TAIWANESE JOURNAL OF MATHEMATICS Vol. 18, No. 1, pp. 329-336, February 2014 DOI: 10.11650/tjm.18.2014.3160 This paper is available online at http://journal.taiwanmathsoc.org.tw

THE ABSOLUTE LENGTH OF ALGEBRAIC INTEGERS WITH POSITIVE REAL PARTS

Qiang Wu* and Xiaoxia Tian

Abstract. Let α be a nonzero algebraic integer of degree d, all of whose conjugates α_i are confined to a sector $|\arg(\alpha_i)| \leq \theta$ with $0 < \theta < \pi/2$. Let $P = X^d + b_1 X^{d-1} + \cdots + b_d$ be the minimal polynomial of α . We give in this paper the greatest lower bounds $\rho_{\mathcal{L}}(\theta)$ of the absolute length $\mathcal{L}(P) = (1 + \sum_{i=1}^d |b_i|)^{1/d}$ of all but finitely many such α , for ten different values of θ .

1. INTRODUCTION

Let α be a nonzero algebraic integer of degree d, and let $\alpha_1 = \alpha, \alpha_2, \dots, \alpha_d$ be its conjugates, with $P = X^d + b_1 X^{d-1} + \dots + b_{d-1} X + b_d \in \mathbb{Z}[X]$ its minimal polynomial. The *length* of α is given by

$$L(P) = 1 + |b_1| + \dots + |b_d|,$$

and $L(P) \ge 2$ (as $P \ne x$). The *absolute length* of α is given by

$$\mathcal{L}(P) = L(P)^{\frac{1}{d}}.$$

The length L(P) is an important measure of a nonzero algebraic integer. We have the inequality[3] $M(P) \leq L(P) \leq 2^d M(P)$, where M(P) is Mahler measure of P which is given by $M(P) = \prod_{i=1}^d \max(1, |\alpha_i|)$. From Kronecker's theorem and Lehmer's conjecture, we know that M(P) is either 1 (if P is cyclotomic) or thought to be bounded away from 1 by an absolute constant (if P is not cyclotomic)[1][2]. From a result of Langevin[5], we know that there is a constant $C_{\Omega}(V) > 1$ such that the absolute Mahler measure $\Omega(P) := M(P)^{1/d}$ is either 1 or else satisfies $\Omega(P) \geq$

Received April 6, 2013, accepted August 8, 2013.

Communicated by Yifan Yang.

²⁰¹⁰ Mathematics Subject Classification: Primary 11C08, 11R06, 11Y40.

Key words and phrases: Algebraic integer, The absolute length, Explicit auxiliary function, Integer transfinite diameter.

^{*}The author was supported by the Natural Science Foundation of Chongqing grant CSTC No. 2012jjA00007.

Qiang Wu and Xiaoxia Tian

 $C_{\Omega}(V)$, when zeros of P are restricted to the closed set V which does not contain the whole unit circle. In the case where V is the sector $\{z : |\arg(z)| \le \theta\}$ where $0 \le \theta \le \pi$, G. Rhin and C. Smyth[7] succeeded in finding $c(\theta)$ exactly for θ in nine intervals, where $c(\theta)$ denote the largest value of $C_{\Omega}(V)$. In 2005, G. Rhin and the first author[8] improved the result to thirteen subintervals of $[0, \pi]$ and extended some known subintervals.

The absolute length $\mathcal{L}(P)$ is thought to be greater than an absolute constant $C_{\mathcal{L}}(V)$, when all the zeros of P are restricted to a set V. In fact, from $M(P) \leq L(P) \leq 2^d M(P)$, on taking the *d*th root, that $\Omega(P) \leq \mathcal{L}(P) \leq 2\Omega(P)$. Hence, from Langevin's result, we can deduce the existence of $C_{\mathcal{L}}(V) > 1$ for the same V for which Langevin's result is valid.

If P is the minimal polynomial of totally positive algebraic integer α (different from x - 1), then $L(P) = \prod_{i=1}^{d} (1 + \alpha_i)$. In 1995, Flammang[3] succeeded in finding a good value for the constant $\rho_{\mathcal{L}}$. She proved that the absolute length of totally positive algebraic integer α satisfies $\mathcal{L}(P) \ge \rho_{\mathcal{L}} = 2.36110147 \cdots$ with for five exceptions in the spectrum given by 7 algebraic integers, whose minimal polynomials are $x^2 - 3x + 1, x^3 - 5x^2 + 6x - 1, x^3 - 6x^2 + 5x - 1, x^4 - 7x^3 + 13x^2 - 7x + 1, x^4 - 7x^3 + 14x^2 - 8x + 1, x^4 - 8x^3 + 14x^2 - 7x + 1, x^8 - 15x^7 + 83x^6 - 220x^5 + 303x^4 - 220x^3 + 83x^2 - 15x + 1$. Recently, Mu and the first author[6] improved these results to $\rho_{\mathcal{L}} = 2.364950 \cdots$, with the same exceptions.

Let P be the minimal polynomial of algebraic integer α of degree d whose conjugates have positive real parts, i.e. $\Re(\alpha_i) > 0$ for $1 \le i \le d$. As P(-x) is a product of terms $x + \alpha$ for α real and terms $(x + \alpha)(x + \overline{\alpha}) = x^2 + 2\Re(\alpha)x + \alpha\overline{\alpha}$ otherwise and so has positive coefficients, then the length of α can be written as

$$L(P) = |P(-1)| = |(-1 - \alpha_1)(-1 - \alpha_2) \cdots (-1 - \alpha_d)| = \prod_{i=1}^d |1 + \alpha_i|.$$

Then

$$\mathcal{L}(P) = \left(\prod_{i=1}^{d} |1 + \alpha_i|\right)^{\frac{1}{d}}.$$

The aim of this paper is to find not only the value for the constant $C_{\mathcal{L}}(V(\theta))$ but also a good value for a constant $\rho_{\mathcal{L}}(\theta) > C_{\mathcal{L}}(V(\theta))$ such that $\mathcal{L}(P) \ge \rho_{\mathcal{L}}(\theta)$ for all but an explicit finite list of P when all the zeros of P are restricted to a set $V(\theta)$, where $V(\theta)$ is the sector $\{z : |\arg(z)| \le \theta\}$ for a fixed θ with $0 < \theta < \pi/2$. It is clear that $\rho_{\mathcal{L}}(\theta)$ is a non-increasing function of θ . We succeed in finding $\rho_{\mathcal{L}}(\theta)$ exactly for θ with ten different values. We have

Theorem 1. Let P be the minimal polynomial of algebraic integer α of degree d whose conjugates have positive real parts. Let $V(\theta)$, $\mathcal{L}(P)$, $\rho_{\mathcal{L}}(\theta)$ and $C_{\mathcal{L}}(V(\theta))$ be

defined as above. If all the zeros of P are restricted to the set $V(\theta_k)$ for each θ_k in Table 1, then the absolute length of P satisfies $\mathcal{L}(P) \ge \rho_{\mathcal{L}}(\theta_k)$ respectively, except for those algebraic integers whose minimal polynomials are denoted Q_j^* in Table 1. In particular, the value $C_{\mathcal{L}}(V(\theta))$ of $\mathcal{L}(P)$ for such P is attained by $\mathcal{L}(P)$ as given in the 4th column of Table 1.

Remark 1. In Table 1 $Q_{16}^* = (x^3 - 5x^2 + 6x - 1)(x^3 - 6x^2 + 5x - 1), Q_{30}^* = (x^4 - 7x^3 + 14x^2 - 8x + 1)(x^4 - 8x^3 + 14x^2 - 7x + 1).$

In Section 2, we prove Theorem 1 by using explicit auxiliary functions. We briefly describe the research method in Section 3.

2. The Explicit Auxiliary Function for the Absolute Length of P

2.1. The explicit auxiliary function for the absolute length of P

For a fixed θ_k , we consider an explicit auxiliary function of the type

(2.1)
$$f_k(z) = \frac{1}{2}\log(1+z)(1+\overline{z}) - \sum_{j=1}^J e_{kj}\log|Q_{kj}(z)|,$$

where z is a complex number, the numbers e_{kj} are positive real numbers and the polynomials Q_{kj} are nonzero elements of $\mathbb{Z}[X]$. The numbers e_{kj} and the polynomials Q_{kj} are always chosen to maximize the minimum of $f_k(z)$ on $V(\theta_k)$. We denote by m_k the minimum of $f_k(z)$ for $z \in V(\theta_k)$. Since the function f_k is harmonic in this sector outside the union of arbitrarily small disks around the roots of the polynomials Q_{kj} , this minimum is taken on the boundary of $V(\theta_k)$.

We have

$$\sum_{1 \le i \le d} f_k(\alpha_i) \ge dm_k$$

and

$$\log L(P) \ge dm_k + \sum_{1 \le j \le J} e_{kj} \log \left| \prod_{1 \le i \le d} Q_{kj}(\alpha_i) \right|.$$

 $\prod_{1 \le i \le d} Q_{kj}(\alpha_i)$ is equal to the resultant of P and Q_{kj} . If we assume now that polynomial P does not divide any polynomial Q_{kj} , then this resultant is a nonzero integer. Therefore

$$\log L(P) \ge dm_k,$$

so that

(2.2)
$$\mathcal{L}(P) \ge e^{m_k}.$$

2.2. The proof of the Theorem 1

For each θ_k in Table 1, we take Q_{kj} in the auxiliary function f_k as Q_j (which is given in Table 3) in the *k*th row of Table 1 and e_{kj} respectively in the *k*th row of Table 2. With (2.2), by numerical computation, we then obtain Theorem 1.

3. The Method

In order to get the largest lower bound for $\mathcal{L}(P)$, we only need to find the greatest m_k . If, in the auxiliary function of (2.1), we replace the real numbers e_{kj} by rational numbers we may write

(3.1)
$$f_k(z) = \frac{1}{2}\log(1+z)(1+\overline{z}) - \frac{t}{h_k}\log|H_k(z)|,$$

where H_k is in $\mathbb{Z}[X]$ of degree h_k and t is a positive real number. We want to obtain a function f_k whose minimum m_k in $V(\theta_k)$ is as large as possible. That is to say, we seek a polynomial $H_k \in \mathbb{Z}[X]$ such that

$$\sup_{z \in V(\theta_k)} |H_k(z)|^{t/h_k} \left((1+z)(1+\overline{z}) \right)^{-1/2} \le e^{-m_k}.$$

Now, if we suppose that t is fixed, say t = 1, it is clear that we need to get an effective upper bound for the quantity

$$t_{\mathbb{Z},\varphi}(V(\theta_k)) = \liminf_{\substack{h_k \ge 1 \\ h_k \to \infty}} \inf_{\substack{H_k \in \mathbb{Z}[X] \\ \deg H_k = h_k}} \sup_{z \in V(\theta_k)} |H_k(z)|^{t/h_k} \varphi(z)$$

in which we use the weight $\varphi(z) = ((1+z)(1+\overline{z}))^{-1/2}$. To get an upper bound for $t_{\mathbb{Z},\varphi}(V(\theta_k))$, it is sufficient to get an explicit polynomial $H_k \in \mathbb{Z}[X]$ and then to use the sequence of the successive powers of H_k .

The function $t_{\mathbb{Z},\varphi}(V(\theta_k))$ is a generalization of the integer transfinite diameter. For any $h \ge 1$ we say that a polynomial H (not always unique) is an *Integer Chebyshev Polynomial* if the quantity $\sup_{z \in V(\theta)} |H(z)|^{t/h}\varphi(z)$ is minimum. With the first author's algorithm[10], we compute the polynomials H of degree less than 30 and take their irreducible factors as the polynomials Q_j . We start with the polynomial x - 1, get the best e_1 and take $t = e_1$. When we have computed J polynomials, we optimize the numbers e_j with a refinement of the semi-infinite linear programming method that has been introduced into number theory by Smyth[9]. This gives us a new number t. We continue by induction to get J + 1 polynomials. More details can be found in [4].

We use also the LLL algorithm to find candidates for Q_j . The optimal function f is obtained by semi-infinite linear programming[10]. Moreover, technical improvements allow us to find the polynomials Q_j with higher degrees than before. Table 1 shows the

10 θ_k 's, the greatest value for the constant $\rho_{\mathcal{L}}(\theta_k)$ and the absolute constant $C_{\mathcal{L}}(V(\theta_k))$ when all the zeros of P are restricted to the set $V(\theta_k)$, for each k. The last column in Table 1 gives the polynomials Q_{kj} which are used in the auxiliary functions $f_k(z)$. The corresponding polynomials are those in Table 3. All the coefficients e_{kj} in the auxiliary functions $f_k(z)$ can be found in Table 2.

 Q_{kj} θ_k $\rho_{\mathcal{L}}(\theta_k)$ $C_{\mathcal{L}}(V(\theta_k))$ k0.01875 pprox $Q_1, Q_2^*, Q_4^*, Q_5, Q_{11}^*, Q_{12}, Q_{16}^*,$ $2.35961291 \cdots$ 1 $\mathcal{L}(Q_2)$ 0.00597π $Q_{29}^*, Q_{30}^*, Q_{34}, Q_{48}, Q_{49}, Q_{57}$ $0.03757 \approx$ $Q_1, Q_2^*, Q_4^*, Q_5, Q_{11}^*, Q_{12}, Q_{13},$ $\mathbf{2}$ $2.35341723 \cdots$ $\mathcal{L}(Q_2)$ 0.01196π $Q_{16}^*, Q_{29}^*, Q_{30}, Q_{34}$ $Q_1, Q_2^*, Q_4^*, Q_5, Q_{11}^*, Q_{12}, Q_{16}^*,$ 0.04341 ≈ 3 $2.35133701\cdots$ $\mathcal{L}(Q_2)$ 0.01382π $Q_{29}, Q_{30}, Q_{40}, Q_{56}$ $0.12529 \approx$ $Q_1, Q_2^*, Q_4^*, Q_5, Q_{11}^*, Q_{33}, Q_{55},$ 4 $2.32059849 \cdots$ $\mathcal{L}(Q_2)$ 0.03988π Q_{63} $Q_1, Q_2^*, Q_4^*, Q_{15}, Q_{27}, Q_{28}, Q_{39},$ $0.31743 \approx$ $2.23607259 \cdots$ $\mathcal{L}(Q_2)$ 5 0.10104π $Q_{47}, Q_{52}, Q_{53}, Q_{54}, Q_{62}$ $0.74808 \approx$ $Q_1, Q_2^*, Q_8, Q_{10}, Q_{26}, Q_{32}, Q_{38},$ 6 $2.00000207 \cdots$ $\mathcal{L}(Q_2)$

 $\mathcal{L}(Q_8)$

 $\mathcal{L}(Q_3)$

 $\mathcal{L}(Q_3)$

 $\mathcal{L}(Q_6)$

 0.23812π

 $0.95637 \approx$

 0.30442π $1.16605 \approx$

 0.37117π $1.24066 \approx$

 0.39491π

 $1.39314 \approx$

 0.44345π

 $1.89883252\cdots$

 $1.77828481 \cdots$

 $1.73205380 \cdots$

 $1.62657883 \cdots$

7

8

9

10

Table 1 $\rho_{\mathcal{L}}(\theta_k), C_{\mathcal{L}}(V(\theta_k))$ for θ_k and Q_{kj} used in the auxiliary functions $f_k(z)$

Table 2 e_{kj} used in the auxiliary functions $f_k(z)$

 Q_{36}, Q_{43}

 Q_{42}, Q_{50}, Q_{64}

 $Q_{46}, Q_{59}, Q_{60}, Q_{61}, Q_{65}, Q_{69}$

 $Q_{37}, Q_{45}, Q_{58}, Q_{66}, Q_{67}, Q_{68}$

 $Q_1, Q_3, Q_8^*, Q_9, Q_{23}, Q_{24}, Q_{25},$

 $Q_1, Q_3^*, Q_7^*, Q_{20}, Q_{22}, Q_{44}, Q_{51}$

 $Q_1, Q_3^*, Q_6, Q_{14}, Q_{19}, Q_{21}, Q_{35},$

 $Q_1, Q_6^*, Q_{14}, Q_{17}, Q_{18}, Q_{31}, Q_{41},$

k	e_{kj}
1	0.31640461, 0.11635268, 0.03905736, 0.00207354, 0.01327430, 0.00057312, 0.00485278, 0.031640461, 0.00057312, 0.00485278, 0.000057312, 0.00485278, 0.000057312, 0.000057312, 0.00485278, 0.000057312, 0.00000000000000000000000000000000000
	0.00495405, 0.00255289, 0.00021242, 0.00040214, 0.00038123, 0.00068269
2	0.31729055, 0.11920741, 0.04221770, 0.00302601, 0.01470128, 0.00125251, 0.00054243, 0.00054243, 0.000564243, 0.00056444, 0.0005666666666666666666666666666666666
	0.00490601, 0.00524017, 0.00169688, 0.00048067
3	0.31812098, 0.11937264, 0.04203181, 0.00213928, 0.01604043, 0.00037157, 0.00545934, 0.00037157, 0.000370037037, 0.00037157, 0.0003757, 0.000370037, 0.00037057, 0.000370037,
	0.00422952, 0.00108730, 0.00001212, 0.00093495
4	0.32527235, 0.13499569, 0.04828147, 0.00454245, 0.01898362, 0.00097494, 0.00109277, 0.0010927, 0.0010927, 0.0010927, 0.0010927, 0.0010927, 0.0010927, 0.0010927, 0.000000000
	0.00031353
5	0.33437678, 0.15973207, 0.05749201, 0.00009375, 0.00272716, 0.00049440, 0.00116907,
	0.00005410, 0.00048092, 0.00036906, 0.00002697, 0.00007655
6	0.34233462, 0.20460902, 0.00670147, 0.00315100, 0.00112223, 0.00002894, 0.00117557,
	0.00035031, 0.00014383, 0.00044087, 0.00060545, 0.00055713, 0.00043618
7	0.35373279, 0.04932791, 0.02403626, 0.00233610, 0.00121050, 0.00676016, 0.00029411, 0.00121050, 0.00676016, 0.00029411, 0.0012000, 0.0012000, 0.0001000, 0.0001000, 0.00000000000
1	0.00061858, 0.00004358, 0.00005472, 0.00009809, 0.00029626, 0.00019071
8	0.34289602, 0.05332589, 0.02473867, 0.00041985, 0.00478406, 0.00179133, 0.00261823
0	
9	0.35637893, 0.05279506, 0.02040707, 0.00425959, 0.00413851, 0.00037100, 0.00153723, 0.001523723, 0.001523723, 0.00152, 0.00152, 0.00152, 0.00152, 0.00152, 0.00152, 0.00152, 0.001523, 0.00152, 0.00152, 0.00152, 0.00152, 0.00152, 0.00152, 0.001
5	0.00074740, 0.00078389
10	0.29377193, 0.01878965, 0.00229036, 0.01590297, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.00379205, 0.00149646, 0.002907, 0.00567345, 0.002907, 0.00379205, 0.00149646, 0.002907, 0.002900000000
10	0.00083798, 0.00134531, 0.00294081

Table 3 Polynomials Q_j used in the auxiliary functions.

		Tat	ole 3 Pol	lynomia	als Q_j 1	used in	the aux	iliary fui	nctions.	
j	d	$\mathcal{L}(Q)$	$\arg(Q_j)$		First	half coeff	icients o	f Q_j excep	pt $d = 1$	
$\frac{j}{1}$	1	1.000000	0.00000		0					
2	1	2.000000	0.00000	1 -						
3	2	1.732050	1.04719	1 -						
4	$^{2}_{2}$	2.236067	0.00000	1 -						
$\frac{5}{6}$	4	$2.449489 \\ 1.626576$	$0.00000 \\ 1.34033$	1 - 1 -						
7	4	1.778279	1.34033 1.11851	1 -						
8	4	1.898828	0.86138	1 -						
9	4	1.934336	0.94978	1 -						
10	4	2.030543	0.67488	1 -						
11	4	2.320595	0.00000	1 -	7 13					
12	4	2.396781	0.00000	1 -						
13	4	2.414736	0.00000	1 -						
14	6	1.686376	1.35402	1 -		-5				
15	6	2.158010	1.62009	1 -		-43				
16 17	6 8	$2.351334 \\ 1.650233$	$0.00000 \\ 1.37283$	1 -1 1 -		-63 -9	15			
18	8	1.685055	1.37283 1.37767	1 -		-10	19			
19	8	1.718310	1.27411	1 -	2 10 3 10	-14	20			
20	8	1.726646	1.31167	1 -		-15	21			
21	8	1.747591	1.26279	1 -		-16	25			
22	8	1.791278	1.17990	1 -		-21	28			
23	8	1.853006	1.03603	1 -		-29	37			
24	8	1.911183	0.93113	1 -		-38	48			
25	8	1.923004	0.95711	1 -		-40	51			
26	8	1.959103	0.84836	1 -		-47	59			
$\frac{27}{28}$	8 8	$2.234274 \\ 2.286084$	$0.32922 \\ 0.29597$	1 -1 1 -1		-143 -173	$\frac{193}{238}$			
$\frac{28}{29}$	8	2.286084 2.353416	0.29597	1 -1		-220	303			
30	8	2.359611	0.00000	1 -1		-225	311			
31	10	1.644889	1.43314	1 -		-14	32	-25		
32	10	1.978479	0.89591	1 -		-107	189	-227		
33	10	2.334173	0.09449	1 -1	8 130	-492	1069	-1381		
34	10	2.339943	0.13388	1 -1		-501	1098	-1423		
35	12	1.750704	1.23109	1 -		-51	104	-146	173	
36	12	1.752454	1.25381	1 -		-51	105	-148	177	
37	12	1.915501	0.96609	1 -		-136	296	-464	540	
$\frac{38}{39}$	$12 \\ 12$	$1.992226 \\ 2.234102$	$0.80058 \\ 0.36158$	1 -1 1 -1		-203 -628	$468 \\ 1756$	-763 -3219	897 3935	
40	12	2.234102 2.344418	1.61290	1 -2		-1014	3076	-5906	7327	
41	14	1.637776	1.40600	1 -2		-31	82	-108	178	-161
42	14	1.664113	1.41432	1 -		-36	104	-132	230	-199
43	14	1.703361	1.66874	1 -		-57	128	-208	290	-309
44	14	1.755450	1.30510	1 -	6 28	-80	187	-318	453	-493
45	14	1.900761	0.99620	1 -1	0 55	-197	509	-980	1445	-1641
46	14	2.001518	0.79988	1 -1		-343	974	-2009	3081	-3549
47	14	2.268769	0.32292	1 -2		-1225	4503	-11190	19214	-22994
48	14	2.372419	0.00000	1 -2		-1979	7895	-20676	36527	-44101
$\frac{49}{50}$	$\frac{14}{16}$	$2.375410 \\ 1.664957$	$0.00000 \\ 1.40739$	1 -2 1 -		-1995 -55	$\frac{7997}{149}$	-21021 -253	37220 434	-44971 -519
30	10	1.004937	1.40139	613	4 22	-00	149	-205	404	-019
51	16	1.803649	1.18284	1 -	8 43	-153	422	-892	1523	-2074
• •				2312	10					
52	16	2.234418	0.37705	1 -2	4 260	-1678	7183	-21516	46426	-73292
				85281						
53	16	2.238845	0.36225	1 -2	4 261	-1695	7309	-22050	47859	-75846
				88371						
54	16	2.260152	0.32803	1 -2		-1874	8253	-25306	55575	-88711
		0.01	0.15050	103614		0.175	11100	00010	00550-	100700
55	16	2.317191	0.15656	1 -2		-2473	11499	-36646	82525	-133568
5.0	16	0 226406	0 12040	156691		9700	10000	41970	04079	159111
56	16	2.336486	0.13848	1 -2 179941		-2702	12803	-41378	94078	-153111
57	16	2.366799	0.00000	1 -3		-3141	15261	-50187	115410	-189036
01	10	2.000133	0.00000	222621		-0141	10201	-00107	110410	-103000
					-			cont	inued on n	ext page

con	tinued	l from previ	ous page	
j	d	$\mathcal{L}(Q)$	$\arg(Q_j)$	First half coefficients of Q_j except $d = 1$
58	18	1.907615	0.97760	1 -13 91 -425 1460 -3857 8057 -13511 18368 -20335
59	18	1.929765	1.34801	1 - 15 - 112 - 540 - 1868 - 4900 - 10085 - 16650 - 22371 - 24663
60	18	1.998772	0.84159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
61	18	2.006439	0.77638	1 -17 143 -773 2976 -8596 19194 -33726 47126 -52655
62	18	2.257346	0.32627	1 - 28 - 357 - 2742 - 14155 - 51926 - 139672 - 280505 - 24856 - 487682
63	18	2.328193	0.17545	1 - 32 - 457 - 3858 - 21505 - 83778 - 235655 - 487972 - 752292 - 868541
64	20	1.645451	1.45107	1 - 4 - 27 - 73 - 249 - 488 - 1088 - 1596 - 2546 - 2831 - 3363
65	20	2.004631	0.76251	1 -19 178 -1075 4653 -15248 39078 -79933 132212 -178280 196867
66	22	1.908812	1.00181	1 -16 136 -777 3297 -10921 29120 -63713 11586 -176714 227171 -246924
67	22	1.910192	0.98156	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
68	24	1.932179	0.97636	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
69	24	2.007814	0.80754	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ACKNOWLEDGMENT

We are very much indebted to Professor Georges Rhin for his valuable assistance with this work.

References

- 1. D. W. Boyd, Variations on a theme of Kronecker, Canad. Math. Bull., 21 (1978), 129-133.
- 2. D. W. Boyd, Speculations concerning the range of Mahler's mesaure, *Canad. Math. Bull.*, **24** (1981), 453-469.
- 3. V. Flammang, Sur la longueur des entiers algébriques totalement positifs, J. Number Theory, 54 (1995), 60-72.
- 4. V. Flammang, G. Rhin and J. M. Sac-Épée, Integer transfinite diameter and polynomials of small Mahler measure, *Math. Comp.*, **75** (2006), 1527-1540.
- 5. M. Langevin, Méthode de Fekete-Szegő et problème de Lehmer, *C. R. Acad. Sci. Paris*, **301** (1985), 463-466.
- 6. Q. Mu and Q. Wu, The measure of totally positive algebraic integers, *J. Number Theory*, **133** (2013), 12-19.
- 7. G. Rhin and C. J. Smyth, On the absolute Mahler measure of polynomials having all zeros in a sector, *Math. Comp.*, **64** (1995), 295-304.
- 8. G. Rhin and Q. Wu, On the absolute Mahler measure of polynomials having all zeros in a sector (II), *Math. Comp.*, **74** (2005), 383-388.

Qiang Wu and Xiaoxia Tian

- 9. C. J. Smyth, The mean values of totally real algebraic integers, *Math. Comp.*, **42** (1984), 663-681.
- 10. Q. Wu, On the linear independence measure of logarithms of rational numbers, *Math. Comp.*, **72** (2003), 901-911.

Qiang Wu and Xiaoxia Tian Department of Mathematics Southwest University of China 2 Tiansheng Road Beibei, 400715 Chongqing P. R. China E-mail: qiangwu@swu.edu.cn print_vsop@163.com

336