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ENTIRE FUNCTIONS SHARING ZERO CM
WITH THEIR HIGH ORDER DIFFERENCE OPERATORS

Jie Zhang, Jianjun Zhang* and Liangwen Liao

Abstract. In this paper, we investigate uniqueness of entire functions of order
less than 2 sharing the value 0 with their difference operators and obtain a result
as follows:
Let f be a transcendental entire function such that σ(f) < 2 and λ(f) < σ(f). If
f and Δnf share the value 0 CM, then f must be form of f(z) = Aeαz , where A
and α are two nonzero constants. This result confirms a conjecture posed earlier
on the topic.

1. INTRODUCTION AND MAIN RESULTS

In this paper, a meromorphic function always means it is meromorphic in the whole
complex plane C. We assume that the reader is familiar with the standard notations in
the Nevanlinna theory. We use the following standard notations in value distribution
theory (see [4, 8, 9]):

T (r, f), m(r, f), N (r, f), N(r, f), · · · .

And we denote by S(r, f) any quantity satisfying

S(r, f) = o{T (r, f)}, as r → ∞,

possibly outside of a set E with finite linear or logarithmic measure, not necessarily the
same at each occurrence. A meromorphic function a(z) is said to be a small function
with respect to f(z) if and only if T (r, a) = S(r, f). We use λ(f) and σ(f) to denote
the exponent of convergence of zeros of f and the order of f respectively. We say that
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two meromorphic functions f(z) and g(z) share the value a IM (ignoring multiplicities)
if f(z) − a and g(z) − a have the same zeros. If f(z) − a and g(z) − a have the
same zeros with the same multiplicities, then we say that they share the value a CM
(counting multiplicities). We define the difference operators Δf = f(z + 1) − f(z)

and Δnf = Δn−1(Δf). Moreover, Δnf =
n∑

j=0
Cj

n(−1)n−jf(z + j).

In 1996, R. Brück [1] studied the uniqueness theory about some entire functions
sharing one value with their derivatives and posed the following interesting and famous
conjecture.

Conjecture 1. Let f(z) be non-constant entire function satisfying

σ2(f) = lim
r→∞

log log T (r, f)
log r

is neither infinity nor a positive integer. If f(z) and f ′(z) share one finite value a CM,
then

f ′(z)− a = c(f(z) − a)

holds for some constant c �= 0.
He also proved that the conjecture is true provided a �= 0 and N (r, 1

f ′ ) = S(r, f).
But the conjecture is still open by now. It is well known that Δf can be considered
as the difference counterpart of f ′. Recently, the difference analogue of the lemma
on the logarithmic derivative and Nevanlinna theory for the difference operator have
been founded, which bring about a number of papers focusing on the uniqueness study
of meromorphic functions sharing a small function with their difference operators.
Furthermore, people obtained lots of results expressly for the meromorphic function
whose order is less than 1 because if σ(g) < 1, then we have g(z+η) = g(z)(1+o(1))
as z → ∞, possibly outside of a small set (see Lemma 3). For example, the authors
in [7] obtained the following result.

Theorem A. [7]. Let f be a transcendental entire function such that σ(f) < 1. If
f and Δnf share a finite value a CM, then

Δnf − a = c(f − a)

holds for some nonzero complex number c.

But we find that such probability Δnf−a = c(f−a) in the conclusion of Theorem
A does not exist. That is to say if transcendental entire function f and Δnf share a
finite value a CM, then σ(f) ≥ 1. As a matter of fact, the authors in [10] obtained
the following results.

Theorem B. [10]. Let f be a transcendental entire function such that σ(f) < 1.
Then f and Δnf can not share any finite value a CM.
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Theorem C. [10]. Let f(z) be a transcendental entire function such that σ(f) < 2,
and α(z) �≡ 0 be an entire function such that σ(α) < σ(f) and λ(f − α) < σ(f). If
Δnf − α(z) and f(z) − α(z) share the value 0 CM, then α(z) is a polynomial with
degree at most n − 1 and f(z) must be form of

f(z) = α(z) + H(z)edz,

where H(z) is a polynomial such that cH(z) = −α(z) and c, d are nonzero constants
such that ed = 1.

At the same time, they conjectured that the condition α(z) �≡ 0 is not necessary in
Theorem C and posed one conjecture as follows.

Conjecture 2. Let f(z) be a transcendental entire function such that σ(f) < 2 and
λ(f) < σ(f). If f(z) and Δnf share the value 0 CM, then f(z) must be form of

f(z) = Hedz,

where H and d are two nonzero constants.

The hypothesis σ(f) < 1 plays an important role in the proof of Theorem A. In
this paper, we continue to consider the case of the meromorphic function whose order
is not less than 1. Here we prove conjecture 2 is true and obtain our main theorem as
follows.

Theorem 1. Let f(z) be a transcendental entire function such that σ(f) < 2 and
λ(f) < σ(f). If f(z) and Δnf share the value 0 CM, then f(z) must be form of

f(z) = Aeαz,

where A and α are two nonzero constants.

2. SOME LEMMAS

To prove our results, we need some lemmas as follows.

Lemma 1. (see [3]). Let f(z) be a transcendental meromorphic function with finite
order σ. Then for each ε > 0, we have

m
(
r,

f(z + c)
f(z)

)
= O(rσ−1+ε).

Lemma 2. (see [3]). Let f(z) be a transcendental meromorphic function with
finite order σ and η be a nonzero complex number, then for each ε > 0, we have

T (r, f(z + η)) = T (r, f) + O(rσ−1+ε) + O(log r),

i.e., T (r, f(z + η)) = T (r, f) + S(r, f).
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Lemma 3. (see [2]). Let g be a transcendental function of order less than 1 and
h be a positive constant. Then there exists an ε set E such that

g′(z + η)
g(z + η)

→ 0,
g(z + η)

g(z)
→ 1, as z → ∞ in C\E

uniformly in η for |η| ≤ h. Further, the set E may be chosen so that for large |z| �∈ E ,
the function g has no zeroes or poles in |ζ − z| ≤ h.

Remark. According to Hayman [5], an ε set is defined to be a countable union of
open discs not containing the origin and subtending angles at the origin whose sum is
finite. Suppose E is an ε set, then the set of r ≥ 1 for which the circle S(0, r) meets
E has finite logarithmic measure and for almost all real θ the intersection of E with
the ray arg z = θ is bounded.

3. THE PROOF OF THEOREM

Proof. On the one hand, from our assumption λ(f) < σ(f) < 2, there exist an
entire function a(z) which is from the canonical product of the zeros of f(z) and a
nonconstant polynomial Q(z) such that

f(z) = a(z)eQ(z),

where σ(a) = λ(a) = λ(f) < σ(f). From the equation above, we can obtain the
following inequality, namely

0 < σ(eQ(z)) = deg Q(z) = σ(f) < 2,

which leads to
deg Q(z) = σ(f) = 1

and then σ(a) < 1. Therefore, we can rewrite the equation f(z) = a(z)eQ(z) as the
form as follows.

(3.1) f(z) = A(z)eαz,

where α is a nonzero constant and A(z) is an entire function satisfying λ(A) = σ(A) <
1. In addition, we can assume that A(z) has one zero at least, otherwise it is a non
zero constant which implies our conclusion has holden already;
On the other hand, since Δnf and f(z) share the value 0 CM, then there exists an
entire function said P (z) such that

Δnf(z) = f(z)eP (z).

From the equation above, we see
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eP (z) =
Δnf

f
=

n∑

j=0

Cj
n(−1)n−j f(z + j)

f(z)
.

By applying Lemma 1 to the equation above, we can apparently obtain that

m(r, eP (z)) = O(rσ(f)−1+ε)

holds for any ε > 0. That is to say P (z) is a polynomial with degree

deg P (z) ≤ σ(f)− 1 + ε = ε,

which means P (z) is a constant because ε can be set small enough. So we can rewrite
the equation Δnf(z) = f(z)eP (z) as the following form.

(3.2) Δnf = ηf(z),

where η is a nonzero constant. Set H0(z) = A(z) and

Hj(z) = kHj−1(z + 1)− Hj−1(z)

for j = 1, 2 . . . , n, . . . , where k = eα( �= 0). Then from Equation (3.1) and the
conformation of Hj , we can see

(3.3) Δjf = Hj(z)eαz, j = 1, 2 . . . , n . . . .

Next we need to show that Hn can be indicated as the following form which plays an
important role in our proof. That is

(3.4) Hn(z) =
n∑

j=0

kjCj
n(−1)n−jA(z + j).

We prove it by mathematical induction. First of all, we suppose that Equation (3.4)
has holden for s = n, then from the definition of Hj , we see

Hn+1(z) = kHn(z + 1)− Hn(z)

= k

n∑

j=0

kjCj
n(−1)n−jA(z + j + 1)−

n∑

j=0

kjCj
n(−1)n−jA(z + j)

=
n+1∑

j=1

kjCj−1
n (−1)n+1−jA(z + j) −

n∑

j=0

kjCj
n(−1)n−jA(z + j)

=
n∑

j=1

kj(Cj−1
n +Cj

n)(−1)n+1−jA(z+j)+kn+1A(z+n+1)−A(z)(−1)n

=
n∑

j=1

kjCj
n+1(−1)n+1−jA(z + j) + kn+1A(z + n + 1) − A(z)(−1)n

=
n+1∑

j=0

kjCj
n+1(−1)n+1−jA(z + j).
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It means Equation (3.4) can still hold for s = n + 1. Thus, Equation (3.4) holds for
all s ∈ N by mathematical induction. By Equations (3.1)-(3.3), we see

(3.5) Hn(z) = ηA(z).

Combining Equation (3.4) and Equation (3.5), we see

(3.6)
n∑

j=0

kjCj
n(−1)n−jA(z + j) = ηA(z).

By applying Lemma 3 to Equation (3.6), we see

(3.7) η =
n∑

j=0

kjCj
n(−1)n−j A(z + j)

A(z)
→

n∑

j=0

kjCj
n(−1)n−j

as z → ∞ in C\E , where E is an ε set. Then from Equation (3.7), we can obtain

(3.8) η =
n∑

j=0

kjCj
n(−1)n−j .

By substituting the equation above into Equation (3.6), we can obtain the following
equation.

(3.9)
n∑

j=0

kjCj
n(−1)n−j(A(z + j)− A(z)) = 0.

Set B(z) = ΔA(z) = A(z + 1)− A(z), then from Lemma 2, it is easy for us to see

T (r, B) ≤ 2T (r, A) + S(r, A),

which means σ(B) ≤ σ(A) < 1. From the definition of B(z), we can obtain

A(z + 1)− A(z) = B,
A(z + 2)− A(z) = ΔB + 2B,

A(z + 3)− A(z) = Δ2B + 3ΔB + 3B,
...

A(z + j)− A(z) = Δj−1B + · · ·+ jB,
....

Here we just need to show that the last term in A(z + j)−A(z) is jB, and we prove
it by mathematical induction also. Firstly, suppose

(3.10) A(z + j)− A(z) = Δj−1B + · · ·+ jB

has holden for s = j, then take difference operator of both sides of Equation (3.10)
and we see
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ΔjB + · · ·+ jΔB

= Δ(A(z + j)− A(z))
= (A(z + j + 1)− A(z + 1))− (A(z + j)− A(z))
= (A(z + j + 1)− A(z))− (A(z + 1) − A(z)) − (A(z + j)− A(z))
= (A(z + j + 1)− A(z))− B − (Δj−1B + · · ·+ jB).

Thus
A(z + j + 1)− A(z) = ΔjB + · · ·+ (j + 1)B

holds which means Equation (3.10) still holds for s = j + 1. Therefore, we can obtain
the last term in A(z + j) − A(z) is jB by mathematical induction. By substituting
Equation (3.10) into Equation (3.9), we see

(3.11)
n∑

j=1

kjCj
n(−1)n−j(Δj−1B + · · ·+ jB) = 0.

From Equation (3.11), we can get

(3.12)
s∑

t=1

atΔtB +
n∑

j=1

kjCj
n(−1)n−jjB = 0,

where at(t = 1, 2, . . . , s) are some constants. If B(z) �≡ 0, then from Equation (3.12),
we can see

(3.13)
s∑

t=1

at
ΔtB

B
+

n∑

j=1

kjCj
n(−1)n−jj = 0.

Since σ(B) < 1, then by applying Lemma 3 to ΔtB
B described in Equation (3.13), we

can obtain

(3.14)
ΔtB

B
=

t∑

j=0

Cj
t (−1)t−j B(z + j)

B
→

t∑

j=0

Cj
t (−1)t−j = (1 − 1)t = 0

as z → ∞ in C\E , where E is an ε set. Thus from Equations (3.13)- (3.14), we see

(3.15)
n∑

j=1

kjCj
n(−1)n−jj = −

s∑

t=1

at
ΔtB

B
→ 0.

as z → ∞ in C\E . Thus, from Equation (3.15), we see
n∑

j=1

kjCj
n(−1)n−jj = 0.

That is
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n∑

j=1

kjnCj−1
n−1(−1)n−j = 0.

Thus n∑

j=1

kjCj−1
n−1(−1)n−j = 0,

which implies

k

n−1∑

s=0

ksCs
n−1(−1)n−s−1 = (−1)n−1(1− k)n−1k = 0.

Therefore, we get k = 1. From Equation (3.8), we see

η =
n∑

j=0

Cj
n(−1)n−j = 0,

which is a contradiction.

Therefore, B(z) ≡ 0, and then A(z + 1) = A(z). If A(z) is not a constant, then
from our assumption that A(z) has a zero at least, we see

n(r,
1

A(z)
) ≥ r(1 + o(1)),

which implies σ(A) ≥ 1. This is a contradiction. So A(z) is a nonzero constant.

The proof of Theorem 1 is completed.
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