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OPTIMALITY CONDITIONS FOR EFFICIENCY ON NONSMOOTH
MULTIOBJECTIVE PROGRAMMING PROBLEMS

Xian-Jun Long* and Nan-Jing Huang

Abstract. In this paper, a nonsmooth multiobjective programming problem is in-
troduced and studied. By using the generalized Guignard constraint qualification,
some stronger Kuhn-Tucker type necessary optimality conditions for efficiency in
terms of convexificators are established, in which we are not assuming that the
objective functions are directionally differentiable. Moreover, some conditions
which ensure that a feasible solution is an efficient solution to nonsmooth mul-
tiobjective programming problems are also given. The results presented in this
paper improve the corresponding results in the literature.

1. INTRODUCTION

In recent years, stronger Kuhn-Tucker type necessary optimality conditions have
received much attention by many authors. Maeda [16] obtained stronger Kuhn-Tucker
type necessary optimality conditions for multiobjective programming problems where
the objective and constraint functions are continuously differentiable. Later, Preda and
Chitescu [19] extended the results obtained by Maeda from the continuously differen-
tiable case to the directionally differentiable case. In the framework of the locally Lip-
schitz case, Li [11] and Giorgi et al. [6] derived some results of stronger Kuhn-Tucker
type necessary optimality conditions in terms of the Clarke subdifferentials. Huang
et al. [7] and Luu [14] obtained Kuhn-Tucker necessary conditions of efficiency for
multiobjective programming problems in terms of the Michel-Penot subdifferentials.
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On the other hand, the idea of convexificators has been used to extend, unify, and
sharpen various results in nonsmooth analysis and optimization due to convexificators
are in general closed sets unlike the well-known subdifferentials which are convex and
compact (see, for example, [2, 3, 4, 5, 9, 10, 13] and the references therein). It has been
shown in [10] that for a locally Lipschtiz function, most known subdifferentials such
as the subdifferentials of Clarke [1], Michel-Penot [17], Ioffe-Morduchovich [8, 18],
and Treiman [20] are convexificators and these known subdifferentials may contain
the convex hull of a convexificator. Therefore, from the viewpoint of optimization
and applications, the descriptions of the optimality conditions, calculus rules, and the
characterizations of generalized convex functions in terms of convexificators provide
sharper results. Recently, under the assumption of directional differentiability, Li and
Zhang [12] derived stronger Kuhn-Tucker type necessary optimality conditions for
multiobjective programming problems in terms of upper convexificators, where the
objective functions are directionally differentiable and the directional derivatives of the
objective function and inequality constraints are sublinear in the second variable.

In this paper, we consider a nonsmooth multiobjective programming problem with-
out assuming that the objective functions are directionally differentiable. By using the
generalized Guignard constraint qualification, we obtain stronger Kuhn-Tucker type
necessary optimality conditions for this problem. Moreover, we give some conditions
which ensure that a feasible solution is an efficient solution to nonsmooth multiobjective
programming problems. The results presented in this paper improve the corresponding
results obtained by Li and Zhang [12].

2. PRELIMINARIES

Throughout this paper, we assume that X is a real Banach space. The dual space
of X is denoted by X∗ and it equipped with weak∗ topology. For any set A ⊂ X , we
denote by clA, coA, and clcoA as the closed hull, convex hull, and closed convex hull
of the set A respectively. The contingent cone or Bouligand cone [21] to the subset A

at x ∈ clA is the set defined by

T (A, x) = {d ∈ X : ∃ (tn, dn) → (0+, d) such that x + tndn ∈ A}.

Note that T (A, x) is a closed cone in X .
Let f : X → R be a real-valued function. The lower and upper Dini directional

derivatives of f at x ∈ X in the direction d ∈ X are defined, respectively, by

f−(x; d) = lim inf
t↓0

f(x + td) − f(x)
t

,

f+(x; d) = lim sup
t↓0

f(x + td) − f(x)
t

.
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It is worth noting that, in the case where f is locally Lipschitz at x, f−(x; d) and
f+(x; d) are continuous in d. A function f is said to be directionally differentiable at
x ∈ X if, for every direction d ∈ X , the usual one-sided directional derivative

f ′(x; d) = lim
t↓0

f(x + td) − f(x)
t

of f at x in the direction d exists and is finite. Obviously, if f is directionally
differentiable at x ∈ X , then for every d ∈ X ,

f ′(x; d) = f−(x; d) = f+(x; d).

We recall now some definitions that will be used in the sequel.

Definition 2.1. [10]. A function f : X → R is said to admit a lower convexificator
∂∗f(x) ⊆ X∗ at x ∈ X if ∂∗f(x) is weak∗ closed and

f+(x; d) ≥ inf
x∗∈∂∗f(x)

〈x∗, d〉, ∀ d ∈ X.

Definition 2.2 [10] A function f : X → R is said to admit an upper convexificator
∂∗f(x) ⊆ X∗ at x ∈ X if ∂∗f(x) is weak∗ closed and

f−(x; d) ≤ sup
x∗∈∂∗f(x)

〈x∗, d〉, ∀ d ∈ X.

A weak∗ closed set ∂∗f(x) is said to be a convexificator of f at x if it is both upper
and lower convexificator of f at x.

Remark 2.1. It is important to note that convexificators are not necessary weak∗
compact or convex [5]. For instance, the function f : R → R, defined by

f1(x) =
{ √

x if x ≥ 0;
−√−x if x < 0,

admits noncompact convexificators at 0 of the form [α,∞) with α ∈ R. On the
other hand, the function f : R → R, defined by f(x) = −|x| admits a nonconvex
convexificator ∂∗f(0) = {1,−1} at 0.

Definition 2.3. [3]. A function f : X → R is said to admit an upper semiregular
convexificator ∂∗f(x) ⊆ X∗ at x ∈ X if ∂∗f(x) is weak∗ closed and

f+(x; d) ≤ sup
x∗∈∂∗f(x)

〈x∗, d〉, ∀ d ∈ X.

Remark 2.2. Since f−(x; d) ≤ f+(x; d), for all d ∈ X , an upper semiregular
convexificator is an upper convexificator of f at x. But the converse is not true (see
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Example 2.1 in [4]). If f is directionally differentiable at x in every direction d, then
every upper convexificator is also an upper semiregular convexificator of f at x.

Let f be a locally Lipschitz function at x ∈ X . The Clarke [1] generalized
directional derivative of f at x in the direction d ∈ X is defined by

f◦(x; d) = lim sup
y→x
t↓0

f(y + td) − f(y)
t

and the Clarke [1] generalized gradient of f at x is denoted by

∂Cf(x) = {ξ ∈ X∗ | f◦(x; d) ≥ 〈ξ, d〉, ∀ d ∈ X}.
It follows that

f◦(x; d) = sup
ξ∈∂Cf(x)

〈ξ, d〉, ∀ d ∈ X.

Note that, for every fixed x ∈ X , ∂Cf(x) is a nonempty weak∗ compact subset of X∗.
Moreover, for every x and d in X , since

f−(x; d) ≤ f+(x; d) ≤ f◦(x; d),

the Clarke subdifferential ∂Cf(x) is a weak∗ compact and convex upper semiregular
convexificator of f at x. On the other hand, Example 2.1 of [10] shows that the
convex hull of a upper convexificator of a locally Lipschitz function may be strictly
contained in the Clarke subdifferential. Therefore, for optimization problems involving
locally Lipschitz functions, the results of the necessary optimality conditions expressed
in terms of upper or upper semiregular convexificators are sharper than those expressed
in terms of Clarke subdifferentials.

3. OPTIMALITY CONDITIONS

Let Rn be the n-dimensional Euclidean space. In the sequel, we will use the
following conventions for vectors in Euclidean space Rn:

x > y ⇔ xi > yi, i = 1, 2, · · · , n;

x � y ⇔ xi � yi, i = 1, 2, · · · , n;

x ≥ y ⇔ xi � yi, i = 1, 2, · · · , n, but x �= y.

In this paper, we consider the following nonsmooth multiobjective programming
problem:

(MP) Minimize f(x) = (f1(x), f2(x), · · · , fp(x)),
s.t. x ∈ S = {x ∈ X : g(x) = (g1(x), g2(x), · · · , gm(x)) � 0},
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where the real-valued functions fi : X → R, i ∈ I := {1, 2, · · · , p}, and gj : X → R,
j ∈ J := {1, 2, · · · , m} are locally Lipschitz functions on X . Denote by J(x) the set
of indices of all the constraints active at x ∈ S; i.e., J(x) = {j ∈ J : gj(x) = 0}.

Definition 3.1. A vector x0 ∈ S is said to be an efficient solution for (MP) if there
does not exist x ∈ S such that f(x) ≤ f(x0).

Definition 3.2. A vector-valued functionf : X → Rp is said to be strong pseudo-
convex at x0 ∈ X if, for all x ∈ X ,

f(x) ≤ f(x0) ⇒ f+(x0; x − x0) ≤ 0.

Definition 3.3. A vector-valued functionf : X → Rp is said to be quasiconvex at
x0 ∈ X if, for all x ∈ X ,

f(x) � f(x0) ⇒ f+(x0; x − x0) � 0.

As in [12], for each i ∈ I , define the sets

Q(x) = {y ∈ X : f(y) � f(x) and g(y) � 0},
Qi(x) = {y ∈ X : fk(y) � fk(x), k ∈ I\{i} and g(y) � 0},
Qi(x) = Q(x), if p = 1,

C(Q(x), x) = {d ∈ X : f−
i (x; d) � 0, i ∈ I, and g−j (x; d) � 0, j ∈ J(x)},

C(Qi(x), x) = {d ∈ X : f−
k (x; d) � 0, k ∈ I\{i}, and g−j (x; d) � 0, j ∈ J(x)}.

The following result shows that the relationship between the tangent cones T (Qi(x), x)
and the set C(Q(x), x).

Proposition 3.1. Let x ∈ S. If f−
i (x; ·) and g−j (x; ·), with i ∈ I and j ∈ J(x),

are convex functions on X , then,
⋂
i∈I

clcoT (Qi(x), x) ⊆ C(Q(x), x).

Proof. First, we shall show that C(Qi(x), x) is closed and convex for all i ∈ I .
Let α � 0 and d ∈ C(Qi(x), x). Then, αd ∈ C(Qi(x), x) as f−

k (x; αd) =
αf−

k (x; d) � 0, k ∈ I\{i} and g−j (x; αd) � 0, j ∈ J(x). Now, let d1, d2 ∈
C(Qi(x), x), and let λ ∈ [0, 1]. Since f−

i (x; ·) and g−j (x; ·) are convex functions,
we have, for i ∈ I ,

f−
i (x; λd1 + (1− λ)d2) � λf−

i (x; d1) + (1 − λ)f−
i (x; d2) � 0
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and similarly, for j ∈ J(x),

g−j (x; λd1 + (1 − λ)d2) � 0.

Thus, C(Qi(x), x) is convex for all i ∈ I .
Since fi and gi are locally Lipschitz and f−

i (x; ·) and g−j (x; ·), with i ∈ I and
j ∈ J(x), are convex, we know that f−

i (x; ·) and g−j (x; ·) are continuous. It follows
that we can easily prove C(Qi(x), x) is closed for all i ∈ I .

By the definitions of C(Q(x), x) and C(Qi(x), x),

C(Q(x), x) =
⋂
i∈I

C(Qi(x), x).

Therefore,
C(Q(x), x) =

⋂
i∈I

clcoC(Qi(x), x).

Second, we shall show that, for each i ∈ I ,

T (Qi(x), x) ⊆ C(Qi(x), x).

The rest of the proof is similar to those of Proposition 3.1 in [12] and so we omit it.
This completes the proof.

Remark 3.1. Note that a sublinear function is a convex function, but the converse
is not true. For example, the function f : [−1, 1] → R defined by f(x) =

√
1 − x2

is a convex function but not sublinear on [−1, 1]. Therefore, Proposition 3.1 improve
Proposition 3.1 of Li and Zhang [12].

Remark 3.2. If f−(x; d) = f+(x; d) for all d ∈ X , then Proposition 3.1 improve
Proposition 3.1 of Preda and Chitescu [19] because the condition that f is quasiconvex
at x is removed.

In order to obtain the necessary conditions that a feasible solution to problem (MP)
be an efficient solution, we need the following constraint qualification and Lemma.

Definition 3.1. [12]. We shall say the problem (MP) satisfies the generalized
Guignard constraint qualification (GGCQ) at x ∈ S if

C(Q(x), x) ⊆
⋂
i∈I

clcoT (Qi(x), x).

Lemma 3.1. [12] Let x be an efficient solution to problem (MP). If f+
i0

(x; ·) is
concave for some i0 ∈ I , then

{d ∈ X : f+
i0

(x; ·) < 0} ∩
⋂
i∈I

clcoT (Qi(x), x) = ∅.
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Now, we establish the following stronger Kuhn-Tucker type necessary optimality
conditions.

Theorem 3.1. Let x0 ∈ S be an efficient solution to problem (MP). Suppose that

(i) constraint qualification (GGCQ) holds at x0;
(ii) fi and gi admit respectively the upper semiregular convexificators ∂∗fi(x0) and

upper convexificators ∂∗gj(x0), with i ∈ I and j ∈ J;
(iii) f+

i0
(x0; ·) is concave on X for some i0 ∈ I;

(iv) f+
i (x0; ·) is convex on X for all i ∈ I;

(v) g−j (x0; ·) is convex on X for all j ∈ J(x0);

(vi) there exists d ∈ X such that g−j (x0; d) < 0 for all j ∈ J(x0).

Then, there exist real numbers α = (α1, · · · , αp) ∈ Rp
+ with α �= 0 and β =

(β1, · · · , βm) ∈ Rm
+ such that

0 ∈ cl(
∑
i∈I

αico∂∗fi(x0) +
∑
j∈J

βjco∂∗gj(x0)),

βjgj(x0) = 0, j = 1, 2, · · · , m.

Proof. Since x0 ∈ S is an efficient solution to problem (MP), we have the following
system

f+
i0

(x0; d) < 0,

f+
k (x0; d) � 0, k ∈ I\{i0},

g−j (x0; d) � 0, j ∈ J(x0),

has no solution d ∈ X . In fact, suppose by contradiction that there exists v ∈ X which
solves the system. This implies that the system

f−
i0

(x0; d) < 0,

f−
k (x0; d) � 0, k ∈ I\{i0},

g−j (x0; d) � 0, j ∈ J(x0),

has a solution v ∈ X . It follows that v ∈ C(Q(x0), x0). This fact together with
condition (i) yields

v ∈ {d ∈ X : f+
i0

(x0; d) < 0} ∩
⋂
i∈I

clcoT (Qi(x0), x0),

which contradicts the result of Lemma 3.1.
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By conditions (iv) and (v) and the Farkas theorem [15] in the convex case, there
exist real numbers α = (α1, · · · , αp) ∈ Rp

+ and βj � 0 with j ∈ J(x0), not all zero,
such that ∑

i∈I

αif
+
i (x0; d) +

∑
j∈J(x0)

βjg
−
j (x0; d) � 0, for all d ∈ X.

Now we prove that α �= 0. Indeed, if α = 0, then there exists j ∈ J(x0) such that
βj > 0 and

(1)
∑

j∈J(x0)

βjg
−
j (x0; d) � 0, for all d ∈ X.

By condition (vi), there exists d0 ∈ X such that∑
j∈J(x0)

βjg
−
j (x0; d0) < 0,

which contradicts (1). Therefore, α �= 0.
Using condition (b), one has
∑
i∈I

(αi sup
x∗∈∂∗fi(x0)

〈x∗, d〉) +
∑

j∈J(x0)

(βj sup
y∗∈∂∗gj(x0)

〈y∗, d〉) � 0, for all d ∈ X.

Denote by
C(x0) =

∑
i∈I

αi∂
∗fi(x0) +

∑
j∈J(x0)

βj∂
∗gj(x0).

It follows that

sup
z∗∈C(x0)

〈z∗, d〉

=
∑
i∈I

(αi sup
x∗∈∂∗fi(x0)

〈x∗, d〉) +
∑

j∈J(x0)

(βj sup
y∗∈∂∗gj(x0)

〈y∗, d〉)

� 0, for all d ∈ X.

By the usual calculus of support functions,

0 ∈ clco(
∑
i∈I

αi∂
∗fi(x0) +

∑
j∈J(x0)

βj∂
∗gj(x0)),

which implies

0 ∈ cl(
∑
i∈I

αico∂∗fi(x0) +
∑

j∈J(x0)

βjco∂∗gj(x0)).

By setting βj = 0, j /∈ J(x0), the result is derived. This completes the proof.
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Remark 3.3. In [12], Li and Zhang gave a sufficient condition guaranteeing the
stronger Kuhn-Tucker type condition holds. The assumption that fi is directional dif-
ferentiable is required in [12]. However, Theorem 3.1 does not require this assumption.

Remark 3.4. We observe also that condition (v) in Theorem 3.1 is weaker than
that condition (c) in Theorem 3.1 of Li and Zhang [12] as the reason mentioned in
Remark 3.1. Therefore, Theorem 3.1 improve and generalize Theorem 3.1 of Li and
Zhang [12].

The following example illustrates that the condition of Theorem 3.1 holds, whereas
the condition of Theorem 3.1 in [12] does not hold.

Example 3.1. Let Q denote the set of rationals. We consider the following multi-
objective programming problem:

(MP) Min (f1(x), f2(x)),
s.t. g(x) � 0,

where fi : R → R, i = 1, 2, and g : R → R are given by

f1(x) =
{

1
2x if x ∈ Q;
0 if x /∈ Q;

f2(x) = −x,

g(x) = x.

Obviously, x0 = 0 is an efficient solution to problem (MP). By simple calculations, we
have

f+
1 (0; d) = max{0,

1
2
d},

f−
1 (0; d) = min{0,

1
2
d},

f+
2 (0; d) = f−

2 (0; d) = −d,

g+(0; d) = g−(0; d) = d.

It is easy to check that the conditions (iii)-(vi) of Theorem 3.1 are satisfied. For x0 = 0,
one has

Q1(0) = {x ∈ R : x = 0},
Q2(0) = {x ∈ R : x ≤ 0},
C(Q(0), 0) = 0,

T (Q1(0), 0) = 0,

T (Q2(0), 0) = {x ∈ R : x ≤ 0}.
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Thus, constraint qualification (GGCQ) holds at x0 = 0.
Consider the set ∂∗f1(0) = {0, 1}, ∂∗f2(0) = {−1, 1} and ∂∗g(0) = {1}. Observe

that
sup

x∗∈∂∗f1(0)
〈x∗, d〉 =

{
d if d ≥ 0;
0 if d < 0.

It is clear that ∂∗f1(0) = {0, 1} is an upper semiregular convexificator of f1 at x0 = 0.
Similarly, we can verify that ∂∗f2(0) = {−1, 1} and ∂∗g(0) = {1} are an upper
semiregular convexificator of f2 at x0 = 0 and an upper convexificator of g at x0 = 0,
respectively. This implies that condition (b) of Theorem 3.1 is satisfied.

Therefore, all the conditions of Theorem 3.1 are satisfied. Then, by setting

α1 = α2 = 1, β = 0,

we have

0 ∈ cl(
2∑

i=1

αico∂∗fi(x0) + βco∂∗g(x0)) = [−1, 2].

It is easy to see that, for any d �= 0, f+
1 (0; d) �= f−

1 (0; d), i.e., f1 is not directional
differentiable. Thus, Theorem 3.1 of Li and Zhang [12] can not be used.

From the proof of Theorem 3.1, we can easily obtain the following result.

Theorem 3.2. Let x0 ∈ X be an efficient solution to problem (MP). Suppose that

(i) constraint qualification (GGCQ) holds at x0;
(ii) f+

i0
(x0; ·) is concave on X for some i0 ∈ I;

(iii) f+
i (x0; ·) is convex for all i ∈ I;

(iv) g−j (x0; ·) is convex on X for all j ∈ J(x0);

(v) there exists d ∈ X such that g−j (x0; d) < 0 for all j ∈ J(x0).

Then, there exist real numbers α = (α1, · · · , αp) ∈ Rp
+ with α �= 0 and β =

(β1, · · · , βm) ∈ Rm
+ such that∑

i∈I

αif
+
i (x0; d) +

∑
j∈J

βjg
−
j (x0; d) � 0, for all d ∈ X,

βjgj(x0) = 0, j = 1, 2, · · · , m.

In the following theorem, we give the sufficient condition for a feasible solution to
be an efficient solution to problem (MP).

Theorem 3.3. Let x0 ∈ S be a feasible solution to problem (MP). Assume that
functions f and g are strong pseudoconvex and quasiconvex at x0, respectively. If
there exist real numbers αi > 0 and βj � 0 with i ∈ I and j ∈ J such that
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(2)
∑
i∈I

αif
+
i (x0; d) +

∑
j∈J

βjg
−
j (x0; d) � 0, for all d ∈ X,

(3) βjgj(x0) = 0, j = 1, 2, · · · , m.

Then x0 is an efficient solution for problem (MP).
Proof. Suppose by contradiction that x0 is not an efficient solution for problem

(MP). Then there exists y ∈ S such that

(4) f(y) ≤ f(x0),

(5) gJ(x0)(y) � 0.

Since f and g are strong pseudoconvex and quasiconvex respectively at x0, (4) and (5)
yield

(6) f+(x0; y − x0) ≤ 0

and

(7) g−
J(x0)

(x0; y − x0) � 0.

Let d = y − x0. Note that αi > 0 and βj � 0 with i ∈ I and j ∈ J(x0). This fact
combining with (6) and (7) yields

∑
i∈I

αif
+
i (x0; d) +

∑
j∈J(x0)

βjg
−
j (x0; d) < 0.

By (3), we obtain βj = 0 for j /∈ J(x0). It follows that
∑
i∈I

αif
+
i (x0; d) +

∑
j∈J

βjg
−
j (x0; d) < 0,

which contradicts to (2). This completes the proof.
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