ENTIRE FUNCTIONS SHARING ZERO CM WITH THEIR HIGH ORDER DIFFERENCE OPERATORS

Jie Zhang, Jianjun Zhang* and Liangwen Liao

Abstract

In this paper, we investigate uniqueness of entire functions of order less than 2 sharing the value 0 with their difference operators and obtain a result as follows: Let f be a transcendental entire function such that $\sigma(f)<2$ and $\lambda(f)<\sigma(f)$. If f and $\Delta^{n} f$ share the value 0 CM , then f must be form of $f(z)=A e^{\alpha z}$, where A and α are two nonzero constants. This result confirms a conjecture posed earlier on the topic.

1. Introduction and Main Results

In this paper, a meromorphic function always means it is meromorphic in the whole complex plane \mathbb{C}. We assume that the reader is familiar with the standard notations in the Nevanlinna theory. We use the following standard notations in value distribution theory (see [4, 8, 9]):

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), \cdots
$$

And we denote by $S(r, f)$ any quantity satisfying

$$
S(r, f)=o\{T(r, f)\}, \text { as } r \rightarrow \infty,
$$

possibly outside of a set E with finite linear or logarithmic measure, not necessarily the same at each occurrence. A meromorphic function $a(z)$ is said to be a small function with respect to $f(z)$ if and only if $T(r, a)=S(r, f)$. We use $\lambda(f)$ and $\sigma(f)$ to denote the exponent of convergence of zeros of f and the order of f respectively. We say that

Received September 18, 2013, accepted October 15, 2013.
Communicated by Der-Chen Chang. 2010 Mathematics Subject Classification: 30D35, 34M10.
Key words and phrases: Uniqueness, Entire function, Difference equation, Order.
The research was supported by the Fundamental Research Funds for the Central Universities (No. 2011QNA25) and NSF of China (Grant 11271179).
*Corresponding author.
two meromorphic functions $f(z)$ and $g(z)$ share the value a IM (ignoring multiplicities) if $f(z)-a$ and $g(z)-a$ have the same zeros. If $f(z)-a$ and $g(z)-a$ have the same zeros with the same multiplicities, then we say that they share the value $a \mathrm{CM}$ (counting multiplicities). We define the difference operators $\Delta f=f(z+1)-f(z)$ and $\Delta^{n} f=\Delta^{n-1}(\Delta f)$. Moreover, $\Delta^{n} f=\sum_{j=0}^{n} C_{n}^{j}(-1)^{n-j} f(z+j)$.

In 1996, R. Brück [1] studied the uniqueness theory about some entire functions sharing one value with their derivatives and posed the following interesting and famous conjecture.

Conjecture 1. Let $f(z)$ be non-constant entire function satisfying

$$
\sigma_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

is neither infinity nor a positive integer. If $f(z)$ and $f^{\prime}(z)$ share one finite value $a \mathrm{CM}$, then

$$
f^{\prime}(z)-a=c(f(z)-a)
$$

holds for some constant $c \neq 0$.
He also proved that the conjecture is true provided $a \neq 0$ and $N\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$. But the conjecture is still open by now. It is well known that Δf can be considered as the difference counterpart of f^{\prime}. Recently, the difference analogue of the lemma on the logarithmic derivative and Nevanlinna theory for the difference operator have been founded, which bring about a number of papers focusing on the uniqueness study of meromorphic functions sharing a small function with their difference operators. Furthermore, people obtained lots of results expressly for the meromorphic function whose order is less than 1 because if $\sigma(g)<1$, then we have $g(z+\eta)=g(z)(1+o(1))$ as $z \rightarrow \infty$, possibly outside of a small set (see Lemma 3). For example, the authors in [7] obtained the following result.

Theorem A. [7]. Let f be a transcendental entire function such that $\sigma(f)<1$. If f and $\Delta^{n} f$ share a finite value a $C M$, then

$$
\Delta^{n} f-a=c(f-a)
$$

holds for some nonzero complex number c.
But we find that such probability $\Delta^{n} f-a=c(f-a)$ in the conclusion of Theorem A does not exist. That is to say if transcendental entire function f and $\Delta^{n} f$ share a finite value $a \mathrm{CM}$, then $\sigma(f) \geq 1$. As a matter of fact, the authors in [10] obtained the following results.

Theorem B. [10]. Let f be a transcendental entire function such that $\sigma(f)<1$. Then f and $\Delta^{n} f$ can not share any finite value a CM.

Theorem C. [10]. Let $f(z)$ be a transcendental entire function such that $\sigma(f)<2$, and $\alpha(z) \not \equiv 0$ be an entire function such that $\sigma(\alpha)<\sigma(f)$ and $\lambda(f-\alpha)<\sigma(f)$. If $\Delta^{n} f-\alpha(z)$ and $f(z)-\alpha(z)$ share the value $0 C M$, then $\alpha(z)$ is a polynomial with degree at most $n-1$ and $f(z)$ must be form of

$$
f(z)=\alpha(z)+H(z) e^{d z}
$$

where $H(z)$ is a polynomial such that $c H(z)=-\alpha(z)$ and c, d are nonzero constants such that $e^{d}=1$.

At the same time, they conjectured that the condition $\alpha(z) \not \equiv 0$ is not necessary in Theorem C and posed one conjecture as follows.

Conjecture 2. Let $f(z)$ be a transcendental entire function such that $\sigma(f)<2$ and $\lambda(f)<\sigma(f)$. If $f(z)$ and $\Delta^{n} f$ share the value 0 CM , then $f(z)$ must be form of

$$
f(z)=H e^{d z}
$$

where H and d are two nonzero constants.
The hypothesis $\sigma(f)<1$ plays an important role in the proof of Theorem A. In this paper, we continue to consider the case of the meromorphic function whose order is not less than 1 . Here we prove conjecture 2 is true and obtain our main theorem as follows.

Theorem 1. Let $f(z)$ be a transcendental entire function such that $\sigma(f)<2$ and $\lambda(f)<\sigma(f)$. If $f(z)$ and $\Delta^{n} f$ share the value $0 C M$, then $f(z)$ must be form of

$$
f(z)=A e^{\alpha z}
$$

where A and α are two nonzero constants.

2. Some Lemmas

To prove our results, we need some lemmas as follows.
Lemma 1. (see [3]). Let $f(z)$ be a transcendental meromorphic function with finite order σ. Then for each $\varepsilon>0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)=O\left(r^{\sigma-1+\varepsilon}\right)
$$

Lemma 2. (see [3]). Let $f(z)$ be a transcendental meromorphic function with finite order σ and η be a nonzero complex number, then for each $\varepsilon>0$, we have

$$
\begin{gathered}
T(r, f(z+\eta))=T(r, f)+O\left(r^{\sigma-1+\varepsilon}\right)+O(\log r) \\
i . e ., T(r, f(z+\eta))=T(r, f)+S(r, f)
\end{gathered}
$$

Lemma 3. (see [2]). Let g be a transcendental function of order less than 1 and h be a positive constant. Then there exists an ε set E such that

$$
\frac{g^{\prime}(z+\eta)}{g(z+\eta)} \rightarrow 0, \frac{g(z+\eta)}{g(z)} \rightarrow 1, \text { as } z \rightarrow \infty \text { in } C \backslash E
$$

uniformly in η for $|\eta| \leq h$. Further, the set E may be chosen so that for large $|z| \notin E$, the function g has no zeroes or poles in $|\zeta-z| \leq h$.

Remark. According to Hayman [5], an ε set is defined to be a countable union of open discs not containing the origin and subtending angles at the origin whose sum is finite. Suppose E is an ε set, then the set of $r \geq 1$ for which the circle $S(0, r)$ meets E has finite logarithmic measure and for almost all real θ the intersection of E with the ray $\arg z=\theta$ is bounded.

3. The Proof of Theorem

Proof. On the one hand, from our assumption $\lambda(f)<\sigma(f)<2$, there exist an entire function $a(z)$ which is from the canonical product of the zeros of $f(z)$ and a nonconstant polynomial $Q(z)$ such that

$$
f(z)=a(z) e^{Q(z)}
$$

where $\sigma(a)=\lambda(a)=\lambda(f)<\sigma(f)$. From the equation above, we can obtain the following inequality, namely

$$
0<\sigma\left(e^{Q(z)}\right)=\operatorname{deg} Q(z)=\sigma(f)<2
$$

which leads to

$$
\operatorname{deg} Q(z)=\sigma(f)=1
$$

and then $\sigma(a)<1$. Therefore, we can rewrite the equation $f(z)=a(z) e^{Q(z)}$ as the form as follows.

$$
\begin{equation*}
f(z)=A(z) e^{\alpha z} \tag{3.1}
\end{equation*}
$$

where α is a nonzero constant and $A(z)$ is an entire function satisfying $\lambda(A)=\sigma(A)<$ 1. In addition, we can assume that $A(z)$ has one zero at least, otherwise it is a non zero constant which implies our conclusion has holden already;
On the other hand, since $\Delta^{n} f$ and $f(z)$ share the value 0 CM , then there exists an entire function said $P(z)$ such that

$$
\Delta^{n} f(z)=f(z) e^{P(z)}
$$

From the equation above, we see

$$
e^{P(z)}=\frac{\Delta^{n} f}{f}=\sum_{j=0}^{n} C_{n}^{j}(-1)^{n-j} \frac{f(z+j)}{f(z)}
$$

By applying Lemma 1 to the equation above, we can apparently obtain that

$$
m\left(r, e^{P(z)}\right)=O\left(r^{\sigma(f)-1+\varepsilon}\right)
$$

holds for any $\varepsilon>0$. That is to say $P(z)$ is a polynomial with degree

$$
\operatorname{deg} P(z) \leq \sigma(f)-1+\varepsilon=\varepsilon,
$$

which means $P(z)$ is a constant because ε can be set small enough. So we can rewrite the equation $\Delta^{n} f(z)=f(z) e^{P(z)}$ as the following form.

$$
\begin{equation*}
\Delta^{n} f=\eta f(z) \tag{3.2}
\end{equation*}
$$

where η is a nonzero constant. Set $H_{0}(z)=A(z)$ and

$$
H_{j}(z)=k H_{j-1}(z+1)-H_{j-1}(z)
$$

for $j=1,2 \ldots, n, \ldots$, where $k=e^{\alpha}(\neq 0)$. Then from Equation (3.1) and the conformation of H_{j}, we can see

$$
\begin{equation*}
\Delta^{j} f=H_{j}(z) e^{\alpha z}, \quad j=1,2 \ldots, n \ldots \tag{3.3}
\end{equation*}
$$

Next we need to show that H_{n} can be indicated as the following form which plays an important role in our proof. That is

$$
\begin{equation*}
H_{n}(z)=\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} A(z+j) \tag{3.4}
\end{equation*}
$$

We prove it by mathematical induction. First of all, we suppose that Equation (3.4) has holden for $s=n$, then from the definition of H_{j}, we see

$$
\begin{aligned}
H_{n+1}(z) & =k H_{n}(z+1)-H_{n}(z) \\
& =k \sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} A(z+j+1)-\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} A(z+j) \\
& =\sum_{j=1}^{n+1} k^{j} C_{n}^{j-1}(-1)^{n+1-j} A(z+j)-\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} A(z+j) \\
& =\sum_{j=1}^{n} k^{j}\left(C_{n}^{j-1}+C_{n}^{j}\right)(-1)^{n+1-j} A(z+j)+k^{n+1} A(z+n+1)-A(z)(-1)^{n} \\
& =\sum_{j=1}^{n} k^{j} C_{n+1}^{j}(-1)^{n+1-j} A(z+j)+k^{n+1} A(z+n+1)-A(z)(-1)^{n} \\
& =\sum_{j=0}^{n+1} k^{j} C_{n+1}^{j}(-1)^{n+1-j} A(z+j) .
\end{aligned}
$$

It means Equation (3.4) can still hold for $s=n+1$. Thus, Equation (3.4) holds for all $s \in N$ by mathematical induction. By Equations (3.1)-(3.3), we see

$$
\begin{equation*}
H_{n}(z)=\eta A(z) . \tag{3.5}
\end{equation*}
$$

Combining Equation (3.4) and Equation (3.5), we see

$$
\begin{equation*}
\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} A(z+j)=\eta A(z) . \tag{3.6}
\end{equation*}
$$

By applying Lemma 3 to Equation (3.6), we see

$$
\begin{equation*}
\eta=\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} \frac{A(z+j)}{A(z)} \rightarrow \sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} \tag{3.7}
\end{equation*}
$$

as $z \rightarrow \infty$ in $C \backslash E$, where E is an ε set. Then from Equation (3.7), we can obtain

$$
\begin{equation*}
\eta=\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j} . \tag{3.8}
\end{equation*}
$$

By substituting the equation above into Equation (3.6), we can obtain the following equation.

$$
\begin{equation*}
\sum_{j=0}^{n} k^{j} C_{n}^{j}(-1)^{n-j}(A(z+j)-A(z))=0 \tag{3.9}
\end{equation*}
$$

Set $B(z)=\Delta A(z)=A(z+1)-A(z)$, then from Lemma 2, it is easy for us to see

$$
T(r, B) \leq 2 T(r, A)+S(r, A),
$$

which means $\sigma(B) \leq \sigma(A)<1$. From the definition of $B(z)$, we can obtain

$$
\begin{aligned}
& A(z+1)-A(z)=B, \\
& A(z+2)-A(z)=\Delta B+2 B, \\
& A(z+3)-A(z)=\Delta^{2} B+3 \Delta B+3 B, \\
& \vdots \\
& A(z+j)-A(z)=\Delta^{j-1} B+\cdots+j B,
\end{aligned}
$$

$$
\vdots
$$

Here we just need to show that the last term in $A(z+j)-A(z)$ is $j B$, and we prove it by mathematical induction also. Firstly, suppose

$$
\begin{equation*}
A(z+j)-A(z)=\Delta^{j-1} B+\cdots+j B \tag{3.10}
\end{equation*}
$$

has holden for $s=j$, then take difference operator of both sides of Equation (3.10) and we see

$$
\begin{aligned}
& \Delta^{j} B+\cdots+j \Delta B \\
= & \Delta(A(z+j)-A(z)) \\
= & (A(z+j+1)-A(z+1))-(A(z+j)-A(z)) \\
= & (A(z+j+1)-A(z))-(A(z+1)-A(z))-(A(z+j)-A(z)) \\
= & (A(z+j+1)-A(z))-B-\left(\Delta^{j-1} B+\cdots+j B\right) .
\end{aligned}
$$

Thus

$$
A(z+j+1)-A(z)=\Delta^{j} B+\cdots+(j+1) B
$$

holds which means Equation (3.10) still holds for $s=j+1$. Therefore, we can obtain the last term in $A(z+j)-A(z)$ is $j B$ by mathematical induction. By substituting Equation (3.10) into Equation (3.9), we see

$$
\begin{equation*}
\sum_{j=1}^{n} k^{j} C_{n}^{j}(-1)^{n-j}\left(\Delta^{j-1} B+\cdots+j B\right)=0 \tag{3.11}
\end{equation*}
$$

From Equation (3.11), we can get

$$
\begin{equation*}
\sum_{t=1}^{s} a_{t} \Delta^{t} B+\sum_{j=1}^{n} k^{j} C_{n}^{j}(-1)^{n-j} j B=0 \tag{3.12}
\end{equation*}
$$

where $a_{t}(t=1,2, \ldots, s)$ are some constants. If $B(z) \not \equiv 0$, then from Equation (3.12), we can see

$$
\begin{equation*}
\sum_{t=1}^{s} a_{t} \frac{\Delta^{t} B}{B}+\sum_{j=1}^{n} k^{j} C_{n}^{j}(-1)^{n-j} j=0 \tag{3.13}
\end{equation*}
$$

Since $\sigma(B)<1$, then by applying Lemma 3 to $\frac{\Delta^{t} B}{B}$ described in Equation (3.13), we can obtain

$$
\begin{equation*}
\frac{\Delta^{t} B}{B}=\sum_{j=0}^{t} C_{t}^{j}(-1)^{t-j} \frac{B(z+j)}{B} \rightarrow \sum_{j=0}^{t} C_{t}^{j}(-1)^{t-j}=(1-1)^{t}=0 \tag{3.14}
\end{equation*}
$$

as $z \rightarrow \infty$ in $C \backslash E$, where E is an ε set. Thus from Equations (3.13)- (3.14), we see

$$
\begin{equation*}
\sum_{j=1}^{n} k^{j} C_{n}^{j}(-1)^{n-j} j=-\sum_{t=1}^{s} a_{t} \frac{\Delta^{t} B}{B} \rightarrow 0 . \tag{3.15}
\end{equation*}
$$

as $z \rightarrow \infty$ in $C \backslash E$. Thus, from Equation (3.15), we see

$$
\sum_{j=1}^{n} k^{j} C_{n}^{j}(-1)^{n-j} j=0
$$

That is

$$
\sum_{j=1}^{n} k^{j} n C_{n-1}^{j-1}(-1)^{n-j}=0
$$

Thus

$$
\sum_{j=1}^{n} k^{j} C_{n-1}^{j-1}(-1)^{n-j}=0
$$

which implies

$$
k \sum_{s=0}^{n-1} k^{s} C_{n-1}^{s}(-1)^{n-s-1}=(-1)^{n-1}(1-k)^{n-1} k=0 .
$$

Therefore, we get $k=1$. From Equation (3.8), we see

$$
\eta=\sum_{j=0}^{n} C_{n}^{j}(-1)^{n-j}=0
$$

which is a contradiction.
Therefore, $B(z) \equiv 0$, and then $A(z+1)=A(z)$. If $A(z)$ is not a constant, then from our assumption that $A(z)$ has a zero at least, we see

$$
n\left(r, \frac{1}{A(z)}\right) \geq r(1+o(1))
$$

which implies $\sigma(A) \geq 1$. This is a contradiction. So $A(z)$ is a nonzero constant.
The proof of Theorem 1 is completed.

Acknowledgment

The authors would like to thank the referee for his/her comments and suggestions.

References

1. R. Bruck, On entire functions which share one value CM with their first derivative, Results Math., 30 (1996), 21-24.
2. W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc., 142 (2007), 133-147.
3. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujian. J., 16 (2008), 105-129.
4. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
5. W. K. Hayman, Slowly growing integral and subharmonic functions, Comment Math. Helv., 34 (1960), 75-84.
6. I. Laine and C. C. Yang, Value distribution of difference polynomials, Pro Japan Acad Ser A., 83 (2007), 148-151.
7. K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math., 92 (2009), 270-278.
8. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, Second Printed in 2006.
9. L. Yang, Value Distribution Theory, Springer-Verlag \& Science Press, Berlin, 1993.
10. J. Zhang and L. W. Liao, Entire functions sharing a small entire function with their difference operators, Submitted.

Jie Zhang
College of Science
China University of Mining and Technology
Xuzhou 221116
P. R. China

E-mail: zhangjie1981@cumt.edu.cn
Jianjun Zhang
Mathematics and Information Technology School
Jiangsu Second Normal University
Nanjing 210013
P. R. China

E-mail: zhangjianjun1982@163.com

Liangwen Liao
Department of Mathematics
Nanjing University
Nanjing 210093
P. R. China

E-mail: maliao@nju.edu.cn

