THE ABSOLUTE LENGTH OF ALGEBRAIC INTEGERS WITH POSITIVE REAL PARTS

Qiang Wu* and Xiaoxia Tian

Abstract

Let α be a nonzero algebraic integer of degree d, all of whose conjugates α_{i} are confined to a sector $\left|\arg \left(\alpha_{i}\right)\right| \leq \theta$ with $0<\theta<\pi / 2$. Let $P=X^{d}+$ $b_{1} X^{d-1}+\cdots+b_{d}$ be the minimal polynomial of α. We give in this paper the greatest lower bounds $\rho_{\mathcal{L}}(\theta)$ of the absolute length $\mathcal{L}(P)=\left(1+\sum_{i=1}^{d}\left|b_{i}\right|\right)^{1 / d}$ of all but finitely many such α, for ten different values of θ.

1. Introduction

Let α be a nonzero algebraic integer of degree d, and let $\alpha_{1}=\alpha, \alpha_{2}, \cdots, \alpha_{d}$ be its conjugates, with $P=X^{d}+b_{1} X^{d-1}+\cdots+b_{d-1} X+b_{d} \in \mathbb{Z}[X]$ its minimal polynomial. The length of α is given by

$$
L(P)=1+\left|b_{1}\right|+\cdots+\left|b_{d}\right|,
$$

and $L(P) \geq 2$ (as $P \neq x$). The absolute length of α is given by

$$
\mathcal{L}(P)=L(P)^{\frac{1}{d}} .
$$

The length $L(P)$ is an important measure of a nonzero algebraic integer. We have the inequality[3] $M(P) \leq L(P) \leq 2^{d} M(P)$, where $M(P)$ is Mahler measure of P which is given by $M(P)=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)$. From Kronecker's theorem and Lehmer's conjecture, we know that $M(P)$ is either 1 (if P is cyclotomic) or thought to be bounded away from 1 by an absolute constant (if P is not cyclotomic)[1][2]. From a result of Langevin[5], we know that there is a constant $C_{\Omega}(V)>1$ such that the absolute Mahler measure $\Omega(P):=M(P)^{1 / d}$ is either 1 or else satisfies $\Omega(P) \geq$

Received April 6, 2013, accepted August 8, 2013.
Communicated by Yifan Yang.
2010 Mathematics Subject Classification: Primary 11C08, 11R06, 11Y40.
Key words and phrases: Algebraic integer, The absolute length, Explicit auxiliary function, Integer transfinite diameter.
*The author was supported by the Natural Science Foundation of Chongqing grant CSTC No. 2012jjA00007.
$C_{\Omega}(V)$, when zeros of P are restricted to the closed set V which does not contain the whole unit circle. In the case where V is the sector $\{z:|\arg (z)| \leq \theta\}$ where $0 \leq \theta \leq \pi$, G. Rhin and C. Smyth[7] succeeded in finding $c(\theta)$ exactly for θ in nine intervals, where $c(\theta)$ denote the largest value of $C_{\Omega}(V)$. In 2005, G. Rhin and the first author $[8]$ improved the result to thirteen subintervals of $[0, \pi]$ and extended some known subintervals.

The absolute length $\mathcal{L}(P)$ is thought to be greater than an absolute constant $C_{\mathcal{L}}(V)$, when all the zeros of P are restricted to a set V. In fact, from $M(P) \leq L(P) \leq$ $2^{d} M(P)$, on taking the d th root, that $\Omega(P) \leq \mathcal{L}(P) \leq 2 \Omega(P)$. Hence, from Langevin's result, we can deduce the existence of $C_{\mathcal{L}}(V)>1$ for the same V for which Langevin's result is valid.

If P is the minimal polynomial of totally positive algebraic integer α (different from $x-1$), then $L(P)=\prod_{i=1}^{d}\left(1+\alpha_{i}\right)$. In 1995, Flammang[3] succeeded in finding a good value for the constant $\rho_{\mathcal{L}}$. She proved that the absolute length of totally positive algebraic integer α satisfies $\mathcal{L}(P) \geq \rho_{\mathcal{L}}=2.36110147 \cdots$ with for five exceptions in the spectrum given by 7 algebraic integers, whose minimal polynomials are $x^{2}-3 x+$ $1, x^{3}-5 x^{2}+6 x-1, x^{3}-6 x^{2}+5 x-1, x^{4}-7 x^{3}+13 x^{2}-7 x+1, x^{4}-7 x^{3}+14 x^{2}-8 x+$ $1, x^{4}-8 x^{3}+14 x^{2}-7 x+1, x^{8}-15 x^{7}+83 x^{6}-220 x^{5}+303 x^{4}-220 x^{3}+83 x^{2}-15 x+1$. Recently, Mu and the first author[6] improved these results to $\rho_{\mathcal{L}}=2.364950 \cdots$, with the same exceptions.

Let P be the minimal polynomial of algebraic integer α of degree d whose conjugates have positive real parts, i.e. $\Re\left(\alpha_{i}\right)>0$ for $1 \leq i \leq d$. As $P(-x)$ is a product of terms $x+\alpha$ for α real and terms $(x+\alpha)(x+\bar{\alpha})=x^{2}+2 \Re(\alpha) x+\alpha \bar{\alpha}$ otherwise and so has positive coefficients, then the length of α can be written as

$$
L(P)=|P(-1)|=\left|\left(-1-\alpha_{1}\right)\left(-1-\alpha_{2}\right) \cdots\left(-1-\alpha_{d}\right)\right|=\prod_{i=1}^{d}\left|1+\alpha_{i}\right| .
$$

Then

$$
\mathcal{L}(P)=\left(\prod_{i=1}^{d}\left|1+\alpha_{i}\right|\right)^{\frac{1}{d}} .
$$

The aim of this paper is to find not only the value for the constant $C_{\mathcal{L}}(V(\theta))$ but also a good value for a constant $\rho_{\mathcal{L}}(\theta)>C_{\mathcal{L}}(V(\theta))$ such that $\mathcal{L}(P) \geq \rho_{\mathcal{L}}(\theta)$ for all but an explicit finite list of P when all the zeros of P are restricted to a set $V(\theta)$, where $V(\theta)$ is the sector $\{z:|\arg (z)| \leq \theta\}$ for a fixed θ with $0<\theta<\pi / 2$. It is clear that $\rho_{\mathcal{L}}(\theta)$ is a non-increasing function of θ. We succeed in finding $\rho_{\mathcal{L}}(\theta)$ exactly for θ with ten different values. We have

Theorem 1. Let P be the minimal polynomial of algebraic integer α of degree d whose conjugates have positive real parts. Let $V(\theta), \mathcal{L}(P), \rho_{\mathcal{L}}(\theta)$ and $C_{\mathcal{L}}(V(\theta))$ be
defined as above. If all the zeros of P are restricted to the set $V\left(\theta_{k}\right)$ for each θ_{k} in Table 1, then the absolute length of P satisfies $\mathcal{L}(P) \geqslant \rho_{\mathcal{L}}\left(\theta_{k}\right)$ respectively, except for those algebraic integers whose minimal polynomials are denoted Q_{j}^{*} in Table 1. In particular, the value $C_{\mathcal{L}}(V(\theta))$ of $\mathcal{L}(P)$ for such P is attained by $\mathcal{L}(P)$ as given in the 4th column of Table 1 .

Remark 1. In Table $1 Q_{16}^{*}=\left(x^{3}-5 x^{2}+6 x-1\right)\left(x^{3}-6 x^{2}+5 x-1\right), Q_{30}^{*}=$ $\left(x^{4}-7 x^{3}+14 x^{2}-8 x+1\right)\left(x^{4}-8 x^{3}+14 x^{2}-7 x+1\right)$.

In Section 2, we prove Theorem 1 by using explicit auxiliary functions. We briefly describe the research method in Section 3.

2. The Explicit Auxiliary Function for the Absolute Length of P

2.1. The explicit auxiliary function for the absolute length of P

For a fixed θ_{k}, we consider an explicit auxiliary function of the type

$$
\begin{equation*}
f_{k}(z)=\frac{1}{2} \log (1+z)(1+\bar{z})-\sum_{j=1}^{J} e_{k j} \log \left|Q_{k j}(z)\right|, \tag{2.1}
\end{equation*}
$$

where z is a complex number, the numbers $e_{k j}$ are positive real numbers and the polynomials $Q_{k j}$ are nonzero elements of $\mathbb{Z}[X]$. The numbers $e_{k j}$ and the polynomials $Q_{k j}$ are always chosen to maximize the minimum of $f_{k}(z)$ on $V\left(\theta_{k}\right)$. We denote by m_{k} the minimum of $f_{k}(z)$ for $z \in V\left(\theta_{k}\right)$. Since the function f_{k} is harmonic in this sector outside the union of arbitrarily small disks around the roots of the polynomials $Q_{k j}$, this minimum is taken on the boundary of $V\left(\theta_{k}\right)$.

We have

$$
\sum_{1 \leq i \leq d} f_{k}\left(\alpha_{i}\right) \geq d m_{k}
$$

and

$$
\log L(P) \geq d m_{k}+\sum_{1 \leq j \leq J} e_{k j} \log \left|\prod_{1 \leq i \leq d} Q_{k j}\left(\alpha_{i}\right)\right| .
$$

$\prod_{1 \leq i \leq d} Q_{k j}\left(\alpha_{i}\right)$ is equal to the resultant of P and $Q_{k j}$. If we assume now that polynomial P does not divide any polynomial $Q_{k j}$, then this resultant is a nonzero integer. Therefore

$$
\log L(P) \geq d m_{k}
$$

so that

$$
\begin{equation*}
\mathcal{L}(P) \geq e^{m_{k}} \tag{2.2}
\end{equation*}
$$

2.2. The proof of the Theorem 1

For each θ_{k} in Table 1 , we take $Q_{k j}$ in the auxiliary function f_{k} as Q_{j} (which is given in Table 3) in the k th row of Table 1 and $e_{k j}$ respectively in the k th row of Table 2. With (2.2), by numerical computation, we then obtain Theorem 1.

3. The Method

In order to get the largest lower bound for $\mathcal{L}(P)$, we only need to find the greatest m_{k}. If, in the auxiliary function of (2.1), we replace the real numbers $e_{k j}$ by rational numbers we may write

$$
\begin{equation*}
f_{k}(z)=\frac{1}{2} \log (1+z)(1+\bar{z})-\frac{t}{h_{k}} \log \left|H_{k}(z)\right|, \tag{3.1}
\end{equation*}
$$

where H_{k} is in $\mathbb{Z}[X]$ of degree h_{k} and t is a positive real number. We want to obtain a function f_{k} whose minimum m_{k} in $V\left(\theta_{k}\right)$ is as large as possible. That is to say, we seek a polynomial $H_{k} \in \mathbb{Z}[X]$ such that

$$
\sup _{z \in V\left(\theta_{k}\right)}\left|H_{k}(z)\right|^{t / h_{k}}((1+z)(1+\bar{z}))^{-1 / 2} \leq e^{-m_{k}} .
$$

Now, if we suppose that t is fixed, say $t=1$, it is clear that we need to get an effective upper bound for the quantity
in which we use the weight $\varphi(z)=((1+z)(1+\bar{z}))^{-1 / 2}$. To get an upper bound for $t_{\mathbb{Z}, \varphi}\left(V\left(\theta_{k}\right)\right)$, it is sufficient to get an explicit polynomial $H_{k} \in \mathbb{Z}[X]$ and then to use the sequence of the successive powers of H_{k}.

The function $t_{\mathbb{Z}, \varphi}\left(V\left(\theta_{k}\right)\right)$ is a generalization of the integer transfinite diameter. For any $h \geq 1$ we say that a polynomial H (not always unique) is an Integer Chebyshev Polynomial if the quantity $\sup _{z \in V(\theta)}|H(z)|^{t / h} \varphi(z)$ is minimum. With the first author's algorithm[10], we compute the polynomials H of degree less than 30 and take their irreducible factors as the polynomials Q_{j}. We start with the polynomial $x-1$, get the best e_{1} and take $t=e_{1}$. When we have computed J polynomials, we optimize the numbers e_{j} with a refinement of the semi-infinite linear programming method that has been introduced into number theory by Smyth[9]. This gives us a new number t. We continue by induction to get $J+1$ polynomials. More details can be found in [4].

We use also the LLL algorithm to find candidates for Q_{j}. The optimal function f is obtained by semi-infinite linear programming[10]. Moreover, technical improvements allow us to find the polynomials Q_{j} with higher degrees than before. Table 1 shows the
$10 \theta_{k}$'s, the greatest value for the constant $\rho_{\mathcal{L}}\left(\theta_{k}\right)$ and the absolute constant $C_{\mathcal{L}}\left(V\left(\theta_{k}\right)\right)$ when all the zeros of P are restricted to the set $V\left(\theta_{k}\right)$, for each k. The last column in Table 1 gives the polynomials $Q_{k j}$ which are used in the auxiliary functions $f_{k}(z)$. The corresponding polynomials are those in Table 3. All the coefficients $e_{k j}$ in the auxiliary functions $f_{k}(z)$ can be found in Table 2.

Table $1 \rho_{\mathcal{L}}\left(\theta_{k}\right), C_{\mathcal{L}}\left(V\left(\theta_{k}\right)\right)$ for θ_{k} and $Q_{k j}$ used in the auxiliary functions $f_{k}(z)$

k	θ_{k}	$\rho_{\mathcal{L}}\left(\theta_{k}\right)$	$C_{\mathcal{L}}\left(V\left(\theta_{k}\right)\right)$	$Q_{k j}$		
1	$0.01875 \approx$ 0.00597π	$2.35961291 \cdots$	$\mathcal{L}\left(Q_{2}\right)$	$Q_{1}, Q_{2}^{*}, Q_{4}^{*}, Q_{5}, Q_{11}^{*}, Q_{12}, Q_{16}^{*}$, $Q_{29}^{*}, Q_{30}^{*}, Q_{34}, Q_{48}, Q_{49}, Q_{57}$		
2	$0.03757 \approx$ 0.01196π	$2.35341723 \cdots$	$\mathcal{L}\left(Q_{2}\right)$	$Q_{1}, Q_{2}^{*}, Q_{4}^{*}, Q_{5}, Q_{11}^{*}, Q_{12}, Q_{13}$, $Q_{16}^{*}, Q_{29}^{*}, Q_{30}, Q_{34}$		
3	$0.04341 \approx$ 0.01382π	$2.35133701 \cdots$	$\mathcal{L}\left(Q_{2}\right)$	$Q_{1}, Q_{2}^{*}, Q_{4}^{*}, Q_{5}, Q_{11}^{*}, Q_{12}, Q_{16}^{*}$, $Q_{29}, Q_{30}, Q_{40}, Q_{56}$		
4	$0.12529 \approx$ 0.03988π	$2.32059849 \cdots$	$\mathcal{L}\left(Q_{2}\right)$	$Q_{1}, Q_{2}^{*}, Q_{4}^{*}, Q_{5}, Q_{11}^{*}, Q_{33}, Q_{55}$, Q_{63}		
5	$0.31743 \approx$ 0.10104π	$2.23607259 \cdots$	$\mathcal{L}\left(Q_{2}\right)$	$Q_{1}, Q_{2}^{*}, Q_{4}^{*}, Q_{15}, Q_{27}, Q_{28}, Q_{39}$, $Q_{47}, Q_{52}, Q_{53}, Q_{54}, Q_{62}$		
6	$0.74808 \approx$ 0.23812π	$2.00000207 \cdots$	$\mathcal{L}\left(Q_{2}\right)$	$Q_{1}, Q_{2}^{*}, Q_{8}, Q_{10}, Q_{26}, Q_{32}, Q_{38}$, $Q_{46}, Q_{59}, Q_{60}, Q_{61}, Q_{65}, Q_{69}$		
7	$0.95637 \approx$ 0.30442π	$1.89883252 \cdots$	$\mathcal{L}\left(Q_{8}\right)$	$Q_{1}, Q_{3}, Q_{8}^{*}, Q_{9}, Q_{23}, Q_{24}, Q_{25}$, $Q_{37}, Q_{45}, Q_{58}, Q_{66}, Q_{67}, Q_{68}$		
8	$1.16605 \approx$ 0.37117π	$1.77828481 \cdots$	$\mathcal{L}\left(Q_{3}\right)$	$Q_{1}, Q_{3}^{*}, Q_{7}^{*}, Q_{20}, Q_{22}, Q_{44}, Q_{51}$ 9$1.24066 \approx$ 0.39491π	$1.73205380 \cdots \quad \mathcal{L}\left(Q_{3}\right) \quad$	$Q_{1}, Q_{3}^{*}, Q_{6}, Q_{14}, Q_{19}, Q_{21}, Q_{35}$,
:---						
Q_{36}, Q_{43},						

Table $2 e_{k j}$ used in the auxiliary functions $f_{k}(z)$

k	$e_{k j}$
1	$0.31640461,0.11635268,0.03905736,0.00207354,0.01327430,0.00057312,0.00485278$, $0.00495405,0.00255289,0.00021242,0.00040214,0.00038123,0.00068269$
2	$0.31729055,0.11920741,0.04221770,0.00302601,0.01470128,0.00125251,0.00054243$, $0.00490601,0.00524017,0.00169688,0.00048067$
3	$0.31812098,0.11937264,0.04203181,0.00213928,0.01604043,0.00037157,0.00545934$, $0.00422952,0.00108730,0.00001212,0.00093495$
4	$0.32527235,0.13499569,0.04828147,0.00454245,0.01898362,0.00097494,0.00109277$, 0.00031353
5	$0.33437678,0.15973207,0.05749201,0.00009375,0.00272716,0.00049440,0.00116907$, $0.00005410,0.00048092,0.00036906,0.00002697,0.00007655$
6	$0.34233462,0.20460902,0.00670147,0.00315100,0.00112223,0.00002894,0.00117557$, $0.00035031,0.00014383,0.00044087,0.00060545,0.00055713,0.00043618$
7	$0.35373279,0.04932791,0.02403626,0.00233610,0.00121050,0.00676016,0.00029411$, $0.00061858,0.00004358,0.00005472,0.00009809,0.00029626,0.00019071$
8	$0.34289602,0.05332589,0.02473867,0.00041985,0.00478406,0.00179133,0.00261823$
9	$0.35637893,0.05279506,0.02040707,0.00425959,0.00413851,0.00037100,0.00153723$, $0.00074740,0.00078389$
10	$0.29377193,0.01878965,0.00229036,0.01590297,0.00567345,0.00379205,0.00149646$, $0.00083798,0.00134531,0.00294081$

Table 3 Polynomials Q_{j} used in the auxiliary functions.

j	d	$\mathcal{L}(Q)$	$\arg \left(Q_{j}\right)$	First half coefficients of Q_{j} except $d=1$						
1	1	1.000000	0.00000	10						
2	1	2.000000	0.00000	$1-1$						
3	2	1.732050	1.04719	$1-1$						
4	2	2.236067	0.00000	$1-3$						
5	2	2.449489	0.00000	$1-4$						
6	4	1.626576	1.34033	$1-1$	3					
7	4	1.778279	1.11851	1 -2	4					
8	4	1.898828	0.86138	$1-3$	5					
9	4	1.934336	0.94978	$1-3$	6					
10	4	2.030543	0.67488	$1-4$	7					
11	4	2.320595	0.00000	$1-7$	13					
12	4	2.396781	0.00000	$1-8$	15					
13	4	2.414736	0.00000	$1-8$	16					
14	6	1.686376	1.35402	1 -2	6	-5				
15	6	2.158010	1.62009	$1-9$	29	-43				
16	6	2.351334	0.00000	$1-11$	41	-63				
17	8	1.650233	1.37283	$1-2$	8	-9	15			
18	8	1.685055	1.37767	1 -2	10	-10	19			
19	8	1.718310	1.27411	1 -3	10	-14	20			
20	8	1.726646	1.31167	$1-3$	10	-15	21			
21	8	1.747591	1.26279	1 -3	11	-16	25			
22	8	1.791278	1.17990	1 -4	13	-21	28			
23	8	1.853006	1.03603	$1-5$	16	-29	37			
24	8	1.911183	0.93113	$1-6$	20	-38	48			
25	8	1.923004	0.95711	$1-6$	21	-40	51			
26	8	1.959103	0.84836	$1 \quad-7$	24	-47	59			
27	8	2.234274	0.32922	$1-12$	58	-143	193			
28	8	2.286084	0.29597	$1-13$	67	-173	238			
29	8	2.353416	0.00000	$1-15$	83	-220	303			
30	8	2.359611	0.00000	$1-15$	84	-225	311			
31	10	1.644889	1.43314	1 -2	11	-14	32	-25		
32	10	1.978479	0.89591	$1-9$	40	-107	189	-227		
33	10	2.334173	0.09449	$1-18$	130	-492	1069	-1381		
34	10	2.339943	0.13388	$1-18$	131	-501	1098	-1423		
35	12	1.750704	1.23109	1 -5	21	-51	104	-146	173	
36	12	1.752454	1.25381	$1-5$	21	-51	105	-148	177	
37	12	1.915501	0.96609	$1-9$	44	-136	296	-464	540	
38	12	1.992226	0.80058	$1-11$	60	-203	468	-763	897	
39	12	2.234102	0.36158	$1-18$	141	-628	1756	-3219	3935	
40	12	2.344418	1.61290	$1-22$	102	-1014	3076	-5906	7327	
41	14	1.637776	1.40600	$1-3$	16	-31	82	-108	178	-161
42	14	1.664113	1.41432	$1-3$	19	-36	104	-132	230	-199
43	14	1.703361	1.66874	$1-5$	22	-57	128	-208	290	-309
44	14	1.755450	1.30510	$1-6$	28	-80	187	-318	453	-493
45	14	1.900761	0.99620	$1-10$	55	-197	509	-980	1445	-1641
46	14	2.001518	0.79988	$1-13$	84	-343	974	-2009	3081	-3549
47	14	2.268769	0.32292	$1-22$	215	-1225	4503	-11190	19214	-22994
48	14	2.372419	0.00000	$1-27$	309	-1979	7895	-20676	36527	-44101
49	14	2.375410	0.00000	$1 \begin{array}{ll}1 & -27\end{array}$	310	-1995	7997	-21021	37220	-44971
50	16	1.664957	1.40739	$\begin{array}{ll} 1 & -4 \\ 613 & \end{array}$	22	-55	149	-253	434	-519
51	16	1.803649	1.18284	$l_{2312} \quad-8$	43	-153	422	-892	1523	-2074
52	16	2.234418	0.37705	$\begin{array}{ll} 1 & -24 \\ 85281 \end{array}$	260	-1678	7183	-21516	46426	-73292
53	16	2.238845	0.36225	$\begin{aligned} & 1 \quad-24 \\ & 88371 \end{aligned}$	261	-1695	7309	-22050	47859	-75846
54	16	2.260152	0.32803	$\begin{array}{lr} 1 & -25 \\ 103614 \end{array}$	281	-1874	8253	-25306	55575	-88711
55	16	2.317191	0.15656	$\begin{aligned} & 1 \quad-28 \\ & 156691 \end{aligned}$	345	-2473	11499	-36646	82525	-133568
56	16	2.336486	0.13848	$\begin{array}{lr} 1 & -29 \\ 179941 \end{array}$	368	-2702	12803	-41378	94078	-153111
57	16	2.366799	0.00000	$\begin{array}{lr} 1 & -31 \\ 222621 \\ \hline \end{array}$	413	-3141	15261	-50187	115410	-189036

AcKnowledgment

We are very much indebted to Professor Georges Rhin for his valuable assistance with this work.

References

1. D. W. Boyd, Variations on a theme of Kronecker, Canad. Math. Bull., 21 (1978), 129-133.
2. D. W. Boyd, Speculations concerning the range of Mahler's mesaure, Canad. Math. Bull., 24 (1981), 453-469.
3. V. Flammang, Sur la longueur des entiers algébriques totalement positifs, J. Number Theory, 54 (1995), 60-72.
4. V. Flammang, G. Rhin and J. M. Sac-Épée, Integer transfinite diameter and polynomials of small Mahler measure, Math. Comp., 75 (2006), 1527-1540.
5. M. Langevin, Méthode de Fekete-Szegö et problème de Lehmer, C. R. Acad. Sci. Paris, 301 (1985), 463-466.
6. Q. Mu and Q. Wu, The measure of totally positive algebraic integers, J. Number Theory, 133 (2013), 12-19.
7. G. Rhin and C. J. Smyth, On the absolute Mahler measure of polynomials having all zeros in a sector, Math. Comp., 64 (1995), 295-304.
8. G. Rhin and Q. Wu, On the absolute Mahler measure of polynomials having all zeros in a sector (II), Math. Comp., 74 (2005), 383-388.
9. C. J. Smyth, The mean values of totally real algebraic integers, Math. Comp., 42 (1984), 663-681.
10. Q. Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp., 72 (2003), 901-911.

Qiang Wu and Xiaoxia Tian
Department of Mathematics Southwest University of China
2 Tiansheng Road
Beibei, 400715 Chongqing
P. R. China

E-mail: qiangwu@swu.edu.cn
print_vsop@163.com

