, λ)−1 =
ψ̃2(x, λ)
Δ̃(λ)

{
S̃1(x, λ)− S1(x, λ)

}
+S̃2(x, λ)

{
ψ1(x, λ)
Δ(λ)

− ψ̃1(x, λ)
Δ̃(λ)

}
,

P12(x, λ) =
ψ1(x, λ)
Δ(λ)

{
S1(x, λ)− S̃1(x, λ)

}
+ S1(x, λ)

{
ψ̃1(x, λ)
Δ̃(λ)

− ψ1(x, λ)
Δ(λ)

}
,

P21(x, λ) =
ψ2(x, λ)
Δ(λ)

{
S̃2(x, λ)− S2(x, λ)

}
+ S2(x, λ)

{
ψ2(x, λ)
Δ(λ)

− ψ̃2(x, λ)
Δ̃(λ)

}
,

P22(x, λ)− 1 =
ψ̃1(x, λ)
Δ̃(λ)

{
S2(x, λ)− S̃2(x, λ)

}
+ S̃1(x, λ)

{
ψ̃2(x, λ)
Δ̃(λ)

− ψ2(x, λ)
Δ(λ)

}
are found. Using |Δ(λ)| > Cδ |λ| exp(|Imλ|μ(π)) and the expressions of solutions
S(x, λ), ψ(x, λ), we obtain

(4.15)

lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|P11(x, λ)− 1| = 0, lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|P12(x, λ)| = 0,

lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|P22(x, λ)− 1| = 0, lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|P21(x, λ)| = 0.

Substituting (4.3) into (4.13), we have

P11(x, λ) = S1(x, λ)C̃2(x, λ)−C1(x, λ)S̃2(x, λ)+S1(x, λ)S̃2(x, λ)
[
M̃(λ)−M(λ)

]
,

P12(x, λ) = C1(x, λ)S̃1(x, λ)−S1(x, λ)C̃1(x, λ)+S1(x, λ)S̃1(x, λ)
[
M(λ)− M̃(λ)

]
,

P21(x, λ) = S2(x, λ)C̃2(x, λ)−C2(x, λ)S̃2(x, λ)+S2(x, λ)S̃2(x, λ)
[
M̃(λ)−M(λ)

]
,

P22(x, λ) = C2(x, λ)S̃1(x, λ)−S2(x, λ)C̃1(x, λ)+S2(x, λ)S̃1(x, λ)
[
M(λ)− M̃(λ)

]
.

Hence, if M(λ) ≡ M̃(λ), Pij(x, λ)i,j=1,2 are entire functions with respect to λ for
every fixed x. Then from (4.15), we find

P11(x, λ) ≡ 1, P12(x, λ) ≡ 0, P21(x, λ) ≡ 0, P22(x, λ) ≡ 1.
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Substituting these identities into (4.14),

S1(x, λ) ≡ S̃1(x, λ), S2(x, λ) ≡ S̃2(x, λ)

Φ1(x, λ) ≡ Φ̃1(x, λ), Φ2(x, λ) ≡ Φ̃2(x, λ)

are obtained for all x and λ. Thus, L ≡ L̃.

Theorem 13. If λn = λ̃n, αn = α̃n for all n ∈ Z, L = L̃. That is, the problem
(1.1), (1.2) is uniquelly determined by spectral data.

Proof. Since λn = λ̃n, αn = α̃n for all n ∈ Z and considering the formula (4.7),
we have M(λ) = M̃(λ). Using the previous theorem, L = L̃ is obtained.
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