COMPACTNESS OF THE COMMUTATOR OF BILINEAR FOURIER MULTIPLIER OPERATOR

Guoen Hu

$$
\begin{aligned}
& \text { Abstract. Let } b_{1}, b_{2} \in \mathrm{CMO}\left(\mathbb{R}^{n}\right) \text { and } T_{\sigma} \text { be the bilinear Fourier multiplier opera- } \\
& \text { tor with associated multiplier } \sigma \text { satisfies the Sobolev regularity that } \\
& \sup _{\kappa \in \mathbb{Z}}\left\|\sigma_{\kappa}\right\|_{W^{s_{1}, s_{2}}\left(\mathbb{R}^{2 n}\right)<\infty \text { for some } s_{1}, s_{2} \in(n / 2, n] \text {. In this paper, it is }}^{\text {proved that the commutator defined by }} \\
& \qquad T_{\sigma \vec{b}}\left(f_{1}, f_{2}\right)(x)=b_{1}(x) T_{\sigma}\left(f_{1}, f_{2}\right)(x) \\
& \qquad-T_{\sigma}\left(b_{1} f_{1}, f_{2}\right)(x)+b_{2}(x) T_{\sigma}\left(f_{1}, f_{2}\right)(x)-T_{\sigma}\left(f_{1}, b_{2} f_{2}\right)(x) \\
& \text { is a compact operator from } L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right) \text { to } L^{p}\left(\mathbb{R}^{n}\right) \text { when } p_{k} \in\left(n / s_{k}, \infty\right) \\
& (k=1,2), p \in(1, \infty) \text { with } 1 / p=1 / p_{1}+1 / p_{2} .
\end{aligned}
$$

1. Introduction

As it is well known, the study of bilinear Fourier multiplier operator was origined by Coifman and Meyer. Let $\sigma \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$. Define the bilinear Fourier multiplier operator T_{σ} by

$$
\begin{equation*}
T_{\sigma}\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2 n}} \exp \left(2 \pi i x\left(\xi_{1}+\xi_{2}\right)\right) \sigma\left(\xi_{1}, \xi_{2}\right) \mathcal{F} f_{1}\left(\xi_{1}\right) \mathcal{F} f_{2}\left(\xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \tag{1.1}
\end{equation*}
$$

for $f_{1}, f_{2} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where and in the following, for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, $\mathcal{F} f$ denotes the Fourier transform of f. Coifman and Meyer [5] proved that if $\sigma \in C^{s}\left(\mathbb{R}^{2 n} \backslash\{0\}\right)$ satisfies

$$
\begin{equation*}
\left|\partial_{\xi_{1}}^{\alpha_{1}} \partial_{\xi_{2}}^{\alpha_{2}} \sigma\left(\xi_{1}, \xi_{2}\right)\right| \leq C_{\alpha_{1}, \alpha_{2}}\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{-\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|\right)} \tag{1.2}
\end{equation*}
$$

for all $\left|\alpha_{1}\right|+\left|\alpha_{2}\right| \leq s$ with $s \geq 4 n+1$, then T_{σ} is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p_{1}, p_{2}, p<\infty$ with $1 / p=1 / p_{1}+1 / p_{2}$. For the case of $s \geq 2 n+1$,

[^0]Kenig-Stein [14] and Grafakos-Torres [10] improved Coifman and Meyer's multiplier theorem to the indices $1 / 2 \leq p \leq 1$ by the multilinear Calderón-Zygmund operator theory. In the last several years, considerable attention has been paid to the behavior on function spaces for T_{σ} when the multiplier satisfies certain Sobolev regularity condition. An significant progress in this area was obtained by Tomita. Let $\Phi \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$ satisfy

$$
\left\{\begin{array}{l}
\operatorname{supp} \Phi \subset\left\{\left(\xi_{1}, \xi_{2}\right): 1 / 2 \leq\left|\xi_{1}\right|+\left|\xi_{2}\right| \leq 2\right\} \tag{1.3}\\
\sum_{\kappa \in \mathbb{Z}} \Phi\left(2^{-\kappa} \xi_{1}, 2^{-\kappa} \xi_{2}\right)=1 \quad \text { for all }\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2 n} \backslash\{0\}
\end{array}\right.
$$

For $\kappa \in \mathbb{Z}$, set

$$
\begin{equation*}
\sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)=\Phi\left(\xi_{1}, \xi_{2}\right) \sigma\left(2^{\kappa} \xi_{1}, 2^{\kappa} \xi_{2}\right) \tag{1.4}
\end{equation*}
$$

Tomita [16] proved that if

$$
\begin{equation*}
\sup _{\kappa \in \mathbb{Z}} \int_{\mathbb{R}^{2 n}}\left(1+\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}\right)^{s}\left|\mathcal{F} \sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2}<\infty \tag{1.5}
\end{equation*}
$$

for some $s>n$, then T_{σ} is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ provided that $p_{1}, p_{2}, p \in(1, \infty)$ and $1 / p=1 / p_{1}+1 / p_{2}$. Grafakos and Si [9] considered the mapping properties from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for T_{σ} when σ satisfies (1.5) and $p \leq 1$. Miyachi and Tomita [15] considered the problem to find minimal smoothness condition for bilinear Fourier multiplier. Let σ satisfies the Sobolev regularity that

$$
\left\|\sigma_{\kappa}\right\|_{W^{s_{1}, s_{2}}\left(\mathbb{R}^{2 n}\right)}=\left(\int_{\mathbb{R}^{2 n}}\left\langle\xi_{1}\right\rangle^{2 s_{1}}\left\langle\xi_{2}\right\rangle^{2 s_{2}}\left|\mathcal{F} \sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2}\right)^{1 / 2}
$$

where $\left\langle\xi_{k}\right\rangle:=\left(1+\left|\xi_{k}\right|^{2}\right)^{1 / 2}$. Miyachi and Tomita [15] proved that if

$$
\begin{equation*}
\sup _{\kappa \in \mathbb{Z}}\left\|\sigma_{\kappa}\right\|_{W^{s_{1}, s_{2}}\left(\mathbb{R}^{2 n}\right)}<\infty \tag{1.6}
\end{equation*}
$$

for some $s_{1}, s_{2} \in(n / 2, n]$, then T_{σ} is is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for any $p_{1}, p_{1} \in(1, \infty)$ and $p \geq 2 / 3$ with $1 / p=1 / p_{1}+1 / p_{2}$. Moreover, they also gives minimal smoothness condition for which T_{σ} is bounded from $H^{p_{1}}\left(\mathbb{R}^{n}\right) \times H^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$. For other works about the behavior of T_{σ} on various function spaces, we refer the papers [8, 7, 12] and the related references therein.

We now consider the commutator of the multiplier operator T_{σ}. Let T_{σ} be the multiplier operator definied by (1.1), $b_{1}, b_{2} \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and $\vec{b}=\left(b_{1}, b_{2}\right)$. Define the commutator of \vec{b} and T_{σ} by

$$
\begin{equation*}
T_{\sigma, \vec{b}}\left(f_{1}, f_{2}\right)(x)=\sum_{k=1}^{2}\left[b_{k}, T_{\sigma}\right]_{k}\left(f_{1}, f_{2}\right)(x) \tag{1.7}
\end{equation*}
$$

with

$$
\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)(x)=b_{1}(x) T_{\sigma}\left(f_{1}, f_{2}\right)(x)-T_{\sigma}\left(b_{1} f_{1}, f_{2}\right)(x)
$$

and

$$
\left[b_{2}, T_{\sigma}\right]_{2}\left(f_{1}, f_{2}\right)(x)=b_{2}(x) T_{\sigma}\left(f_{1}, f_{2}\right)(x)-T_{\sigma}\left(f_{1}, b_{2} f_{2}\right)(x)
$$

Bui and Duong [3] established the weighted estimates with multiple weights for $T_{\sigma, \vec{b}}$ when σ satisfies (1.2) for $s \in(n, 2 n]$. Hu and Yi [13] considered the behavior on $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ for $T_{\sigma, \vec{b}}$ when σ satisfies (1.6) for $s_{1}, s_{2} \in(n / 2, n]$, and showed that $T_{\sigma, \vec{b}}$ enjoys the same $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ mapping properties as that of the operator T_{σ}. In this paper, we will consider the compactness of $T_{\sigma, \vec{b}}$. Let $\operatorname{CMO}\left(\mathbb{R}^{n}\right)$ be the closure of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ in the $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ topology, which coincide with the space of functions of vanishing mean oscillation, see [2, 6]. Our main result in this paper can be stated as follows.

Theorem 1.1. Let σ be a multiplier satisfying (1.6) for some $s_{1}, s_{2} \in(n / 2, n]$ and T_{σ} be the operator defined by (1.1). Let $t_{k}=n / s_{k}, p_{k} \in\left(t_{k}, \infty\right)(k=1,2)$ and $p \in[1, \infty)$ with $1 / p=1 / p_{1}+1 / p_{2}$. Then for any $b_{1}, b_{2} \in \operatorname{CMO}\left(\mathbb{R}^{n}\right)$, the commutator $T_{\sigma, \vec{b}}$ is a compact operators from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$.

We remark that in this paper, we are very much motivated by the paper [17], and the recent work of Bényi and Torres [1]. Bényi and Torres [1] proved that if $b_{1}, b_{2} \in$ $\operatorname{CMO}\left(\mathbb{R}^{n}\right)$, and T is a bilinear Calderón-Zygmund operator, then for $p_{1}, p_{2}, \in(1, \infty)$, $p \in[1, \infty)$ with $1 / p=1 / p_{1}+1 / p_{2}$, the commutator $T_{\vec{b}}$ which is defined as (1.7), is a compact operator from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$. When the multiplier σ satisfies (1.6) for $s_{1}, s_{2} \in(n / 2, n]$, the operator T_{σ} is neither a bilinear Calderon-Zygmund operator, nor a bilinear singular integral operator whose kernel enjoys the bilinear L^{r} Hörmander condition as in [3]. However, we can prove that T_{σ} can be approximated by a sequence of operator $\left\{T_{\sigma, N}\right\}_{N \in \mathbb{N}}$, and the kernels of $T_{\sigma, N}$ enjoy some variant of L^{r}-Hörmander condition, and certain L^{r} size condition. This will be useful in the proof of Theorem 1.1.

Throughout the article, C always denotes a positive constant that may vary from line to line but remains independent of the main variables. We use the symbol $A \lesssim B$ to denote that there exists a positive constant C such that $A \leq C B$. For any set $E \subset \mathbb{R}^{n}, \chi_{E}$ denotes its characteristic function. We use $B(x, R)$ to denote a ball centered at x with radius R. For a ball $B \subset \mathbb{R}^{n}$ and $\lambda>0$, we use λB to denote the ball concentric with B whose radius is λ times of B 's.

2. Proof of Theorem 1.1.

Let $\sigma \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$ and $\Phi \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$ satisfy (1.3). For $\kappa \in \mathbb{Z}$, define

$$
\widetilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)=\Phi\left(2^{-\kappa} \xi_{1}, 2^{-\kappa} \xi_{2}\right) \sigma\left(\xi_{1}, \xi_{2}\right) .
$$

Then

$$
\tilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)=\sigma_{\kappa}\left(2^{-\kappa} \xi_{1}, 2^{-\kappa} \xi_{2}\right)
$$

and

$$
\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)=2^{2 \kappa n} \mathcal{F}^{-1} \sigma_{\kappa}\left(2^{\kappa} \xi_{1}, 2^{\kappa} \xi_{2}\right)
$$

where $\mathcal{F}^{-1} f$ denotes the inverse Fourier transform of f.
Lemma 2.1. Let $q_{1}, q_{2} \in[2, \infty)$, and $s_{1}, s_{2} \geq 0$. Then
$\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\mathcal{F}^{-1} \sigma_{\kappa}\left(\xi_{1}, \xi_{2}\right)\right|^{q_{1}}\left\langle\xi_{1}\right\rangle^{s_{1}} \mathrm{~d} \xi_{1}\right)^{q_{2} / q_{1}}\left\langle\xi_{2}\right\rangle^{s_{2}} \mathrm{~d} \xi_{2}\right)^{1 / q_{2}} \lesssim\left\|\sigma_{\kappa}\right\|_{W^{s_{1} / q_{1}, s_{2} / q_{2}}\left(\mathbb{R}^{2 n}\right)}$.
For the proof of Lemma 2.1, see Appendix A in [7].
Lemma 2.2. Let σ be a bilinear multiplier satisfying (1.6) for some $s_{1}, s_{2} \in$ $(n / 2, n], r_{1}, r_{2} \in(1,2], \gamma_{1} \in\left(n / r_{1}, s_{1}\right]$ and $\gamma_{2} \in\left(0, \min \left\{n / r_{2}, s_{2}\right\}\right)$. Then for every $x \in \mathbb{R}^{n}$ and $R>0$,

$$
\begin{align*}
& \int_{\left|x-y_{1}\right| \geq R} \int_{\left|x-y_{2}\right|<2 R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & 2^{\kappa\left(n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}\right)} R^{n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \tag{2.1}
\end{align*}
$$

Proof. Let $C(x, r)=B(x, 2 r) \backslash B(x, r)$. By the Hölder inequality and Lemma 2.1, we have

$$
\begin{aligned}
& \int_{C(x, r)} \int_{C(x, R)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \left(\int_{C(x, r)}\left(\int_{C(x, R)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|^{r_{2}^{\prime}}\left\langle 2^{\kappa}\left(x-y_{2}\right)\right\rangle^{r_{2}^{\prime} \gamma_{2}} \mathrm{~d} y_{2}\right)^{\frac{r_{1}^{\prime}}{r_{2}^{\prime}}}\right. \\
& \left.\times\left\langle 2^{\kappa}\left(x-y_{1}\right)\right\rangle^{r_{1}^{\prime} \gamma_{1}} \mathrm{~d} y_{1}\right)^{\frac{1}{r_{1}^{\prime}}}\left(2^{\kappa} r\right)^{-\gamma_{1}}\left(2^{\kappa} R\right)^{-\gamma_{2}} \\
& \times\left(\int_{C(x, r)}\left|f_{1}\left(y_{1}\right)\right|^{r_{1}} \mathrm{~d} y_{1}\right)^{\frac{1}{r_{1}}}\left(\int_{C(x, R)}\left|f_{2}\left(y_{1}\right)\right|^{r_{2}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}} \\
& \lesssim 2^{\kappa\left(n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}\right)} r^{n / r_{1}-\gamma_{1}} R^{n / r_{2}-\gamma_{2}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x)
\end{aligned}
$$

if $\gamma_{k} \in\left[0, s_{k}\right]$ with $k=1,2$. This in turn implies that

$$
\begin{aligned}
& \int_{r \leq\left|x-y_{1}\right|<2 r} \int_{\left|x-y_{2}\right|<2 R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \quad \lesssim 2^{\kappa\left(n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}\right)} r^{n / r_{1}-\gamma_{1}} R^{n / r_{2}-\gamma_{2}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x)
\end{aligned}
$$

if $\gamma_{2}<n / r_{2}$, and so

$$
\begin{aligned}
& \int_{\left|x-y_{1}\right| \geq r} \int_{\left|x-y_{2}\right|<2 R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & 2^{\kappa\left(n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}\right)} r^{n / r_{1}-\gamma_{1}} R^{n / r_{2}-\gamma_{2}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x),
\end{aligned}
$$

if $\gamma_{1} \in\left(n / r_{1}, s_{1}\right]$. Taking $r=R$ in the last inequality then gives (2.1).
Lemma 2.3. Let σ be a bilinear multiplier satisfying (1.6) for some $s_{1}, s_{2} \in$ $(n / 2, n], r_{1}, r_{2} \in(1,2]$ with $r_{2} s_{2}>n$. Then for every $x \in \mathbb{R}^{n}, R>0$ and $\gamma \in\left[0, \min \left\{s_{1}, 1+n / r_{1}\right\}\right)$,

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\left|x-y_{1}\right|<R}\left|x-y_{1}\right|\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{2.2}\\
\lesssim & 2^{-\kappa\left(\gamma-n / r_{1}\right)} R^{1+n / r_{1}-\gamma} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) .
\end{align*}
$$

Proof. Note that for $x \in \mathbb{R}^{n}$ and $\kappa \in \mathbb{Z}$,

$$
\left(\int_{\mathbb{R}^{n}} \frac{\left|f_{2}\left(y_{2}\right)\right|^{r_{2}}}{\left\langle 2^{\kappa}\left(x-y_{2}\right)\right\rangle^{s_{2} r_{2}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}} \lesssim 2^{-\kappa n / r_{2}} M_{r_{2}} f_{2}(x),
$$

since $s_{2} r_{2}>n$. A trivial computation involving the Hölder inequality and Lemma 2.1 leads to that for $\gamma \in\left[0, s_{1}\right]$ and integer l

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & M_{r_{1}} f_{1}(x)\left(\int_{\mathbb{R}^{n}}\left(\int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|^{r_{1}^{\prime}}\left\langle 2^{\kappa}\left(x-y_{1}\right)\right\rangle^{r_{1}^{\prime} \gamma} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}}}\right. \\
& \left.\times\left\langle 2^{\kappa}\left(x-y_{2}\right)\right\rangle^{\prime}\right\rangle_{2}^{\prime} s_{2} \\
\left.\mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}} & \left(\int_{\mathbb{R}^{n}} \frac{\left|f_{2}\left(y_{2}\right)\right|^{r_{2}}}{\left\langle 2^{\kappa}\left(x-y_{2}\right)\right\rangle^{s_{2} r_{2}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}}\left(2^{l} R\right)^{n / r_{1}}\left(2^{\kappa} 2^{l} R\right)^{-\gamma} \\
\lesssim & \frac{2^{-\kappa\left(\gamma-n / r_{1}\right)}}{\left(2^{l} R\right)^{\gamma-n / r_{1}}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \\
& \left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\mathcal{F}^{-1} \sigma_{\kappa}\left(z_{1}, z_{2}\right)\right|^{r_{1}^{\prime}}\left\langle z_{1}\right\rangle^{r_{1}^{\prime} \gamma} \mathrm{d} z_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}}}\left\langle z_{2}\right\rangle^{r_{2}^{\prime} s_{2}} \mathrm{~d} z_{1}\right)^{\frac{1}{r_{2}^{\prime}}} \\
\lesssim & \frac{2^{-\kappa\left(\gamma-n / r_{1}\right)}}{\left(2^{l} R\right)^{\gamma-n / r_{1}}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) .
\end{aligned}
$$

If we choose γ such that $1+n / r_{1}>\gamma$, we then obtain that

$$
\int_{\mathbb{R}^{n}} \int_{\left|x-y_{1}\right|<R}\left|x-y_{1}\right|\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

$$
\begin{aligned}
& \leq \sum_{l=-\infty}^{-1} 2^{l} R \int_{\mathbb{R}^{n}} \int_{C\left(x, 2^{l} R\right)}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \lesssim 2^{-\kappa\left(\gamma-n / r_{1}\right)} R^{1+n / r_{1}-\gamma} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) .
\end{aligned}
$$

Lemma 2.4. Let σ be a bilinear multiplier satisfying (1.6) for some $s_{1}, s_{2} \in$ $(n / 2, n], r_{1}, r_{2} \in(1,2]$ such that $r_{2} s_{2}>n$. Let $p_{1} \in\left(r_{1}, \infty\right)$. Then for every $\gamma \in\left(0, s_{1}\right], R>0$ and $x \in \mathbb{R}^{n}$ with $|x|>2 R$,

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\left|y_{1}\right|<R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{2.3}\\
\lesssim & 2^{-\kappa\left(\gamma-n / r_{1}\right)}|x|^{-\gamma} R^{n / r_{1}-n / p_{1}}\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} M_{r_{2}} f_{2}(x) .
\end{align*}
$$

Proof. As in the proof of Lemma 2.3, a trivial computation involving the Hölder inequality and Lemma 2.1 leads to that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \int_{\left|y_{1}\right|<R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \lesssim\left(\int_{\mathbb{R}^{n}}\left(\int_{\left|y_{1}\right|<R}\left|\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}^{\prime}}}\left\langle 2^{\kappa}\left(x-y_{2}\right)\right\rangle^{r_{2}^{\prime} s_{2}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}^{\prime}}} \\
& \times\left(\int_{\mathbb{R}^{n}} \frac{\left|f_{2}\left(y_{2}\right)\right|^{r_{2}}}{\left\langle 2^{\kappa}\left(x-y_{2}\right)\right\rangle^{s_{2} r_{2}}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}}\left\|f_{1} \chi_{\left\{\left|y_{1}\right|<R\right\}}\right\|_{L^{r_{1}}\left(\mathbb{R}^{n}\right)} \\
& \lesssim\left(\int_{\mathbb{R}^{n}}\left(\int_{\left|y_{1}\right|<R}\left|\mathcal{F}^{-1} \sigma_{\kappa}\left(2^{\kappa}\left(x-y_{1}\right), 2^{\kappa} x-y_{2}\right)\right|^{r_{1}^{\prime}} \mathrm{d} y_{1}\right)^{\frac{r_{1}^{\prime}}{r_{1}}}\left\langle 2^{\kappa} x-y_{2}\right\rangle^{r_{2}^{\prime} s_{2}} \mathrm{~d} y_{2}\right)^{\frac{1}{r_{2}}} \\
& \times 2^{\kappa n} M_{r_{2}} f_{2}(x)\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} R^{n / r_{1}-n / p_{1}} \\
& \lesssim 2^{-\kappa\left(\gamma-n / r_{1}\right)}|x|^{-\gamma}\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\mathcal{F}^{-1} \sigma_{\kappa}\left(z_{1}, z_{2}\right)\right|^{r_{1}^{\prime}}\left\langle z_{1}\right\rangle^{r_{1}^{\prime} \gamma^{\prime}} \mathrm{d} z_{1}\right)^{\frac{r_{2}^{\prime}}{r_{1}^{\prime}}}\left\langle z_{2}\right\rangle^{\prime}\right\rangle_{2}^{\prime} s_{2} \\
&\left.\mathrm{~d} z_{1}\right)^{\frac{1}{r_{2}^{\prime}}} \\
& \times M_{r_{2}} f_{2}(x)\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} R^{n / r_{1}-n / p_{1}} \\
& \lesssim 2^{-\kappa\left(\gamma-n / r_{1}\right)}|x|^{-\gamma} R^{n / r_{1}-n / p_{1}} M_{r_{2}} f_{2}(x)\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

Lemma 2.5. Let σ be a bilinear multiplier satisfying (1.6) for some $s_{1}, s_{2} \in$ $(n / 2, n], r_{k} \in\left(n / s_{k}, 2\right](k=1,2)$ and $s_{1}+s_{2}<n / r_{1}+n / r_{2}+1$. Then there exists a constant $\varrho>0$ such that for every $R>0, x, t \in \mathbb{R}^{n}$ with $|t|<R / 4$, bounded functions f_{1} and f_{2} with $\operatorname{supp} f_{k} \subset \mathbb{R}^{n} \backslash 4 B(x, R)$ for some $k=1,2$

$$
\begin{align*}
& \sum_{\kappa \in \mathbb{Z}} \int_{\mathbb{R}^{2 n}}\left|W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{2.4}\\
\lesssim & \left(|t| R^{-1}\right)^{\varrho} \prod_{k=1}^{2}\left(M_{r_{k}} f_{k}(x)+M_{r_{k}} f_{k}(x+t)\right),
\end{align*}
$$

where and in the following
$W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)=\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x-y_{1}, x-y_{2}\right)-\mathcal{F}^{-1} \widetilde{\sigma}_{\kappa}\left(x+t-y_{1}, x+t-y_{2}\right)$.
Proof. Let $S_{0}(B(x, R))=B(x, R)$ and $S_{j}(B(x, R))=2^{j} B(x, R) \backslash 2^{j-1} B(x, R)$. Repeating the proof of Lemma 3.3 in [12], we can obtain that for nonnegative integers j_{1} and j_{2},

$$
\begin{aligned}
& \left(\int_{S_{j_{1}}(B(x, R))}\left(\int_{S_{j_{2}}(B(x, R))}\left|W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)\right|^{r_{2}^{\prime}} \mathrm{d} y_{2}\right)^{\frac{r_{1}^{\prime}}{r_{2}}} \mathrm{~d} y_{1}\right)^{\frac{1}{r_{1}^{\prime}}} \\
& \quad \lesssim t 2^{-\kappa\left(s_{1}+s_{2}-n / r_{1}-n / r_{2}-1\right)} \prod_{k=1}^{2}\left(2^{j_{k}} R\right)^{-s_{k}}
\end{aligned}
$$

provided that $2^{\kappa} R<1$. On the other hand, as in the proof of Lemma 3.4 in [12], we can verify that for positive integer j_{1}, bounded function f_{1}, f_{2} with $\operatorname{supp} f_{1} \subset \mathbb{R}^{n} \backslash 4 B$,

$$
\begin{aligned}
& \int_{S_{j_{1}}(B(x, R))} \int_{\mathbb{R}^{n}}\left|W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{2} \mathrm{~d} y_{1} \\
& \quad \lesssim 2^{-\kappa\left(s_{1}-n / r_{1}\right)}\left(2^{j_{1}} R\right)^{n / r_{1}-s_{1}} \prod_{k=1}^{2}\left(M_{r_{k}} f_{k}(x)+M_{r_{k}} f_{k}(x+t)\right) .
\end{aligned}
$$

A straightforward computation then shows that when supp $f_{1} \subset \mathbb{R}^{n} \backslash 4 B(x, R)$,

$$
\begin{aligned}
& \sum_{\kappa \in \mathbb{Z}} \int_{\mathbb{R}^{2 n}}\left|W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
= & \sum_{\kappa: 2^{\kappa} R>A} \sum_{j_{1}=2}^{\infty} \int_{S_{j_{1}}(B(x, R))} \int_{\mathbb{R}^{n}}\left|W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& +\sum_{\kappa: 2^{\kappa} R \leq A} \sum_{j_{1}=2}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\int_{S_{j_{1}}(B(x, R))}\left(\int_{S_{j_{2}}(B(x, R))}\left|W_{0, \kappa}\left(x, y_{1}, y_{2} ; x+t\right)\right|^{r_{2}^{\prime}} \mathrm{d} y_{2}\right)^{\frac{r_{1}^{\prime}}{r_{2}}} \mathrm{~d} y_{1}\right)^{\frac{1}{r_{1}^{\prime}}} \\
& \times \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) 2^{n\left(j_{1} / r_{1}+j_{2} r_{2}\right)} R^{n / r_{1}+n / r_{2}} \\
\lesssim & \left(\sum_{\kappa: 2^{\kappa} R>A}\left(2^{\kappa} R\right)^{n / r_{1}-s_{1}}+|t| R^{-1} \sum_{\kappa: 2^{\kappa} R \leq A}\left(2^{\kappa} R\right)^{n / r_{1}+n / r_{2}+1-s_{1}-s_{2}}\right) \\
& \times \prod_{k=1}^{2}\left(M_{r_{k}} f_{k}(x)+M_{r_{k}} f_{k}(x+t)\right) \\
\lesssim & \left(|t| R^{-1}\right)^{\left(s_{1}-n / r_{1}\right) /\left(n / r_{2}+1-s_{2}\right)} \prod_{k=1}^{2}\left(M_{r_{k}} f_{k}(x)+M_{r_{k}} f_{k}(x+t)\right) .
\end{aligned}
$$

if we choose $A=\left(|t| R^{-1}\right)^{-1 /\left(n / r_{2}+1-s_{2}\right)}$. A similar argument shows that (2.4) holds true when supp $f_{2} \subset \mathbb{R}^{n} \backslash 4 B(x, R)$.

Let K be a locally integrable function in $\mathbb{R}^{3 n}$ away from the diagonal $\left\{\left(x, y_{1}, y_{2}\right)\right.$: $\left.x=y_{1}=y_{2}\right\}$. We say that T is a bilinear singular integral operator with kernel K if T is bilinear, and for bounded functions f_{1}, f_{2} with compact supports,

$$
\begin{equation*}
T\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2 n}} K\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{2.5}
\end{equation*}
$$

for everywhere $x \in \mathbb{R}^{n} \backslash \cap_{k=1}^{2} \operatorname{supp} f_{k}$. Associated with T, we define the maximal operator T^{*} by

$$
T^{*}\left(f_{1}, f_{2}\right)(x)=\sup _{\epsilon>0}\left|T_{\epsilon}\left(f_{1}, f_{2}\right)(x)\right|,
$$

where and in the following,

$$
T_{\epsilon}\left(f_{1}, f_{2}\right)(x)=\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right|>\epsilon} K\left(x ; y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

For the relationship of T and T^{*}, we have the following conclusion.
Lemma 2.6. Let $r_{1}, r_{2} \in(1, \infty)$, T be a bilinear singular integral operator with associated kernel K in the sense of (2.5). Suppose that
(i) T is bounded from $L^{r_{1}}\left(\mathbb{R}^{n}\right) \times L^{r_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{r, \infty}\left(\mathbb{R}^{n}\right)$ with $1 / r=1 / r_{1}+1 / r_{2}$;
(ii)

$$
\sup _{\epsilon>0} \int_{\substack{\min _{1 \leq k \leq 2}\left|x-y_{k}\right|>\epsilon / 2, \max _{1 \leq k \leq 2}\left|x-y_{k}\right|<2 \epsilon}}\left|K\left(x ; y_{1}, y_{2}\right)\right| f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mid \mathrm{d} y_{1} \mathrm{~d} y_{2} \lesssim M_{r_{1}} f_{1}(x) M_{r_{2}} f_{2}(x)
$$

(iii) for any ball $B, x, y \in B$ and bounded functions f_{1}, f_{2} with supp $f_{k} \subset \mathbb{R}^{n} \backslash 4 B$ for some $k=1,2$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 n}}\left|K\left(x ; y_{1}, y_{2}\right)-K\left(y ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & \prod_{k=1}^{2}\left(M_{r_{k}} f_{k}(x)+M_{r_{k}} f_{k}(y)\right)
\end{aligned}
$$

then for $\delta \in(0, \min \{1, r\})$ and everywhere $x \in \mathbb{R}^{n}$,

$$
T^{*}\left(f_{1}, f_{2}\right)(x) \lesssim M_{\delta}\left(T\left(f_{1}, f_{2}\right)\right)(x)+\prod_{k=1}^{2} M_{r_{k}} f_{k}(x)
$$

Proof. We will employ some ideas used in the proof of Theorem 1 in [11]. For each fixed $\epsilon>0, x, y \in \mathbb{R}^{n}$, let

$$
\widetilde{T}_{\epsilon}\left(f_{1}, f_{2}\right)(y, x)=\int_{\left\{\mathbb{R}^{2 n}: \min _{1 \leq k \leq 2}\left|x-y_{k}\right| \geq \epsilon\right\}} K\left(y ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

For bounded functions f_{1}, f_{2} with compact supports, let

$$
f_{k}^{1}\left(y_{k}\right)=f_{k}\left(y_{k}\right) \chi_{B(x, \epsilon)}\left(y_{k}\right), f_{k}^{2}\left(y_{k}\right)=f_{k}\left(y_{k}\right) \chi_{\mathbb{R}^{n} \backslash B(x, \epsilon)}\left(y_{k}\right), k=1,2 .
$$

It is easy to verify that for $y \in B(x, \epsilon / 2)$

$$
\begin{aligned}
& \left|\widetilde{T}_{\epsilon}\left(f_{1}, f_{2}\right)(x, x)\right| \\
\leq & \left|\widetilde{T}_{\epsilon}\left(f_{1}, f_{2}\right)(x, x)-\widetilde{T}_{\epsilon}\left(f_{1}, f_{2}\right)(y, x)\right|+\left|\widetilde{T}_{\epsilon}\left(f_{1}, f_{2}\right)(y, x)\right| \\
\lesssim & \int_{\min _{1 \leq k \leq 2}\left|x-y_{k}\right|>\epsilon}\left|K\left(x ; y_{1}, y_{2}\right)-K\left(y ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& +\left|T\left(f_{1}, f_{2}\right)(y)-T\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|+\sum_{j=1}^{2} T_{\epsilon}^{j}\left(f_{1}, f_{2}\right)(y),
\end{aligned}
$$

where

$$
\begin{aligned}
& T_{\epsilon}^{1}\left(f_{1}, f_{2}\right)(y)=\int_{\left|y-y_{1}\right|>\epsilon / 2} \int_{\left|y-y_{2}\right|<2 \epsilon}\left|K\left(y ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2}, \\
& T_{\epsilon}^{2}\left(f_{1}, f_{2}\right)(y)=\int_{\left|y-y_{1}\right|<2 \epsilon} \int_{\left|y-y_{2}\right|>\epsilon / 2}\left|K\left(y ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} .
\end{aligned}
$$

Thus, by assumptions (ii) and (iii), we know that for $y \in B(x, \epsilon / 2)$,

$$
\begin{aligned}
\left|T_{\epsilon}\left(f_{1}, f_{2}\right)(x)\right| & \lesssim\left|\widetilde{T}_{\epsilon}\left(f_{1}, f_{2}\right)(x, x)\right|+\prod_{k=1}^{2} M_{r_{k}}\left(f_{1}, f_{2}\right)(x) \\
& \lesssim\left|T\left(f_{1}, f_{2}\right)(y)\right|+\left|T\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|+\prod_{k=1}^{2} M_{r_{k}}\left(f_{1}, f_{2}\right)(x) .
\end{aligned}
$$

The fact that T is bounded from $L^{r_{1}}\left(\mathbb{R}^{n}\right) \times L^{r_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{r, \infty}\left(\mathbb{R}^{n}\right)$, along with the argument in the proof of the Kolmogorov inequality, tells us that for $\delta \in(0, \min \{1, r\})$,

$$
\begin{aligned}
& \left(\frac{1}{|B(x, \epsilon / 2)|} \int_{B(x, \epsilon / 2)}\left|T\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|^{\delta} \mathrm{d} y\right)^{1 / \delta} \\
\lesssim & \prod_{k=1}^{2}\left(\frac{1}{|B(x, \epsilon)|} \int_{B(x, \epsilon)}\left|f_{k}\left(y_{k}\right)\right|^{r_{k}} \mathrm{~d} y_{k}\right)^{1 / r_{k}} \\
\lesssim & \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) .
\end{aligned}
$$

On the other hand, we know from [4] that for $\delta \in(0, r)$,

$$
\left(\frac{1}{|B(x, \epsilon)|} \int_{B(x, \epsilon)}\left(M_{r_{k}} f_{k}(y)\right)^{\delta r_{k} / r} \mathrm{~d} y\right)^{r /\left(r_{k} \delta\right)} \lesssim M_{r_{k}} f_{k}(x) .
$$

Combining the estimates above yields

$$
\begin{aligned}
& \left|T_{\epsilon}\left(f_{1}, f_{2}\right)(x)\right| \\
\lesssim & \left(\frac{1}{|B(x, \epsilon / 2)|} \int_{B(x, \epsilon / 2)}\left|T\left(f_{1}, f_{2}\right)(y)\right|^{\delta} \mathrm{d} y\right)^{1 / \delta} \\
& +\left(\frac{1}{|B(x, \epsilon / 2)|} \int_{B(x, \epsilon / 2)}\left|T\left(f_{1}^{1}, f_{2}^{1}\right)(y)\right|^{\delta} \mathrm{d} y\right)^{1 / \delta} \\
& +\prod_{k=1}^{2}\left(\frac{1}{|B(x, \epsilon / 2)|} \int_{B(x, \epsilon / 2)}\left(M_{r_{k}} f_{k}(y)\right)^{\delta r_{k} / r} \mathrm{~d} y\right)^{r / r_{k} \delta}+\prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \\
\lesssim & M_{\delta}\left(T\left(f_{1}, f_{2}\right)\right)(x)+\prod_{k=1}^{2} M_{r_{k}} f_{k}(x),
\end{aligned}
$$

which gives us the desired conclusion directly.
Proof of Theorem 1.1. we will employ some ideas of Bényi and Torres [1]. For $N \in \mathbb{N}$, let

$$
\sigma^{N}\left(\xi_{1}, \xi_{2}\right)=\sum_{|\kappa| \leq N} \widetilde{\sigma}_{\kappa}\left(\xi_{1}, \xi_{2}\right)
$$

and denote by $T_{\sigma, N}$ the multiplier operator associated with σ^{N}. It is obvious that $T_{\sigma, N}$ is a bilinear singular integral operator with kernel

$$
K^{N}\left(x ; y_{1}, y_{2}\right)=\mathcal{F}^{-1} \sigma^{N}\left(x-y_{1}, x-y_{2}\right)
$$

in the sense of (2.5). For $b_{1}, b_{2} \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, set

$$
T_{\sigma, N ; \vec{b}}\left(f_{1}, f_{2}\right)(x)=\sum_{k=1}^{2}\left[b_{k}, T_{\sigma, N}\right]_{k}\left(f_{1}, f_{2}\right)(x) .
$$

Let $p_{k} \in\left(t_{k}, \infty\right)(k=1,2), p \in[1, \infty)$ with $1 / p=1 / p_{1}+1 / p_{2}$, and $b_{1}, b_{2} \in$ $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Note that for any $f_{1}, f_{2} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and almost every $x \in \mathbb{R}^{n}$,

$$
\lim _{N \rightarrow \infty} T_{\sigma, N ; \vec{b}}\left(f_{1}, f_{2}\right)(x)=T_{\sigma, \vec{b}}\left(f_{1}, f_{2}\right)(x)
$$

Recall that $T_{\sigma, \vec{b}}$ is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$. If we can prove that
(a) for each fixed $\epsilon>0$, there exists an constant $A=A(\epsilon)$ which is independent of N, f_{1} and f_{2}, such that

$$
\begin{equation*}
\left(\int_{|x|>A}\left|T_{\sigma, N ; \vec{b}}\left(f_{1}, f_{2}\right)\right|^{p} \mathrm{~d} x\right)^{1 / p} \lesssim \epsilon \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}\right)}} ; \tag{2.6}
\end{equation*}
$$

(b) for each fixed $\epsilon>0$, there exists a constant $\rho=\rho_{\epsilon}$ which is independent of N, f_{1} and f_{2}, such that for all t with $0<|t|<\rho$,

$$
\begin{equation*}
\left\|T_{\sigma, N ; \vec{b}}\left(f_{1}, f_{2}\right)(\cdot)-T_{\sigma, N ; \vec{b}}\left(f_{1}, f_{2}\right)(\cdot+t)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim \epsilon \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}\right)}} \tag{2.7}
\end{equation*}
$$

it then follows from the Fatou Lemma that the inequalities (2.6) and (2.7) still hold true if $T_{\sigma, N ; \vec{b}}\left(f_{1}, f_{2}\right)$ is replaced by $T_{\sigma, \vec{b}}$. This, via Proposition 3 in [1] and the FréchetKolmogorov theorem characterizing the pre-compactness of a set in L^{p} (see [18, p. 275]), implies the compactness of $T_{\sigma, \vec{b}}$ from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$.

In the following, we choose $r_{k} \in\left(t_{k}, p_{k}\right)(k=1,2)$ such that $s_{1}+s_{2}<n / r_{1}+$ $n / r_{2}+1$. We first prove the conclusion (a). For the sake of simplicity, we only consider $\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)$. Let $R>0$ be large enough such that $\operatorname{supp} b_{1} \subset B(0, R)$. Then for every x with $|x|>2 R$, we have by Lemma 2.4 that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \int_{\left|y_{1}\right|<R}\left|K^{N}\left(x ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\lesssim & M_{r_{2}} f_{2}(x)\left\|f_{1}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} R^{n / r_{1}-n / p_{1}}|x|^{-s_{1}} \sum_{\kappa \in \mathbb{Z}: 2^{\kappa} R>1} 2^{-\kappa\left(s_{1}-n / r_{1}\right)} \\
& +M_{r_{2}} f_{2}(x)\left\|f_{1}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} R^{n / r_{1}-n / p_{1}}|x|^{-\theta} \sum_{\kappa \in \mathbb{Z}: 2^{\kappa} R<1} 2^{-\kappa\left(\theta-n / r_{1}\right)} \\
\lesssim & \left(R^{s_{1}-n / p_{1}}|x|^{-s_{1}}+R^{\theta-n / p_{1}}|x|^{-\theta}\right) M_{r_{2}} f_{2}(x)\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

if we choose $\gamma=s_{1}$ and $\gamma=\theta \in\left(n / p_{1}, n / r_{1}\right)$ in (2.3) respectively. Therefore, for $A>2 R$,

$$
\begin{aligned}
& \left(\int_{|x|>A}\left|\left[b_{1}, T_{\sigma, N}\right]_{1}\left(f_{1}, f_{2}\right)(x)\right|^{p} \mathrm{~d} x\right)^{1 / p} \\
\lesssim & \left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\left\|M_{r_{2}} f_{2}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}\left\{R^{s_{1}-n / p_{1}}\left(\int_{|x|>A}|x|^{-s_{1} p_{1}} \mathrm{~d} x\right)^{1 / p_{1}}\right. \\
& \left.+R^{\theta-n / p_{1}}\left(\int_{|x|>A}|x|^{-\theta p_{1}} \mathrm{~d} x\right)^{1 / p_{1}}\right\} \\
\lesssim & \left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\left\|f_{1}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\left\|f_{2}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\left(\frac{R}{A}\right)^{\theta-n / p_{1}},
\end{aligned}
$$

since $s_{1}>\theta$. This in turn leads to conclusion (a) directly.
We turn our attention to conclusion (b). Again we only consider $\left[b_{1}, T_{\sigma}\right]_{1}$. As in [1], we write

$$
\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)(x)-\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)(x+t)=\sum_{j=1}^{4} \mathrm{D}_{j}(x, t)
$$

with
$\mathrm{D}_{1}(x, t)=\left(b_{1}(x+t)-b_{1}(x)\right) \int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right| \geq \delta_{t}} K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}$
$\mathrm{D}_{2}(x, t)=\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right| \geq \delta_{t}} \mathrm{E}^{N}\left(x, t ; y_{1}, y_{2}\right)\left(b_{1}\left(y_{1}\right)-b_{1}(x+t)\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}$,
$\mathrm{D}_{3}(x, t)=\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right|<\delta_{t}} K^{N}\left(x ; y_{1}, y_{2}\right)\left(b_{1}\left(y_{1}\right)-b_{1}(x)\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}$
$\mathrm{D}_{4}(x, t)=\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right|<\delta_{t}} K^{N}\left(x+t ; y_{1}, y_{2}\right)\left(b_{1}(x+t)-b_{1}\left(y_{1}\right)\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}$,
with $\delta_{t}>4|t|$ a convenient choice to be determined later, and

$$
\mathrm{E}^{N}\left(x, t ; y_{1}, y_{2}\right)=K^{N}\left(x ; y_{1}, y_{2}\right)-K^{N}\left(x+t ; y_{1}, y_{2}\right)
$$

It is obvious that
$\left|\mathrm{D}_{1}(x, t)\right| \lesssim\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}|t| \sup _{\epsilon>0}\left|\int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right| \geq \epsilon} K^{N}\left(x ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}\right|$.
On the other hand, it follows from Lemma 2.2 that for any $R>0$,

$$
\begin{aligned}
& \int_{\left|x-y_{1}\right| \geq R} \int_{\left|x-y_{2}\right|<2 R} \mid K^{N}\left(x ;, y_{1}, y_{2}| | f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mid \mathrm{d} y_{2} \mathrm{~d} y_{1}\right. \\
\lesssim & \sum_{\kappa: 2^{\kappa} R>1} 2^{\kappa\left(n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}\right)} R^{n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \\
& +\sum_{\kappa: 2^{\kappa} R \leq 1} 2^{\kappa\left(n / r_{1}+n / r_{2}-\widetilde{\gamma}_{1}-\widetilde{\gamma}_{2}\right)} R^{n / r_{1}+n / r_{2}-\gamma_{1}-\gamma_{2}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \\
\lesssim & \prod_{k=1}^{2} M_{r_{k}} f_{k}(x)
\end{aligned}
$$

if we choose $\gamma_{1}, \gamma_{2}, \widetilde{\gamma}_{1}, \widetilde{\gamma}_{2}$ such that

$$
n / r_{1}<\gamma_{1}, \widetilde{\gamma}_{1}<s_{1}, 0<\gamma_{2}, \widetilde{\gamma}_{2}<n / r_{2}
$$

and

$$
\gamma_{1}+\gamma_{2}>n / r_{1}+n / r_{2}, \widetilde{\gamma}_{1}+\widetilde{\gamma}_{2}<n / r_{1}+n / r_{2}
$$

Similarly, we have that

$$
\int_{\left|x-y_{2}\right| \geq R} \int_{\left|x-y_{1}\right|<2 R} \mid K^{N}\left(x ;, y_{1}, y_{2}| | f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \mid \mathrm{d} y_{1} \mathrm{~d} y_{2} \lesssim \prod_{k=1}^{2} M_{r_{k}} f_{k}(x)\right.
$$

Recall that T_{σ} is bounded from $L^{r_{1}}\left(\mathbb{R}^{n}\right) \times L^{r_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{r}\left(\mathbb{R}^{n}\right)$ with $1 / r=1 / r_{1}+1 / r_{2}$ (see [7, 15]). We have by Lemma 2.5 and Lemma 2.6 that

$$
\left|\mathrm{D}_{1}(x, t)\right| \lesssim|t|\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\left(\prod_{k=1}^{2} M_{r_{k}} f_{k}(x)+M_{\delta}\left(T\left(f_{1}, f_{2}\right)\right)(x)\right) .
$$

As for the term D_{2}, an application of Lemma 2.5 shows that for some constant $\varrho>0$,

$$
\begin{aligned}
\left|\mathrm{D}_{2}(x, t)\right| & \lesssim\left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\max _{1 \leq k \leq 2}\left|x-y_{k}\right| \geq \delta_{t}}\left|\mathrm{E}^{N}\left(x, t ; y_{1}, y_{2}\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \lesssim\left(|t| \delta_{t}^{-1}\right)^{\varrho}\left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{2} \prod_{k=1}^{2}\left(M_{r_{k}} f_{k}(x)+M_{r_{k}} f_{k}(x+t)\right) .
\end{aligned}
$$

The estimates for D_{3} and D_{4} are fairly easy. In fact, by Lemma 2.3, we deduce that

$$
\begin{aligned}
\left|\mathrm{D}_{3}(x, t)\right| \lesssim & \lesssim\left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}} \int_{\left|x-y_{1}\right|<\delta_{t}}\left|x-y_{1} \| K^{N}\left(x ; y_{1}, y_{2}\right)\right|\left|f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \lesssim\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \sum_{\kappa \in \mathbb{Z}: 2^{\kappa} \delta_{t}>1} 2^{-\kappa\left(s_{1}-n / r_{1}\right)} \delta_{t}^{1+n / r_{1}-s_{1}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \\
& +\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \sum_{\kappa \in \mathbb{Z}: 2^{\kappa} \delta_{t}>1} 2^{\kappa n / r_{1}} \delta_{t}^{1+n / r_{1}} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x) \\
& \lesssim \delta_{t}\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x),
\end{aligned}
$$

if we choose $\gamma=s_{1}$ and $\gamma=0$ in the inequality (2.2) respectively (recall that $s_{1}<$ $n / r_{1}+1$). Note that

$$
\begin{aligned}
& \left|\mathrm{D}_{4}(x, t)\right| \\
\lesssim & \int_{\mathbb{R}^{n}} \int_{\left|x+t-y_{1}\right|<\delta_{t}+|t|}\left|K^{N}\left(x+t ; y_{1}, y_{2}\right)\left(b_{1}(x+t)-b_{1}\left(y_{1}\right)\right) f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2},
\end{aligned}
$$

an argument which is similar to what was used in the estimate for D_{3} shows that

$$
\left|\mathrm{D}_{4}(x, t)\right| \lesssim \delta_{t}\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \prod_{k=1}^{2} M_{r_{k}} f_{k}(x+t)
$$

For each fixed $\epsilon>0$, set

$$
\rho=\frac{A \epsilon}{2\left(1+\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\right)} \text { with } A=\min \left\{1,\left(\frac{\epsilon}{2\left(1+\left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\right)}\right)^{1 / \varrho}\right\},
$$

and $\delta_{t}=|t| A^{-1}$ for each $t \in \mathbb{R}^{n}$. Our estimates for terms $\mathrm{D}_{j}(j=1, \ldots, 4)$ then leads to that when $0<|t|<\rho$,

$$
\begin{aligned}
& \left\|\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)(\cdot)-\left[b_{1}, T_{\sigma}\right]_{1}\left(f_{1}, f_{2}\right)(\cdot+t)\right\| \\
\lesssim & \left(\left(|t|+\delta_{t}\right)\left\|\nabla b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+\left(|t| \delta_{t}^{-1}\right)^{\varrho}\left\|b_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\right) \prod_{k=1}^{2}\left\|f_{k}\right\|_{L^{p_{k}\left(\mathbb{R}^{n}\right)}} \\
\lesssim & \epsilon\left\|f_{k}\right\|_{L^{p_{k}}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

This establishes conclusion (b) and then completes the proof of Theorem 1.1.

Acknowledgment

The author would like to thank the referee for helpful suggestions and comments.

References

1. A. Bényi and R. H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc., 141 (2013), 3609-3621.
2. G. Bourdaud, M. Lanze de Cristoforis and W. Sickel, Functional calculus on BMO and related spaces, J. Func. Anal., 189 (2002), 515-538.
3. A. T. Bui and X. T. Duong, Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math., 137 (2013), 63-75.
4. M. Carrozza and A. Passarelli Di Napoli, Composition of maximal operators, Publ. Mat., 40 (1996), 397-409.
5. R. R. Coifman and Y. Meyer, Nonlinear Harmonic Analysis, Pperator Theory and PDE, Beijing Lectures in Harmonic Analysis, Beijing, 1984, pp. 3-45; Ann. of Math. Stud. 112, Princeton Univ. Press, Princeton, NJ, 1986.
6. R. Coifman and G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645.
7. M. Fujita and N. Tomita, Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc., 364 (2012), 6335-6353.
8. L. Grafakos, A. Miyachi and N. Tomita, On multilinear Fourier multipliers of limited smoothness, Canad. J. Math., 65 (2013), 299-330.
9. L. Grafakos and Z. Si, The Hormander multiplier theorem for multilinear operators, J. Reine. Angew. Math., 668 (2012), 133-147.
10. L. Grafakos and R. H. Torres, Multilinear Calderon-Zygmund theory, Adv. Math., 165 (2002), 124-164.
11. L. Grafakos and R. H. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J., 51 (2002), 1261-1276.
12. G. Hu and C. Lin, Weighted norm inequalities for multilinear singular integral operators and applications, Anal. Appl., to appear, arXiv:1208.6346.
13. G. Hu and W. Yi, Estimates for the commutators of bilinear Fourier multiplier, Czech. Math. J., to appear.
14. C. Kenig and E. M. Stein, Multilinear estimates and fractional integral, Math. Res. Lett., 6 (1999), 1-15.
15. A. Miyachi and N. Tomita, Minimal smoothness conditions for bilinear Fourier multiplier, Rev. Mat. Iberoamericana, 29 (2013), 495-530.
16. N. Tomita, A Hörmander type multiplier theorem for multilinear operator, J. Funct. Anal., 259 (2010), 2028-2044.
17. A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J., 30 (1978), 163-171.
18. K. Yosida, Function Analysis, Springer-Verlag, Berlin, 1995.

Guoen Hu
Department of Applied Mathematics
Zhengzhou Information Science and Technology Institute
P. O. Box 1001-745
Zhengzhou 450002
P. R. China
E-mail: guoenxx@163.com

[^0]: Received August 22, 2013, accepted October 1, 2013.
 Communicated by Chin-Cheng Lin.
 2010 Mathematics Subject Classification: 42B15, 42B20.
 Key words and phrases: Bilinear Fourier multiplier, Commutator, $\operatorname{CMO}\left(\mathbb{R}^{n}\right)$, Compact operator.
 The research was supported by the NNSF of China under grant \#11371370.

